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ABSTRACT

Human coronavirus (hCoV) HKU1 is one of six hCoVs identified to date and the only one with an unidentified cellular receptor.

hCoV-HKU1 encodes a hemagglutinin-esterase (HE) protein that is unique to the group a betacoronaviruses (group 2a). The function

of HKU1-HE remains largely undetermined. In this study, we examined binding of the S1 domain of hCoV-HKU1 spike to a panel of

cells and found that the S1 could specifically bind on the cell surface of a human rhabdomyosarcoma cell line, RD. Pretreatment of RD

cells with neuraminidase (NA) and trypsin greatly reduced the binding, suggesting that the binding was mediated by sialic acids on

glycoproteins. However, unlike other group 2a CoVs, e.g., hCoV-OC43, for which 9-O-acetylated sialic acid (9-O-Ac-Sia) serves as a

receptor determinant, HKU1-S1 bound with neither 9-O-Ac-Sia-containing glycoprotein(s) nor rat and mouse erythrocytes. Nonethe-

less, the HKU1-HE was similar to OC43-HE, also possessed sialate-O-acetylesterase activity, and acted as a receptor-destroying enzyme

(RDE) capable of eliminating the binding of HKU1-S1 to RD cells, whereas the O-acetylesterase-inactive HKU1-HE mutant lost this

capacity. Using primary human ciliated airway epithelial (HAE) cell cultures, the only in vitro replication model for hCoV-HKU1 in-

fection, we confirmed that pretreatment of HAE cells with HE but not the enzymatically inactive mutant blocked hCoV-HKU1 infec-

tion. These results demonstrate that hCoV-HKU1 exploits O-Ac-Sia as a cellular attachment receptor determinant to initiate the infec-

tion of host cells and that its HE protein possesses the corresponding sialate-O-acetylesterase RDE activity.

IMPORTANCE

Human coronaviruses (hCoV) are important human respiratory pathogens. Among the six hCoVs identified to date, only hCoV-

HKU1 has no defined cellular receptor. It is also unclear whether hemagglutinin-esterase (HE) protein plays a role in viral entry. In this

study, we found that, similarly to other members of the group 2a CoVs, sialic acid moieties on glycoproteins are critical receptor deter-

minants for the hCoV-HKU1 infection. Interestingly, the virus seems to employ a type of sialic acid different from those employed by

other group 2a CoVs. In addition, we determined that the HKU1-HE protein is an O-acetylesterase and acts as a receptor-destroying

enzyme (RDE) for hCoV-HKU1. This is the first study to demonstrate that hCoV-HKU1 uses certain types of O-acetylated sialic acid

residues on glycoproteins to initiate the infection of host cells and that the HKU1-HE protein possesses sialate-O-acetylesterase RDE

activity.

Human coronaviruses (hCoVs) are enveloped RNA viruses.
They are usually associated with mild to moderate respiratory

tract illnesses but can also cause severe and highly lethal disease,
depending on the virus strain (1). Six hCoV strains have been
identified to date and belong to four different groups, including
hCoV-229E and hCoV-NL63 in the alphacoronaviruses (group
1); hCoV-OC43 and hCoV-HKU1 in the group a betacoronavi-
ruses (group 2a); severe acute respiratory syndrome CoV (SARS-
CoV) in the group b betacoronaviruses (group 2b); and Middle
East respiratory syndrome CoV (MERS-CoV) in the group c beta-
coronaviruses (group 2c). Infections by viruses in groups 1 and 2a
are common worldwide and can also cause severe disease in young
children or immunocompromised adults. SARS-CoV (2–4) and
MERS-CoV (5, 6) are two highly virulent hCoVs causing severe
respiratory diseases with high morbidity and mortality (7); the
latter strain is still circulating in human populations.

Cellular receptor specificity plays an important role in viral cell

and tissue tropism, pathogenesis, interspecies transmission, and

adaptation. The CoV Spike (S) glycoprotein is generally responsi-
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ble for binding to cellular receptors and mediating viral entry. The
S protein is a large type I transmembrane glycoprotein that exists
as a trimer protruding from the surface of virions (8). S proteins
have an amino-terminal (NT) S1 domain that mediates binding
with cellular receptors and a carboxy-terminal (CT) S2 domain
that mediates subsequent virus-cell membrane fusions. A wide
range of diverse cellular receptors specifically recognized by the S1
domains have been identified for all the aforementioned hCoVs
except hCoV-HKU1. Human aminopeptidase N (CD13) is the
cellular receptor for hCoV-229E (9). 9-O-Acetylated sialic acid
(9-O-Ac-Sia) is the cellular receptor determinant for hCoV-OC43
(10). hCoV-NL63 and SARS-CoV both employ human angioten-
sin-converting enzyme 2 (ACE2) to mediate cellular entry (11,
12), while hCoV-NL63 utilizes heparan sulfate proteoglycans for
attachment to target cells (13). MERS-CoV utilizes dipeptidyl
peptidase 4 (DPP4 or CD26) receptor to enter host cells (14).

hCoV-HKU1 was initially identified in 2005 from a pneumo-
nia patient in Hong Kong (15). It was subsequently found to be as
common and widespread as previously known hCoVs, namely,
hCoV-229E, hCoV-OC43, and hCoV-NL63 (16–19). Character-
ization of hCoV-HKU1 has been challenging due to the lack of a
convenient cell line-based culture system. It was recently demon-
strated that hCoV-HKU1 replicates to a high titer in an in vitro
culture system that uses primary human ciliated airway epithelial
(HAE) cells or type II alveolar epithelial cells (20–22); however,
the functional receptor(s) of hCoV-HKU1 and other important
aspects of virus-host interaction remains unknown. As a member
of group 2a CoVs, HKU1-CoVs also carry another viral surface
protein hemagglutinin-esterase (HE)-encoding gene that is pres-
ent exclusively in this group of CoV genomes (23). The HE protein
is also a type I transmembrane glycoprotein comprised of two
functional domains: an O-acetylated sialic acid binding domain
and a corresponding sialate O-acetylesterase domain (24). HE
protein functions primarily as a receptor-destroying enzyme
(RDE) for CoVs, e.g., hCoV-OC43 and its proposed zoonotic
ancestor, bovine coronavirus (BCoV) (25). Both viruses bind to
receptor 9-O-Ac-Sia via their S proteins, and their HE proteins
mediate RDE activity late in the infection cycle via the sialate-9-
O-acetylesterase domain to facilitate the release of viral progeny
and escape from attachment on nonpermissive host cells (23, 26).
In contrast, mouse hepatitis virus (MHV), another member of
group 2a CoVs, infects cells via the interaction of S protein with its
principal receptor, the carcinoembryonic antigen-related cell ad-
hesion molecule (CEACAM1a), while the MHV HE protein func-
tions at very early viral attachment steps through the concerted
action of its O-acetylated sialic acid binding and RDE activities
(27, 28). To date, the function and role of the hCoV-HKU1 HE
protein have remained undefined.

