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Abstract

We review some applications of human-computer interaction that alleviate the

complexity of visual recognition by partitioning it into human and machine

tasks to exploit the differences between human and machine capabilities. Hu-

man involvement offers advantages, both in the design of automated pattern

classification systems, and at the operational level of some image retrieval and

classification tasks. Recent development of interactive systems has benefited

from the convergence of computer vision and psychophysics in formulating vi-

sual tasks as computational processes. Computer-aided classifier design and

exploratory data analysis are already well established in pattern recognition

and machine learning, but interfaces and functionality are improving. On the

operational side, earlier recognition systems made use of human talent only

in preprocessing and in coping with rejects. Most current content-based image

retrieval systems make use of relevance feedback without direct image inter-

action. In contrast, some visual object classification systems can exploit such

interaction. They require, however, a domain-specific visible model that makes

sense to both human and computer.

1 Introduction

The goal of visual pattern recognition during the past fifty years has been the
development of automated systems that rival or even surpass human accu-
racy, at higher speed and lower cost. However, many practical pattern recog-
nition applications involve: random noise and systematic variations in the
patterns, inaccurate and incomplete prior information, limited and unrepre-
sentative training samples, the mostly invincible challenge of segmentation,
non-discriminating and unreliable features, many classes, as well as complex
decision boundaries. Therefore, automatic recognition systems often require
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years of research and development in order to achieve fast and accurate classifi-
cation. Some applications, e.g., optical character recognition, fingerprint iden-
tification, and target recognition, have met with modest success after decades
of research and development, but many theoretical and practical problems
remain. Face recognition has been intensively studied since 60’s, but is still
considered unsolved [43]. Automated recognition in many other domains, such
as petroglyphs, shards, arrowheads, flowers, birds, skin diseases, and so on,
requires too much development for a limited market, or is too complex to be
accommodated by the current methodologies.

A divide-and-conquer strategy for visual recognition should partition such
domains into components that are relatively easier for both human and ma-
chine. There are pronounced differences between human and machine cogni-
tive abilities. Humans excel in gestalt tasks, like object-background separa-
tion. We apply to recognition a rich set of contextual constraints and superior
noise-filtering abilities. Computer vision systems, on the other hand, still have
difficulty in recognizing “obvious” differences and generalizing from limited
training sets [25]. We can also easily read degraded text on which the best
optical character recognition systems produce only gibberish [1][15].

Computers, however, can perform many tasks faster and more accurately.
Computers can store thousands of images and the associations between them,
and never forget a name or a label. They can compute geometrical properties
like higher-order moments whereas a human is challenged to determine even
the centroid of a complex figure. Spatial frequency and other kernel trans-
forms can be easily computed to differentiate similar textures. Computers can
count thousands of connected components and sort them according to various
criteria (size, aspect ratio, convexity). They can quickly measure lengths and
areas. They can flawlessly evaluate multivariate conditional probabilities, de-
cision functions, logic rules, and grammars. On the other hand, the study of
psychophysics revealed that humans have limited memory and poor absolute
judgment [30].

There is a growing consensus among experts to advocate interactive ap-
proaches to difficult pattern recognition problems. As early as 1992, a work-
shop organized by US National Science Foundation in Redwood, California,
stated that “computer vision researchers should identify features required for
interactive image understanding, rather than their discipline’s current empha-
sis on automatic techniques” [27]. A more recent panel discussion at the 27th
AIPR Workshop also emphasized “... the needs for computer-assisted imagery
recognition technology” [29].

We concur with the suggestions of combining human and computer cog-
nitive abilities to cope with the complexity of practical pattern recognition
problems. To lay down some guidelines for integrating human-computer in-
teraction with pattern recognition, we first briefly review human and machine
visual perception and selected findings in psychophysics. We then discuss
three human-computer interaction methodologies used in pattern recognition
and image retrieval: Exploratory Data Analysis (EDA), Relevance Feedback
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for content-based image retrieval, and Computer Assisted Visual InterActive
Recognition (CAVIAR) for visual pattern classification.

Our conjectures on what aspects of visual pattern recognition are easy and
difficult for humans and computers are set forth in Table 1. The remainder of
this chapter attempts to justify some of these conjectures and explores their
implications for the design of pattern recognition systems.