In this study, we found that the hCoV-HKU1 S protein medi-
ated viral attachment by utilizing O-acetylated sialic acids on gly-
coprotein(s) as a receptor determinant or as initial attachment
factors. The HE protein of hCoV-HKU1 did not exhibit sialic acid
binding activity but instead mediated sialate-O-acetylesterase
RDE activity specific to the O-acetylated sialic acids recognized by
the S protein. Interestingly, HKU1-HE protein displayed sialate-
9-O-acetylesterase RDE activity similar to that seen with
OC43-HE and BCoV-HE. In the hCoV-HKU1 in vitro replication
model, we further demonstrated that the HE protein but not an
enzymatically inactive HE mutant acted as a RDE and completely
blocked or greatly reduced infection, depending on the dose of

inoculating hCoV-HKU1. These findings revealed that early viral
entry steps for hCoV-HKU1 are similar to but also distinct from
those for other members of group 2a CoVs. Like hCoV-OC43 and
BCoV, hCoV-HKU1 employs O-acetylated sialic acids as a pri-
mary receptor determinant or attachment factor and its HE pro-
tein as a corresponding RDE; however, hCoV-HKU1 also
uniquely requires additional receptor determinants beyond those
required by hCoV-OC43 and BCoV.

MATERIALS AND METHODS

Construction of expression plasmids. A synthetic codon-optimized
sequence for the HKU1-S1 gene (GenBank accession number
NC_006577.2) encoding amino acids (aa) 15 to 600 was cloned into a
mammalian expression vector containing a CD5 signal peptide and a
C-terminal Fc tag from mouse IgG2a (mFc). The expression cassette was
under the control of a cytomegalovirus (CMV) early enhancer/chicken �

actin (CAG) promoter. The resulting construct, pCAGGS-HKU1-
S1(600)-mFc, encodes a chimeric S1 protein with an N-terminal CD5
signal peptide and mFc at its C terminus. Similarly, plasmids encoding
other proteins, including the NT domain of HKU1-S1 (aa 15 to 268), the
NT domain of hCoV-OC43-S1 (aa 15 to 268) (ATCC VR-759 strain;
GenBank accession no. AAT84354), and the NT domain of S1 of CoV-
HKU3 (aa 16 to 323) (DQ022305), were constructed. The extracellular
domains of HE proteins from different CoVs, including HKU1-HE (aa 14
to 358; GenBank accession no. NC_006577.2), hCoV-OC43-HE protein
(aa 19 to 376; AAX85668.1), BCoV-HE (aa 19 to 377; AAA92991.1), and
MHV-S-HE (aa 25 to 393; AAX08110.1), were similarly constructed. Plas-
mids encoding mutants of HKU1-HE were generated by the site-directed
QuikChange mutagenesis method (Stratagene). All mutations were con-
firmed by DNA sequencing, in which the codon for esterase-catalytic res-
idue Ser40 was replaced by Ala (S40A mutant) or the catalytic triad S40,
H329, and D326 were all replaced by Ala (S40A/H329A/D326A).

Expression and purification of recombinant proteins. HEK293T
cells were transiently transfected with the expression plasmids using poly-
ethyleneimine (Polysciences). At 12 h after transfection, the medium was
replaced by 293 SFM II expression medium (Life Technology). Tissue
culture supernatants were harvested 3 days after transfection, and the
recombinant proteins were purified by protein A-based affinity chroma-
tography.

Flow cytometry FACS analysis. HKU1-S1(600)-mFc or other pro-
teins at different concentrations were diluted in fluorescence-activated
cell sorter (FACS) buffer (phosphate-buffered saline [PBS] containing
0.5% bovine serum albumin [BSA] and 0.1% NaN3) and then incubated
with 0.5 � 106 to 1 � 106 RD cells or red blood cells (RBCs) from mouse
or rat blood samples at 4°C for 0.5 to 1 h. Cells were then washed three
times with FACS buffer followed by incubation with fluorescein isothio-
cyanate (FITC)-labeled anti-mouse Fc antibody at a dilution following the
instructions of the manufacturer (Sigma or Pierce) at 4°C for 30 min. Cells
were washed as described above, and the binding of proteins to cells was
analyzed by the use of a BD FACS LSRII (Becton Dickinson) flow cytom-
eter and FCS Express software (De Novo Software). For FACS analysis to
examine the inhibition of HKU1-S1 binding to RD cells, the cells were
pretreated with the indicated HE proteins or enzymes at different concen-
trations and then incubated with HKU1-S1, after which binding was an-
alyzed as described above. The neuraminidase (NA) was from Clostridium
perfringens (Sigma), and the bovine pancreas-derived trypsin treated with
N-tosyl-L-phenylalanyl chloromethyl ketone (TPCK) was purchased
from Sigma. For both NA and trypsin, the pretreatment was carried out at
37°C for 1 h; for the HE proteins, the pretreatment was carried out at 4°C
for 1 h.