Table 1. Comparison of relative strengths of human and machine in diverse aspects
of visual pattern recognition

Human Machine

dichotomies multi category classification
figure-ground separation
part-whole relationships
salience

nonlinear, high-dimensional classification boundaries
extrapolation from
limited training samples
broad context

store and recall many labeled reference patterns
accurate estimation of statistical parameters
application of Markovian properties
estimation of decision functions from training samples
evaluation of complex sets of rules
precise measurement of individual features
enumeration

gauging relative size and intensity
detection of significant differences
between objects

computation of geometric moments
orthogonal spatial transforms (e.g., wavelets)
connected component analysis
sorting and searching
rank-ordering items according to a criterion
additive white noise
salt & pepper noise

colored noise, texture
non-linear feature dependence

determination of local extrama in high-D spaces
global optima in low dimensions
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2 Human and Machine Visual Perception

Visual perception is defined in [33] as: “the process of acquiring knowledge

about environmental objects and events by extracting information from the

light they emit or reflect.”

Visual perception has been studied separately by psychologists, perform-
ing experiments on sighted organisms; computer scientists, writing programs
that extract and transform optical information; and neuroscientists, study-
ing the structure and function of the visual nervous system. Recently, these
three approaches converged to form a central idea of visual perception: visual

perception is a kind of computation. In living organisms, eyes and brains per-
form visual perception through complex neural information processing, and
in principle, visual perception can also be achieved by video cameras and pro-
grammed digital computers. This idea enables psychologists, computer scien-
tists, and neuroscientists to relate their findings to each other in the common
language of computation, and generates a new branch of cognitive science:
vision science [33].

2.1 Machine Visual Perception

After Alan Turing defined the fundamental model of computation [42], Turing
himself and many others realized that it may be possible for Turing machines
to simulate human intelligence. This idea gave rise to the field of artificial
intelligence.

The goal of the subfield of artificial intelligence called computer vision
is to develop programmed computers, which can interpret the environment
visually. The mathematical approach to creating working computer vision
programs was most clearly and effectively articulated by David Marr and his
colleagues at MIT [28]. Marr’s work dominated computer vision research for
the last two decades, and a great deal of progress has been made. Nevertheless,
machine perception still lags far behind human visual perception with respect
to breadth of visual stimuli, perspective invariance, partial occlusion, tracking,
learning, and uneven illumination (highlights and shadows).

2.2 Human Visual Perception

Classical psychological theories about human visual perception include struc-
turalism, gestaltism, ecological optics, and constructivism [33]. In the field of
visual pattern recognition, there are two theories, recognition-by-components
(RBC) [8] and view-based recognition [40]. Unfortunately, they do not agree
with each other. The debate centers on the form of the representation medi-
ating three-dimensional object recognition.

Recognition-by-components assumes that perceptual processes derive the
constituent parts of an object and represent each of those parts with a sim-
ple geometric volume, or geon. An object representation, or geon structural
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description, consists of geons corresponding to the two or three most salient
parts of an object and the spatial configuration in which the geons are con-
nected. This structural description is represented without regard for the spe-
cific viewpoint of the observer. Recognition is performed by recovering the 3D
geon model from the input image.

In contrast, the key idea of the theory of view-based, or sometimes called
image-based, recognition, is that object representations encode visual infor-
mation as it appears to the observer from a specific vantage point.

After several years of debate between proponents of the two theories
[9][40][10], most researchers now agree that these theories can be considered
as different points in a single continuum. RBC, or viewpoint-invariant theory,
does depend on viewpoint to some extent because single representations nor-
mally encode only some viewpoints of an object. A number of representations
may be needed to cover all possible views of the object. Similarly, view-based
theory doesn’t propose that all view points are needed for recognition. In any
case, how humans recognize objects is still not clearly understood.

2.3 Psychophysics

Image quality can be described in purely physical terms, but optimal image
quality can only be described with reference to the performance of an imaging
task. The relation between physical image quality and diagnostic performance
is the borderland between physics and psychology known as psychophysics.
Psychophysics is the quantitative branch of the study of perception, exam-
ining the relations between observed stimuli and responses and the reasons
for those relations. Psychophysics is based on the assumption that the human
perceptual system is a measuring instrument yielding results (experiences,
judgments, responses) that may be systematically analyzed [6].

The psychophysical aspects of visual pattern recognition, including color,
shape, perspective, and illumination, have been the objectives of sustained
study for centuries. These studies revealed many facets of the amazing human
capacity for visual perception, which are important guidelines for the design of
systems that integrate human-computer interaction with pattern recognition.

Attneave pointed out the importance of redundancy in visual stimulation
[4]. Visual perception is a kind of economical abstraction of the redundant
visual stimuli. He proposed ten principles of abstraction in human visual per-
ception, and mentioned that “information is concentrated along contours.”

In a celebrated article, George A. Miller summarized many psychophysical
experiments and claimed that human absolute judgment is poor, limited to
distinguishing only about seven categories within any single dimension - tone,
loudness, taste (saltiness), length, area, hue, brightness, curvature [30]. He
also noted that we can accommodate only about seven objects in our span of
attention, and that our short-term memory is limited to about seven items.
Nevertheless, we can recognize hundreds or thousands objects because we can
make relatively coarse absolute judgments of several features simultaneously.
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We can also trick our short-term memory by recoding (so we can memorize a
string of 30 zeros and ones by recoding it as 7 letters).

Ashby and Perrin argued that the perceptual effect of a stimulus is ran-
dom, but that on any single trial it can be represented as a point in a multidi-
mensional space [3]. The perceived similarity is determined by distributional
overlap. The perceptual space itself is fundamental. The difference is in the
nature of the response function of the subject. In a recognition task, the deci-
sion process divides the space into response regions, one associated with each
response. On a particular trial, the subject’s response is determined by the re-
gion into which the perceptual sample falls. This theory of human recognition
is analogous to the theory of statistical pattern classification.

3 Exploratory Data Analysis

Human-computer interaction was first exploited for pattern recognition under
the title of Exploratory Data Analysis (EDA). The increasing use of graphical
user interfaces in the 70’s attracted much research to visual data analysis for
designing pattern classification systems.

The seminal works in EDA are those of Ball and Hall [5], Sammon [37],
Tukey and Mosteller [41][31]. Chien summarized early work on interactive
techniques in data acquisition, pattern analysis, and the design of pattern
classification schemes in a monograph, Interactive Pattern Recognition [12].
Over the years, the techniques of EDA have been steadily enhanced [38], [46].

Most EDA techniques are graphical in nature, with only a few quantita-
tive techniques. High-dimensional data is incomprehensible to humans, but
we have superior ability to understand configurations of data in 1D, 2D, and
3D, and the evolution of changes over time. The primary goal of EDA is to
maximize the analyst’s insight into the underlying structure of a data set by
projecting it into a 1D, 2D, or 3D subspace for ease of human visual assimila-
tion. Exploratory Data Analysis facilitates understanding the distribution of
samples in a fixed feature-space in order to design a classifier, but stops short
of operational classification.

Recently, Mirage, an open source Java-based EDA software tool, was im-
plemented at Bell Laboratories [23][24]. Besides supporting the basic EDA
functions, i.e., projecting the data into one, two, or higher dimensional sub-
space, and displaying them in tables, histograms, scatter plots, parallel coordi-
nate plots, graphs, and trees, Mirage facilitates the analysis and visualization
of the correlation of multiple proximity structures computed from the same
data. All functions are available through an elaborate Graphical User Inter-
face, but a small interpretive command language is provided for repetitive,
large-scale data analysis. In Mirage, the users can also configure several plots
at the same time, and perform classification manually or automatically.
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4 Relevance Feedback in Content-Based Image Retrieval

Content-based image retrieval (CBIR) has been the subject of widespread
research interest. Many prototype systems have been implemented, such as
QBIC [18], Virage [7], Photobook [34], MARS [26], PicToSeek [21], PicHunter
[16], Blobworld [11], and so on. Several surveys have also been published
[32][2][36][39] over the years. Content-based image retrieval attempts to re-
trieve images similar to the query image from an image database. It is moti-
vated by the fast growth of image databases, which requires efficient search
schemes.

Fully automatic content-based retrieval does not yet scale up to large
heterogeneous databases. Human-computer interaction is an important com-
ponent of all content-based image retrieval systems. Relevance Feedback is
broadly adopted in content-based retrieval systems for human-computer in-
teraction, and has been found effective [35][14].