Indirect immunofluorescence. RD cells were seeded on glass cover-
slips 1 day before staining. Cells were washed three times with PBS,
blocked with 0.5%BSA–PBS at 37°C for 30 min, incubated with HKU1-
600-mFc or HKU3-323-mFc at 20 �g/ml in PBS at 4°C for 1 h followed by
washing three times with PBS, and then incubated with FITC-goat anti-
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mouse Fc antibody (Sigma) at 4°C for 1 h. Cells were washed three times
and then incubated with 5 �g/ml Hoechst 33258 at 37°C for 10 min,
followed by three additional washes, and finally incubated with 5 �g/ml
FM-4-64 on ice for 1 min. Cells were analyzed and imaged with a 63� oil
objective using an Zeiss LSM510 Meta confocal microscope. Representa-
tive images are shown.

HA assay. RBCs in an approximately 0.25% to 0.5% suspension pre-
pared from mouse (BALB/c) or rat (Sprague Dawley) blood were added to
a round-bottom 96-well plate at 50 �l/well. S1 proteins were 2-fold serial
diluted with 0.5%BSA–PBS and added at 50 �l/well to the wells contain-
ing RBCs. For the HE protein inhibition assay, RBCs were first pretreated
with HE (2-fold serially diluted) and washed by the use of PBS followed by
addition of 50 �l/well of 10 �g/ml of hCoV-OC43-S1 to the wells con-
taining the HE-pretreated and washed RBCs. The plates were left at room
temperature for 60 min or longer until hemagglutination (HA) developed
or the RBCs gradually settled. Positive hemagglutination resulted in the
formation of a uniform reddish color across the well, whereas negative
results appeared as dots in the center of round-bottomed plates due to the
sedimentation of RBCs.

ELISA. The binding of S1 proteins to bovine submaxillary mucin
(BSM) was determined by an enzyme-linked immunosorbent assay
(ELISA) as previously described (28) with modification. Maxisorp 96-well
plates (Nunc) were coated overnight at 4°C with BSM (Sigma) at 10 �g/ml
and at 100 �l/well. The wells were washed with washing buffer (PBST
[0.05% Tween 20 –PBS]) and treated with blocking buffer (PBS, 0.05%
Tween 20, 2% nonfat milk) for 1 h at room temperature. Serially diluted
S1 proteins were prepared in blocking buffer (starting concentration, 20
�g/ml) and then added to the BSM-coated wells at 100 �l/well. Incuba-
tion was continued for 1 h followed by washing with PBST six times.
Binding was detected using an horseradish peroxidase (HRP)-conjugated
goat anti-mouse IgG (Pierce) (1:10,000 in blocking buffer) followed by
washing again. The optical density at 450 nm (OD450) was measured after
incubation of the peroxidase tetramethylbenzidine (TMB) substrate and
stop solution.

Acetylesterase activity assay. Chromogenic p-nitrophenyl acetate
(pNPA; Sigma) substrate was 2-fold serially diluted and then incubated
with 1 or 2 �g/ml HE-mFc protein or its mutants in a 100-�l volume in
PBS (pH 7.4) at 37°C for different time periods as indicated. The acetyl-
esterase activity was determined by measuring the release of para-nitro-
phenol (OD450) at the end of each reaction in microtiter plates with a
microplate spectrophotometer (Bio-Rad). An unrelated protein was used
as a control in the enzymatic assay, and the OD405 for HE protein or
mutants was subtracted from that of this control. The Km value of HE
protein was calculated from the Michaelis-Menten enzyme kinetics curve
using Graphpad Prism 5 software.

Neuraminidase activity assay. An Amplex red neuraminidase assay
kit (Molecular Probes/Invitrogen) was used to measure NA activity.
Briefly, 25 �g/ml of HKU1-HE protein was serially diluted in 50 �l of 1�

reaction buffer followed by addition of 50 �l of a 2� working solution
containing 100 �M Ample Red reagent, 0.2 U/ml of HRP, and 4 U/ml of
galactose oxidase, and the fetuin substrate was serially diluted 100-fold
from 2.5 mg/ml to 2.5 pg/ml. The mixture was incubated at 37°C for 10
min under dark conditions, the fluorescence signal was then measured at
a wavelength of 595 nm, and the measured values were used to indicate
relative NA activity levels.

HKU1 infection of HAE cells. The HAE cell culture system has been
described previously (20). Briefly, the apical surface of HAE cells was
washed three times in situ with phosphate-buffered saline (PBS) and then
treated with testing reagents or controls by incubation at 32°C for 1 h
followed by washing with PBS to remove the testing reagents. The treat-
ment and washing were repeated two more times. HAE cells were then
inoculated with 100 �l of viral stock. Following incubation for 2 h at 32°C,
the unbound virus was removed by washing with 500 �l for 10 min at
32°C for three washes, and the HAE cells were maintained at an air-liquid
interface for the remainder of the experiment at 32°C. HKU1 replication

kinetics were determined at specific time points postinoculation as indi-
cated, 120 �l of PBS was applied to the apical surface of HAE cells, and the
apical sample was harvested for RNA isolation after 10 min of incubation
at 32°C. The RNA was then analyzed by real-time reverse transcriptase
(RT)-PCR to determine viral genomic mRNA copy numbers (20).