A typical CBIR system with relevance feedback operates as follows: the
user submits a query image, which is somewhat similar to the desired image
(or a sketch of a desired image) and specifies which properties, e.g., overall
color, overall texture, and so on, are important to the query. Upon seeing
the query results, the user designates the retrieved images as acceptable or
unacceptable matches in order to provide more information to the retrieval
algorithm. This process is iterated until the user finds the desired image or
gives up the task.

A major shortcoming of the above interface is that the user cannot share
the computer’s view of the image. Without knowing whether the query im-
age was properly understood (processed) by the machine, the user can only
wonder what went wrong when the retrieval result was unsatisfactory. The de-
velopers of “Blobworld” realized this drawback, and suggested that the CBIR
systems should display its representation of the submitted and returned im-
ages and should allow the user to specify which aspects of that representation
are relevant to the query. In the Blobworld image retrieval system, the user
composes a query by submitting an image, then views its Blobworld represen-
tation, selects the blobs to match, and finally specifies the relative importance
of the blob features.

5 Computer Assisted Visual InterActive Recognition

Reject correction may be the most common example of interacting with a clas-
sifier. Almost all classification algorithms admit some means of decreasing the
error rate by avoiding classifying ambiguous samples. The samples that are not
classified are called “rejects” and must, in actual applications, be classified by
humans. Reject criteria are difficult to formulate accurately because they deal
with the tails of the statistical feature distributions. Furthermore, most clas-
sifiers generate only confidence, distance, or similarity measures rather than
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reliable posterior class probabilities. Regardless of the nature of the classifier,
at least two samples must be rejected in order to avoid a single error, because
any reject region must straddle the classification boundary, near which there
must be a 50-50 mixture of two classes1 [13].

The efficiency of handling rejects is important in operational character
and speech recognition systems, but does not receive much attention in the
research literature. Keeping the human in the loop was recently also demon-
strated in the domains of face and sign recognition (the extraction and recogni-
tion of text in natural scenes). However, it was confined to preprocessing, i.e.,
establishing the pupil-to-pupil baseline [45] or a text bounding box [22][47]. In
these approaches, human intervention occurs only at the beginning or at the
end of the recognition process, i.e., segmenting objects or performing other
kinds of preprocessing before machine operations, or handling rejects after

machine operations. There is little communication between the human and
the computer.

The motivation of our recently-proposed methodology for interactive vi-
sual pattern recognition, Computer Assisted Visual InterActive Recognition
(CAVIAR), is simply that it may be more effective to establish a seamless
human-computer communication channel to make parsimonious use of hu-
man visual talent throughout the process, rather than only at the beginning
or end [48][49]. The vehicle for human-machine communication is a visible

model.
Unlike content-based image retrieval, which is usually on a broad domain,

each CAVIAR system addresses only a narrow domain. In the broad domain
of content-based image retrieval, no effective way has been found so far to
interact with arbitrary images. In pattern classification with CAVIAR, the
domain-specific geometrical model, e.g., a set of contours and critical feature
points, plays the central role in facilitating the communication (interaction)
between the human and the computer. The key to effective interaction is the
display of the automatically-fitted adjustable model that lets the human retain
the initiative throughout the classification process.

CAVIAR is designed to allow the human to quickly identify an object
with a glimpse at the candidate samples that were ranked near the top by
the computer. Avoiding having to look at many low-ranked classes is clearly
most effective in many-class classification problem. Because of the nature
of the human-computer interaction, CAVIAR is more appropriate for low-
throughput applications, where higher accuracy is required than is currently
achievable by automated systems, but where there is enough time for a limited
amount of human interaction.

1 This is a lower bound under the assumption of uniform cost of errors, because
some samples may occur near the intersection of more than two regions. Therefore
error-reject curves have an initial slope of at least -0.5, which increases further as
the fraction of rejects is increased to lower the error rate.
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Traditionally, visual pattern recognition includes three subtasks: segmen-
tation, feature extraction, and classification. As mentioned, psychophysical
studies suggest that the information is concentrated along object contours [4],
therefore the pattern contours are important for classification. Locating the
precise object boundary (strong segmentation) is generally considered too dif-
ficult and unreliable [39]. On the other hand, it may not even be necessary for
visual pattern recognition. Several content-based image retrieval systems cir-
cumvent strong segmentation by locating only the approximate object bound-
ary (weak segmentation). CAVIAR also gives up strong segmentation for weak
segmentation based on a family of rose curves specified by six parameters. If
the automatically constructed rose curve does not fit well, the user can easily
adjust the model parameters by dragging a few control points. In CAVIAR,
this model describes not only the object contour, but also some components
of the object (petals).

In Blobworld, the Blobworld representation, which is an approximate seg-
mentation of the object, is displayed in order to avoid misunderstandings
between the human and the computer. This is much better than leaving the
users wonder what went wrong when a machine error occurs. However, appre-
hending the machine errors without being able to correct them is also frus-
trating. In CAVIAR, the user can not only view the machine’s understanding
(processing) of the image, but also correct the machine errors if necessary.

In CAVIAR, the first generic computer-vision task, segmentation, becomes
model building. Therefore a CAVIAR process has three subtasks: model build-

ing, i.e., generating a model instance, which explains the image according to
the domain model; feature extraction, i.e., measuring discriminative object
properties according to the constraints provided by the model instance; and
classification, i.e., assigning a category label to the object.

Model building in CAVIAR-flower consists of fitting a rose curve to the
flower. First a circle is fitted to the foreground (the flower to be recognized)
based on the expected difference in color between flowers and background
(leaves, dirt). The boundary propagates to high-gradient locations penalized
according to their distance from the initial circle [50]. Finally, a rose curve is
fitted to the propagated boundary (Fig. 1). The area delineated by the rose
curve constrains feature extraction to the discriminative parts of the picture.

The model instances constructed in this manner are not always correct
(Fig. 2). After decades of extensive research on this topic, many researchers
now agree that automatic image segmentation is not likely to correspond
consistently to human expectations except in narrow domains. On the other
hand, humans perform image segmentation smoothly, accurately, and with
little ambiguity. So we believe that model building should be, at least for
now, subject to human correction.

Most laypersons don’t understand computer vision features like moment
invariants or wavelets. Humans find it difficult to visualize computer vision
feature vectors and the geometry and topology of high-dimensional feature
spaces. Furthermore, lay users are seldom familiar with all the distinguishing
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Fig. 1. Automated model construction in CAVIAR. Initial circle (blue), detailed
segmentation (red), and parametric rose curve (green) segmentation of two flowers.
The rose curve serves as a visible model of the computer’s concept of the unknown
flower. It guides the computer in the extraction of classification features.

properties of the various classes, and therefore cannot judge the adequacy
of the machine-proposed decision boundary. As mentioned, psychophysical
studies also point out that human absolute judgment is poor, effective only in
an approximately seven-interval scale [30]. Machines, on the other hand, can
compute complicated features very accurately and very fast. So, in CAVIAR,
feature extraction should be performed primarily by machine, without human
intervention. However, indirect human refinement of feature values, by adjust-
ing the CAVIAR model instance throughout the process, does promote faster
and more accurate classification.

The whole CAVIAR process can be modeled as a finite state machine (Fig.
3). The computer tries its best to estimate an initial model for the unknown
sample and calculate its similarity to the training samples that belong to each
class. Representative training pictures are displayed in the order of computer-
calculated similarities. The current model is also displayed, so that the user
can correct it if necessary. Any correction leads to an update of the CAVIAR
state: the remaining unadjusted model parameters are re-estimated, and all
the candidates are re-ordered. Fig. 2 shows a difficult example, where the
picture is blurred.

In summary, CAVIAR operates on four entities: (1) the unknown image,
(2) the parameters of a visible geometrical model instance, (3) the feature
vector extracted from the image according to the model, and (4) the list of
class labels ranked according to the similarity of the corresponding reference
pictures to the query picture. Interaction takes place through the model. The
process terminates when the user assigns a label to the unknown image.

The image is a 2D color or gray scale picture, as in the conventional visual
pattern recognition systems.