RESULTS

S1 domain of hCoV-HKU1 binds to RD cells. As CoV S1 domains
generally mediate the interactions with a cellular receptor(s) to
trigger subsequent virus-host cell membrane fusion to initiate vi-
ral entry, we first expressed the codon-optimized soluble HKU1
S1 domain (aa 15 to 600) and fused it to the Fc domain from
murine IgG2a [HKU1-S1(600)-mFc] (Fig. 1A) to identify the cel-
lular receptor/attachment factor for hCoV-HKU1. As a control,
we also expressed the NT of the bat coronavirus HKU3 (29) S1
domain (aa 16 to 323) fused to mFc, HKU3-S1(323)-mFc. To
determine, which if any, immortalized cell lines expressed the cel-
lular receptor for hCoV-HKU1, we probed cell lines that were
isolated from several different species and tissues with our
HKU1-S1 protein using flow cytometry. These cell lines included
293T (human embryonic kidney cells), HeLa (human cervical ad-
enocarcinoma), CHO (Chinese hamster ovary cells), A549 (hu-
man lung epithelial adenocarcinoma cells), Caco2 (human epi-
thelial colorectal adenocarcinoma cells), HepG2 (human liver
hepatocellular carcinoma cell line), Huh-7 (human hepatoma
cells), RD (human rhabdomyosarcoma/muscle tumor cells),
HRT-18 (human colon adenocarcinoma cells), Lovo (human co-
lon adenocarcinoma cells), MDCK (Madin-Darby canine kidney
cells), and Vero (African green monkey kidney cells). Interest-
ingly, only RD cells showed specific strong binding with 5 �g/ml
of HKU1-S1(600)-mFc compared with the control protein (Fig.
1B, left panel); no specific binding was found for any of the other
cell lines tested (a representative negative-staining result on HeLa
cells is shown in the right panel of Fig. 1B). To independently
confirm that HKU1-S1 binds to the surface of RD cells, we incu-
bated cells with either HKU1-S1(600) or HKU3-S1(323) followed
by fluorescently labeled secondary antibody and then used FM-4-
64, a lipophilic probe that fluoresces intensely upon binding to the
outer leaf of the plasma membrane. As shown in the left panel of
Fig. 1C, HKU1-S1(600) and FM-4-64 had similar staining pat-
terns on the cell membrane of RD cells, suggesting that both were
labeling the surface of the cells. In contrast, no HKU3-S1(323)
could be detected on the surface of the RD cells (Fig. 1C, right
panel). FACS analysis also showed that the binding of HKU1-S1
with RD cells occurred in a dose-dependent manner (Fig. 1D); the
binding was detected at a low concentration of HKU1-S1(600)-
mFc protein at 0.61 �g/ml. These results indicate that a cellular
attachment factor or receptor(s) for hCoV-HKU1 is present on
the surface of the RD cells. We further tested whether the NT of
HKU1-S1 can bind with RD cells. The NT (aa 15 to 268) of
HKU1-S1 was expressed as a mFc-fusion protein [HKU1-
S1(268)-mFc] (Fig. 1A) and was examined for binding with RD
cells by FACS analysis. As shown in Fig. 1E, left panel, the NT
domain did not bind to RD cells even at a high concentration of 10
�g/ml, suggesting that the binding of HKU1-S1 to RD cells re-
quires regions beyond the NT of S1; the NT domain alone is not
sufficient to support the binding. In contrast, the NT of hCoV-
OC43-S1(268) protein could bind to RD cells in a dose-dependent
manner (Fig. 1E, right panel), but the binding activity was weaker
than that of HKU1-S1(600) to RD cells.
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FIG 1 Specific binding of HKU1-S1 to RD cells. (A) SDS-PAGE of expressed recombinant S1 or control (Ctrl.) proteins. All proteins were expressed in 293T cells
and purified by the use of protein A Sepharose beads. Purified proteins were run on SDS-PAGE and stained by the use of Coomassie blue. (B) FACS analysis of
HKU1-S1(600)-mFc (5 �g/ml) binding to RD and HeLa cells. HKU3-323-mFc was used as a negative-control protein. (C) HKU1-S1(600)-mFc binding to a
molecule(s) located on the RD cell surface. Results of immunofluorescence microscopy imaging of RD cells stained by HKU1-S1(600)-mFc or the control
protein, HKU3-323-mFc, are shown. Cell membranes were stained with FM-4-64 (red), the nuclei were stained with Hoechst dye 33258 (blue), and the HKU1-S1
staining was detected by an FITC-labeled anti-mouse Fc antibody. (D) HKU1-S1(600)-mFc binding to RD cells in a dose-dependent manner in a FACS analysis.
(E) FACS analysis of the N termini of HKU1-S1 and OC43-S1 binding to RD cells. HKU3-323-mFc at 10 �g/ml was used as a control (Ctrl.) in panels D and E.
The graphs shown in panels B to E are representative of the results of at least two independent experiments for each panel.
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Binding of HKU1-S1 to RD cells is sialic acid dependent.
Sialic acids serve as attachment factors or receptors for a number
of viruses (28, 30, 31). 9-O-Ac-Sia was found to be essential for
viral entry of BCoV and hCoV-OC43 (10, 30). To investigate
whether sialic acids are also involved in the binding of HKU1-S1
to RD cells, we first pretreated cells with neuraminidase (NA), a
sialidase that removes terminal free or modified sialic acids which
are �2,3-, �2,6-, or �2,8-linked to the subterminal residue of a
sugar chain. Treated cells were then incubated with 5 �g/ml of
HKU1-S1(600)-mFc. As shown in Fig. 2A, left panel, pretreat-
ment with NA at concentrations ranging from 20 to 500 mU/ml
markedly reduced the binding of HKU1-S1(600) to RD cells in a
dose-dependent manner; 500 mU/ml of NA reduced the binding
to about 3% to 5% of the levels observed in the mock-treated cells.
Similarly, NA treatment of RD cells resulted in the reduction of
OC43-S1(268)-mFc binding (Fig. 2A, middle panel), whereas a
control protein, signal regulatory protein alpha (SIRP�), binding
to RD cells via its protein receptor, CD47 (32), expressed on the
RD cell surface was not affected by NA treatment (Fig. 2A, right
panel). This result indicated that cell surface sialic acids partici-
pated in the binding of HKU1-S1(600) protein to RD cells. To
further test whether sialic acids involved in the binding are at-
tached to glycoprotein(s), RD cells were pretreated with TPCK-
trypsin protease and then inoculated with 5 �g/ml of HKU1-
S1(600)-mFc. As shown in Fig. 2B, pretreatment with trypsin
dose-dependently reduced the binding of HKU1-S1 to RD cells;
the maximum dose tested at 20 �g/ml trypsin reduced the binding
to about 20% of the levels in the mock-treated cells. Trypsin treat-
ment also similarly reduced binding of OC43-S1 to RD cells.
Taken together, these findings suggest that HKU1-S1 protein,
similarly to OC43-S1, can bind to sialic acids that are attached to
glycoprotein(s).

Unlike S1 of hCoV-OC43, HKU1-S1 cannot bind to 9-O-
acetylated sialic acid-containing glycoprotein or RBCs. To un-
derstand the sialic acid specificity and preference of HKU1-S1, bo-
vine submaxillary mucin (BSM), which mainly contains 9-O-Ac-Sia
and 8,9-di-O-Ac-Sia (33), was first tested for binding with HKU-S1
by ELISA. As shown in Fig. 2C, no binding was observed for BSM
coated on ELISA plate, whereas the positive-control OC43-S1(268)-
mFc bound to BSM under the same tested condition.

Engagement of sialic acid by viruses usually correlates with the
capacity to agglutinate red blood cells (RBCs) from different ani-
mal species. hCoV-OC43 and influenza C viruses use 9-O-Ac-Sia
for attachment, and both viruses consequently have hemaggluti-
nation (HA) activity specific for rat and mouse RBCs, which have
a high concentration of 9-O-Ac-Sia on their surface (33, 34), but
not for human, sheep, or horse RBCs, as they have little to no
9-O-Ac-Sia expressed (10, 35, 36). By the use of OC43-S1(268)-
mFc protein as a positive control, both rat and mouse RBCs could
be agglutinated dose-dependently by the OC43-S1 protein as ex-
pected, but HKU1-S1(600) protein showed no HA activity on
RBCs from either species (Fig. 2D). Consistently, HKU1-S1
showed no binding whereas OC43-S1 strongly bound dose-de-
pendently to both RBCs in a FACS analysis (Fig. 2E). These results
suggest that hCoV-HKU1 is different from influenza C virus,
hCoV-OC43, and BCoV in using 9-O-Ac-Sia as a binding deter-
minant; the presence of 9-O-Ac-Sia alone at least is not sufficient
to mediate entry for hCoV-HKU1.

HKU1-HE is an O-acetylesterase and possesses RDE activity.
By sequence similarity analysis, the HE protein of HKU1 was pre-

dicted to have a hemagglutinin domain and a putative Sia-O-
acetyl-esterase active site (15). However, there is only 50% to 57%
amino acid conservation between the HKU1-HE and those of
other group 2a CoVs. Thus far, no function for HKU1-HE during
infection has been demonstrated. Sia-O-Acetylesterases and NAs
are two types of viral RDEs identified so far. Sia-O-Acetylesterases,
e.g., 9-O-acetylesterase, which was originally found in influenza C
viruses, are also represented by the HE proteins of CoVs, including
hCoV-OC43, BCoV, and porcine toroviruses (23); NAs are pres-
ent in influenza A and B viruses. NA removes both free and mod-
ified terminal sialic acids from a sugar chain, whereas Sia-O-acetyl-
esterases remove the O-acetyl modifications from sialic acids. To
investigate whether HKU1-HE has functions similar to those of
other CoVs, acting as a lectin and/or a RDE, we first expressed the
extracellular domain of HKU1 HE protein (aa 14 to 358) and
fused it to the Fc domain of murine IgG2a (HKU1-HE-mFc) (Fig.
3A). When HKU1-HE-mFc protein was incubated with RD cells,
no direct binding was detected (Fig. 3B). This result suggests that
HKU1-HE is unlikely to mediate viral attachment. To determine if
the HKU1-HE protein has RDE activity, RD cells were pretreated
with HKU1-HE-mFc protein and then incubated with HKU1-
S1(600)-mFc followed by FACS analysis to determine how much
HKU1-S1(600) could still bind to the RD cells. Remarkably, pre-
treatment of RD cells with HKU1-HE dramatically reduced the
binding of S1 to RD cells in a dose-dependent manner (Fig. 3C),
similarly to the reduction seen followed NA pretreatment. This
indicates that the HKU1-HE serves as a RDE for hCoV-HKU1,
possessing enzymatic activities capable of cleaving off the binding
determinants for the S protein of HKU1 from the surface of the
host cell. We next expressed OC43-HE, BCoV-HE, and MHV-
S-HE proteins (Fig. 3A) and compared their RDE activities on RD
cells to HKU1-HE’s activity in eliminating HKU1-S1 or OC43-S1
binding to the cells. Similarly to HKU1-HE, these HE proteins
showed no direct binding to RD cells by FACS analysis (data not
shown). Interestingly, HKU1-HE pretreatment also reduced
OC43-S1 binding to RD cells and vice versa; pretreatment of cells
with OC43-HE blocked not only OC43-S1 binding but also the
binding of HKU1-S1 (Fig. 3C). BCoV-HE had the same activities
as OC43 in acting as a RDE for both HKU1-S1 and OC43-S1 on
RD cells, whereas pretreatment of RD cells with MHV-S-HE,
which is a 4-O-acetylesterase, had no effects on the binding of
either HKU1-S1 or OC43-S1 (Fig. 3C). Furthermore, the HA ac-
tivity of OC43-S1 with respect to rat and mouse RBCs was inhib-
ited not only by OC43-HE and BCoV-HE but also by HKU1-HE,
whereas MHV-S-HE had no effect (Fig. 3D). These results suggest
that HKU1-HE has 9-O-acetylesterase activity similar to that of
OC43-HE and BCoV-HE but different from that of MHV-S-HE.