The geometrical model consists of critical points and parametric curves,
which are both abstract and visual descriptions of the contours of the pattern
components and of the geometrical relations among them. The model estima-
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(a) (b)

(c) (d)

Fig. 2. An example of CAVIAR flower recognition. (a) The initial automatic rose
curve estimation and indexing are bad because the picture is blurred: the correct
candidate does not appear among the top three. (b) The user adjusts the center. (c)
The user adjusts the petal number. (d) After the user adjusts the inner radius, the
computer displays the correct candidate. (It is almost never necessary to make this
many adjustments.)

tion algorithm can use any segmentation algorithm (edge based, region based,
hybrid optimization) to locate these critical points and curves. The human’s
understanding of the image can be communicated to the machine by adjusting
a few critical points. The machine can then re-estimate the remaining model
parameters in a lower-dimensional space for improved classification.

The feature vector is a set of features for classifying patterns. It is extracted
from a picture according to the model instance. The features, which may
include shape (derived from the model parameters), color, texture, and other
attributes, exist only in a high-dimensional space invisible to the user.
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Fig. 3. CAVIAR Flowchart, showing transitions betweens automated modeling and
human modification of the model, followed by browsing and classification.

The class label list is a machine-ordered list of candidates based on the
feature vector. It governs the display of reference pictures. The user assigns
a particular label to the unknown object by clicking on one of the displayed
reference pictures.

The model parameters constitute a vector random variable. Human and
machine observations of model parameters are also random variables, with hu-
man model estimates much better than machine estimates. The feature vector
is related to the model parameters through a deterministic function. Human
adjustments reduce the bias and variance of the feature vector by reducing the
bias and variance of the model parameters. More accurate features generally
improve classification.

The CAVIAR methodology has been applied to flower recognition on a
database with 612 samples from 102 classes. Experiments with 36 näıve sub-
jects show the following properties of CAVIAR systems [48][49].

• Human-computer communication through a geometrical model is effec-
tive. Combining human and machine can significantly reduce the recogni-
tion time compared to the unaided human, and significantly increase the
accuracy compared to the unaided machine.

• The CAVIAR system can be initialized with a single training sample per
class, but still achieve high accuracy (because there is a human in the
loop).

• The CAVIAR system shows self-learning. The user classified samples,
along with the user adjusted model instances, are added to the reference
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set of labeled samples to effect unsupervised decision-directed approxi-
mation [17]. Although the samples may not be 100% correctly classified,
automatic recognition still improves, which in turn helps users to identify
the patterns faster. The performance based on just-classified samples is al-
most as good as with the same number of ground-truth training samples.
Instead of initializing the CAVIAR system with many training samples, we
can trust the system’s self-learning ability (although, of course, the initial
users would need more time).

• Users remember the examples to become “connoisseurs” of the specific
family. With CAVIAR, lay persons need little practice to become faster
than unaided “connoisseurs”.

CAVIAR methodology can be applied to many other tasks. Interactive face
recognition under head rotation, occlusion, and changes of illumination and
facial expression is very challenging, but of great practical importance (Fig.
4). CAVIAR has also been ported to a stand-alone PDA, and to a pocket
PC with a wireless link to a host laptop. Interaction with the visual model
through a stylus is faster than with a mouse. We expect some applications, like
the identification of skin diseases and other medical diagnoses based on visual
observations, to be more appropriate for mobile versions of CAVIAR [51].
With mobile system, taking additional photos from a different perspective or
distance, or under different illumination, could be extremely useful. Whether
the resulting information should be combined at the pixel, feature, or classifier
level is an unresolved research issue.

As do all classifiers, CAVIAR systems collect, in the course of operation,
mostly-correctly-labeled samples. As more and more samples are accumu-
lated, they can be used to improve the machine’s performance either directly,
by machine learning, or by studying the accumulated training samples and
upgrading the classification and learning algorithms.

CAVIAR could offer suggestions to its users. For example, it could suggest
which model parameters to adjust, or request the operator to inspect further
candidates because the top candidates have low confidence values. We do not
allow CAVIAR to make such suggestions, because its judgment so far is worse
than the human’s, therefore most of its suggestions would just annoy the user.
Eventually machines may, of course, earn suggestion privileges.