To further confirm that HKU1-HE indeed acts as a RDE solely
by its Sia-O-acetylesterase activity, we first determined if HKU1-HE
had any neuraminidase activity using an Amplex red neuraminidase
assay kit. As expected, HKU1-HE had no detectable NA activity (data
not shown). On the other hand, HKU1-HE protein showed strong
acetylesterase activity as measured by using chromogenic p-nitrophe-
nyl acetate (pNPA) as the substrate (Fig. 3E). HKU1-HE hydrolyzed
pNPA, releasing a para-nitrophenol (pNP) product with a Km value
of 0.28 � 0.1 mM and a Vmax value of 0.77 � 0.03 in the presence of
2 �g/ml of HKU1-HE protein. Similarly, OC43-HE, BCoV-HE, and
MHV-S-HE were measured for acetylesterase activity, and they all
showed stronger acetylesterase activity than HKU1-HE (Fig. 3E) with
the following parameters: a Km value of 1.20 � 0.06 mM and a Vmax
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FIG 2 Characterization of the binding receptor of HKU1-S1 protein on RD cells by FACS. (A) Pretreatment of RD cells with neuraminidase (NA) greatly reduced
HKU1-S1 binding in a dose-dependent manner. RD cells were pretreated with NA at different concentrations as indicated and then stained with 5 �g/ml of
HKU1-S1(600)-mFc, OC43 (268)-mFc, or SIRP�-mFc control protein followed by detection with an FITC-labeled anti-mouse Fc antibody. (B) Pretreatment of
RD cells with TPCK-treated trypsin reduced HKU1-S1(600) and OC43-S1(268) binding to RD cells. The FACS assay method was similar to that described for
panel A. “Ctrl.” indicates RD cells that were stained with HKU1-S1(268)-mFc only in panels A and B. (C) HKU1-S1(600)-mFc did not bind to BSM (containing
9-O-Ac-sia) directly coated on an ELISA plate. OC43-S1 served as a positive control. (D) HKU-S1 did not hemagglutinate mouse RBCs (mRBCs) or rat RBCs
(rRBCs). OC43-S1(268)-mFc served as a positive control and showed HA activity in a dose-dependent manner. (E) Binding of HKU1-S1 and OC43-S1 to rat
RBCs and mouse RBCs determined by FACS analysis. Data shown are representative of the results of at least two independent experiments for each panel.
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FIG 3 HKU1-HE is an O-acetylesterase and RDE for HKU1-S1 binding to RD cells. (A) SDS-PAGE of expressed recombinant HE proteins. All proteins were
expressed in 293T cells and purified by the use of protein A Sepharose beads. Purified proteins were run on SDS-PAGE and stained by the use of Coomassie blue.
(B) HE-mFc protein itself did not bind to RD cells. (C) HKU1-HE acted as a RDE on RD cells for HKU1- and OC43-S1 protein. Pretreatment of RD cells with
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value of 3.32 � 0.00 for OC43-HE, a Km of 1.50 � 0.09 mM and a
Vmax of 3.42 � 0.04 for BCoV-HE, and a Km of 1.25 � 0.01 mM and
a Vmax of 3.34 � 0.04 for MHV-S-HE, respectively. Considering that
HKU1-HE treatment has the same effect as NA treatment of RD cells
on the HKU1-S1 binding and that it has no NA activity, it is conceiv-
able that the HKU1-HE mediates RDE through its sialate-9-O-acetyl-
esterase activity similarly to BCoV-HE and OC43-HE.

Sequence alignment of HKU1-HE protein against the hemag-
glutinin-esterase fusion protein (HEF) of influenza C virus and
the HEs of hCoV-OC43, BCoV, MHV, and toroviruses revealed
that the conserved sialate-O-acetylesterase catalytically active sites
(the S40, H329, and D326 catalytic triad [24]) are also present in
the HE protein of HKU1 (Fig. 4A). BCoV-HE mutant protein
containing a S40A substitution has been demonstrated to be en-
zymatically inactive (24). To determine if the three amino acids
were critical for the acetylesterase activity of HKU1-HE, HE mu-
tants containing a single S40A mutation or triple S40A/H329A/
D326A mutations were expressed and tested for their capacity to
hydrolyze pNPA substrate. As shown in Fig. 4B, both HE mutants
completely lost esterase activity. Furthermore, unlike the wild-
type HE protein, pretreatment of RD cells with these acetyles-
terase-inactive mutant HEs had no effect on HKU1-S1 protein
binding to RD cells (Fig. 4C). This result suggests that HKU1-S1
binding required a specific type(s) of O-acetylated sialic acid(s) to
be present on the cell surface, which corresponds to the sialic acid
acetylesterase specificity of the HKU1-HE. Considering that
HKU1-S1 did not bind to 9-O-Ac-containing BSM and RBCs,
combined with the result showing that HKU1-HE and OC43-HE
mutually served as RDEs for the binding of their S1 proteins to RD
cells, it is very likely that the acetyl modification at the 9-O posi-
tion of sialic acid is a necessary but not sufficient binding deter-
minant for HKU1-S protein. Accordingly, HKU1-HE protein
possesses sialate-9-O-acetylesterase activity or even broader
sialate-O-acetylesterase activity.

HKU1-HE inhibited hCoV-HKU1 infection in tracheobron-
chial HAE cultures via its RDE activity. Though HKU1-S protein
can bind to RD cells, the lentivirus-based HKU1 spike protein
pseudovirus was not able to enter RD cells (data not shown), and
previous attempts to culture clinical isolates of HKU1 in RD cells
also failed (20). To date, no cell line has been found to be permis-
sive for hCoV-HKU1 infection. Only the human epithelial (HAE)
primary cell culture system utilizing well-differentiated human
bronchial epithelial cells has been demonstrated to be a robust in
vitro model for hCoV-HKU1 infection and propagation (20).
HAE cultures have also been successfully used as a model system
for studying SARS-CoV, hCoV-NL63, hCoV-229E, MERS-CoV,
and hCoV-OC43 (22, 37–39). The infection and propagation of
hCoV-HKU1 in the HAE cultures model natural infection of the
human upper respiratory tract. To determine whether sialic acids
are important during hCoV-HKU1 infection and whether
HKU1-HE protein possesses RDE activity in a natural infection
model, HAE cells were incubated with NA, HKU1-HE, or control