6 Discussion

Fifty years of sustained research has increased our appreciation of the fun-
damental difficulty of some visual recognition tasks and our admiration for
the complex, multi-level biological systems that accomplish these tasks with
apparent ease. At the same time, technological developments have enabled
human-computer interaction at a level that could be found earlier only in
science fiction. Within the 0.5 second response time that experts consider ac-
ceptable, a laptop or a PDA can perform calculations that used to require
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Fig. 4. CAVIAR-Face GUI and model. The eye region is enlarged to allow accurate
location of the crucial characteristic points at the pupils.

hours or days on a mainframe, and display the results instantly at high res-
olution, color and, if need be, motion. It is therefore now highly appropriate
to seek joint human-computer solutions, at least as a temporary expedient, to
recognition problems that have so far eluded an entirely algorithmic approach.

An interactive solution is not appropriate for all classification tasks. Char-
acter and speech recognition require the rapid interpretation of long pattern
sequences rather than isolated patterns, while “real time” in many military
applications is much less than human reaction time. But there are also many
applications, like face, fingerprint, or flower recognition and medical diagnosis,
where isolated patterns are recognized only sporadically, and where image ac-
quisition takes long enough to dominate any real need for quasi-instantaneous
classification. The advent of PDAs and camera phones with internet access
and plug-in cameras increases the scope for interactive personal recognition
systems.

In many other fields of engineering, sophisticated and mature CAD soft-
ware is widely used to mock-up proposed solutions, prepare and access test
data, simulate experiments, check design constraints, perform routine calcu-
lations, and retrieve, modify and incorporate previously designed modules.
As such systems evolve, more and more intricate tasks are relegated to the
computer, but the design engineer always remains in charge. In pattern recog-
nition and machine learning, specialized computer-aided design tools have
been slow to emerge. Nevertheless, interactive design and analysis tools have
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proved useful for improved understanding of the data even in domains where
no intervention can be admitted at run time.

Interactive data analysis can lead to the selection of better features for
classification, the identification of subsets of the data for which special pro-
visions are necessary, the discovery of correlations or redundancies between
features or patterns, and the detection of mislabeled items. Human-computer
interaction is especially appropriate for discovering complex hidden informa-
tion, and for accumulating training samples which, according to the no free
lunch theorem [44] and the bias-variance dilemma [20][19], are the only two
factors that can really improve classification performance.

Computer-assisted labeling has, of course, always been used to prepare
training sets for classifier design, and often to classify rejects. It seems likely
that with further advances in active and semi-supervised learning, these label-
ing operations will be more closely integrated with the algorithmic classifica-
tion process itself. This may be most easily accomplished within the existing
systems for exploratory data analysis.

At the operational, “real time” level, we have seen that there are two
options. The more common one, almost universally used in content-based
image retrieval, is to let the computer do the best it can, and tell it where it
fails. The machine then can use the set of positive and negative samples that it
has just acquired to improve its next try. The information provided by the user
is limited to one bit per picture, because he or she has no knowledge of how the
computer made its decision and where it went wrong. Some research attempts
to organize postage-stamp displays of the retrieved images in a configuration
that suggests their putative relationships.

The other paradigm is CAVIAR, where users interact with the picture
directly through a parametric model. Such a model must be constructed for
every new application domain. For applications that justify the investment of
effort, it is an effective approach to interactive classification.

The differences between peripheral and in-the-loop human intervention
exist in other fields as well. In chess and checkers, relevance feedback would
only tell the machine whether it has won or lost the game (which of course it
can deduce by itself), while a CAVIAR approach could offer comment on every
move. Although using some computer help is quite popular in the current on-
line format of postal chess competition, much AI research runs counter to our
philosophy of letting the machine help the user, rather than vice-versa.

We summarize our main points. In some domains, the accuracy of au-
tomatic classification remains far below human performance. Human and
computer abilities differ, and we are making progress in understanding the
differences. A good interactive visual recognition system capitalizes on the
strengths of both. It must establish effective two-way communication. In nar-
row domains simplified models of the real world can bridge the semantic gap
between man and machine. The human must be able to exercise gestalt per-
ception in his or her customary visual domain which, in addition to natural
scenes, includes several well-established sets of symbols. The computer should
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take full advantage of its almost unlimited memory and of its ability to solve
huge but essentially repetitive problems. Further research is needed on how
to translate complex multi-dimensional internal data to a form where any fal-
lacies and failures of the current computer model can be readily apprehended
and corrected.
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