proteins for 1 h and were removed by washing prior to hCoV-
HKU1 virus inoculation. Apical washes of infected cultures were
collected over time until 96 h postinoculation for RNA isolation,
and the number of viral genomic RNA copies was analyzed by
real-time RT-PCR to determine the level of viral infection. As
shown in Fig. 4D, both NA pretreatment and HKU1-HE pretreat-
ment of HAE cells markedly inhibited hCoV-HKU1 infection.
HKU1-HE at 100 �g/ml reduced viral titers by 2 to 3 logs at 48, 72,
and 96 h post-viral inoculation. NA also showed dose-dependent
inhibition of viral infection, though it was not as efficient as
that seen with HE protein. Preincubation of HAE cells with
HKU1-HE protein inhibited viral replication, suggesting that
HKU1-HE can destroy the sialic acid moieties required for
hCoV-HKU1 entry. When a lower titer of HKU1 virus inocula
was used, HKU1-HE protein at 100 �g/ml completely blocked
hCoV-HKU1 replication in HAE cells, whereas an enzymati-
cally inactive HE variant, HKU1-HE-S40A, showed no inhibi-
tion activity (Fig. 4E). These results demonstrate that hCoV-
HKU1 uses O-acetylated sialic acids as an attachment factor,
that this interaction is required for efficient infection of the
target cell, and that HKU1-HE protein possesses sialate-O-
acetylesterase RDE activity.

DISCUSSION

Sialic acid, a 9-carbon monosaccharide, includes a large number
of derivatives arising from differential modifications of the paren-
tal molecule as well as various glycosidic linkages (e.g., �2,3 and
�2,6) to the subterminal residue of a sugar chain. O-Acetylation is
one of the most common types of sialic acid modification. It can
occur at all the four hydroxyl groups of sialic acids at positions of
C4, C7, C8, and C9 and generates mostly mono-O-acetylated but
also oligo-O-acetylated sialic acids at more than one position. O-
Ac-Sia plays fundamental roles in many biological and pathophys-
iological events (40). The 9-O-Ac-Sia serves as a receptor deter-
minant for several members of group 2a CoVs, including the
closely related BCoV, hCoV-OC43, and porcine hemagglutinat-
ing encephalomyelitis virus (PHEV) (10, 30, 41). The binding
with 9-O-Ac-Sia is essential for these viruses to initiate infection,
and their S protein is the major viral protein responsible for the
binding. In this study, we found that the S protein of hCoV-HKU1
can also recognize O-Ac-Sia but only those presented on RD cells
among the many cell lines tested. Differently from the aforemen-
tioned CoVs in the same group, no binding of hCoV-HKU1 S1
with 9-O-Ac-Sia-containing BSM as well as RBCs from mouse and
rat could be detected. In addition, a previous study (42) and our
data (Fig. 1E) both demonstrated that the NT of HKU1-S1 was
unable to bind with carbohydrate moieties. In contrast, the car-
bohydrate receptor binding domains for hCoV-OC43 and BCoV
were located in the NT of S1 (Fig. 2) (42). On the other hand, for
hCoV-HKU1, as well as for other 9-O-Ac-Sia recognition-depen-
dent CoVs, the issue remains of whether, in addition to O-Ac-Sia,
they also interact with a protein receptor during the entry process.

HKU1-HE as well as with OC43- and BCoV-HE greatly reduced binding of HKU1-S1 or OC43-S1 (at 5 �g/ml) to RD cells in a dose-dependent manner.
MHV-S-HE showed no effect. The graphs shown in panels B and C are representative of the results of at least two independent experiments. (D) HKU1-HE acted
as a RDE on RBCs for OC43-S1 protein. Pretreatment of rat (r) or mouse (m) RBCs with HKU1-, OC43-, or BCoV-HE inhibited OC43-S1-mediated
hemagglutination activity, whereas MHV-S-HE had no effect. Data or images representative of the results of at least two independent experiments are shown for
panels A to D. (E) HKU1-HE is an acetylesterase. HEs of HKU1, OC43, BCoV, and MHV-S at 2 �g/ml were used to hydrolyze pNPA (2-fold serially diluted) at
room temperature for 15 min. Enzyme activity was assessed by measuring optical density at 405 nm (OD405). The Km and Vmax values were calculated from the
Michaelis-Menten enzyme kinetics curve fitting of two independent repeats.
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O-Ac-Sia on RD cells can be recognized by hCoV-HKU1 S1 pro-
tein; however, the cells are not permissive for viral infection. One
explanation for this is the lack of a protein receptor for hCoV-
HKU1 on RD cells. In line with this, our attempts to use HKU1-
S1(600) as a viral ligand protein for immunoprecipitation com-

bined with mass spectrometric identification did not find a
protein(s) specifically binding to HKU1-S1 (data not shown). It is
also possible that there is another molecule(s) present only in HAE
cell cultures but not on RD cells, which are important for viral
infection at a later stage, e.g., for membrane fusion or viral repli-

FIG 4 Treatment of HAE cells with HE or NA but not the enzymatically inactive HE mutant inhibited HKU1 infection. (A) Esterase-catalytic active-site residues
in HE. Sequence alignment of amino acids around the catalytically active site (in red) is shown. The BCoV-HE amino acid numbering scheme was used (22). The
GenBank accession numbers of HE proteins of BCoV, OC43, HKU1, MHV-DVIM, and influenza C virus are AAA92991.1, AAX85668.1, NC_006577.2,
AAC63044.1, and AJ872181, respectively. For HE proteins of MHV-S, bovine torovirus (BToV), and porcine torovirus (PToV) strain p10, the Uniprot accession
numbers are P31614, P0C0V9, and Q70KP1, respectively. (B) HKU1-HE proteins with substitutions at catalytically active sites are enzymatically inactive.
HKU1-HE or the mutants at 1 �g/ml were incubated with 2-fold serially diluted pNPA at room temperature for 15 min prior to measuring OD405. Each data
point represents the OD405 value for HE or its mutants subtracted from that of a negative control. (C) Esterase inactive mutants of HE did not block HKU1-S1
protein binding to RD cells. RD cells were treated with 10 �g/ml of HE or HE mutant proteins prior to HKU1-S1 staining (5 �g/ml). (D) HE and NA pretreatment
of HAE cells inhibited HKU1 infection. Prior to HKU1 virus inoculation, HAE cells were pretreated with HE proteins or NA at different concentrations as
indicated for 1 h, followed by HKU1 virus inoculation at a high dose as indicated. The replication kinetics of HKU1 virus was assessed in apical washes from
infected HAE cultures by real-time RT-PCR. Virus yield is presented as the number of virus RNA copies/ml. (E) HE pretreatment blocked HKU1 infection of
HAE cells. HAE cells were pretreated with HE protein or enzymatically inactive HE mutant (S40A) for 1 h prior to viral challenge at a lower dose than that used
for the experiment whose results are shown in panel D. The replication kinetics of HKU1 virus was assessed as described for panel D. The dotted line indicates
the detection limit of the assay for panels D and E.
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cation, or that a restriction factor(s) may exist in RD cells to limit
viral infection.

Among CoVs, HE protein is present only in members of group
2a CoVs. Sequence and structural similarities suggest that CoV HE
evolved from the HEF protein of influenza C virus (24). Although
the dual function of HEF (O-Ac-Sia receptor binding and sialate-
O-acetylesterase activity) was maintained in some CoVs, the HE
appears to mainly function as a RDE in these CoVs. Comparing to
the essential role of S protein in Sia-receptor binding and mediat-
ing viral entry, the Sia binding activity of HE seems to be an ac-
cessory function and its affinity and Sia preference characteristics
differ among CoV strains (23, 43). HEs of two closely related
MHV field strains, MHV-DVIM and MHV-S, recognize two dif-
ferent types of O-Ac-Sia, 9-O-Ac-Sia and 4-O-Ac-Sia, respec-
tively, whereas many MHV laboratory strains carry defective HE
genes (27, 28). hCoV-OC43 HE lost its Sia binding activity al-
though it has high (97%) sequence identity with the HE of BCoV
(Mebus stain), which exhibits high Sia binding affinity (43). Sim-
ilarly, we did not find that HKU1-HE has O-Ac-Sia binding activ-
ity. This is consistent with the observation described previously by
Langereis et al. that the HE of hCoV-HKU1 failed to hemaggluti-
nate erythrocytes and bind to O-Ac-Sia (43). Sequence compari-
son of HKU1-HE with HEF of influenza C virus and HEs of CoVs
with known protein structures demonstrated that HKU1-HE
was the most divergent one at the Sia binding loops (23, 43),
whereas the Sia-O-acetylesterase domain is highly conserved
among them. The key residues contributing to the catalytic activ-
ity of HEF and other CoV HEs, including the Ser-His-Asp catalytic
triad, the oxyanion hole-contributing residues Gly85 and Asn117 in
HEF, and an Arg322 residue in HEF important for Sia substrate
binding, are completely conserved in hCoV-HKU1 (23). In our
study, HKU1-HE indeed showed strong O-AC-esterase activity
with pNPA substrate, and the Ser-His-Asp catalytic triad mutant
HEs completely lost this activity. We demonstrated that the sialic
acids expressed by RD cells not only are specifically recognized by
the HKU1-S1 protein but also are substrates for HE protein. Wild-
type but not mutant HE treatment of RD cells showed effects
similar to those seen with neuraminidase and abolished the sub-
sequent binding of S1 to RD cells. These results indicate that the S1
protein binds with O-Ac-Sia and that the HE has matching or even
broader esterase activity.

Langereis et al. (43) reported that the HKU1-HE, like the
BCoV-HE, displayed Sia-9-O-Ac-esterase activity using a syn-
thetic 4,9-di-O-Ac-Sia substrate analogue. Consistently, we dem-
onstrated that HKU1-HE had RDE activity similar to that seen
with OC43-HE and BCoV-HE with respect to removal of the
binding moiety from RD cells for S1 proteins of both HKU1 and
OC43. These results strongly support the idea that HKU1-HE has
Sia-9-O-Ac-esterase activity similar to that of OC43-HE and BCoV-
HE. However, unlike the results seen with S1 of OC43, Sia-9-O-AC
binding activity was not detected for the S1 of hCoV-HKU1 by BSM
binding and erythrocyte hemagglutination assays, which are standard
methods for examining the usage of Sia-9-O-AC as a receptor by
other CoVs (Fig. 2C to E). Thus, it is likely that HKU1 is different
from OC43 and BCoV in terms of the use of Sia-9-O-AC as a receptor
via its Spike protein. Sia-9-O-AC may be required for but not suffi-
cient to support the HKU1-S1 binding. In addition of Sia-9-O-AC,
RD cells may express other types of O-acetylated sialic acid that are
lacking or at a lower level in BSM and at the erythrocyte cell surface
but required for HKU1-S1 recognition. One may also speculate that

certain examples of di-O-Ac-Sia, tri-O-Ac-Sia, or oligo-O-acetylated
Sia in which all have an acetyl group at C9 (9-O-AC) in common or a
certain particular sugar chain core structure(s) to which Sia-9-O-Ac
is attached or the linkage of sialic acid to the penultimate residue of a
sugar chain may also be required.

Finally, in HAE cultures, we demonstrated that NA and
HKU1-HE but not an enzymatically inactive HE mutant dramat-
ically reduced virus infection or completely blocked infection
when a lower viral challenge dose was applied. The results of treat-
ment of HAE cells with NA and HKU1-HE prior to infection
strongly suggested that the Sia-9-O-AC-esterase activity of HE
acted as a RDE and removed the critical receptor binding moieties
so that the early viral entry was impaired. Considering that the
HAE cells continuously secrete a large amount of mucus, the effect
of inhibition of viral infection by pretreatment of the cells with NA
and HE is remarkable and suggests an essential role for sialic acids
in the initiation of infection. Our study results also suggest that
acetyl modification at 9-O of sialic acid may be a necessary but not
sufficient receptor or attachment factor determinant and warrant
further investigation to determine the fine specificity and prefer-
ence of sialic acids recognized by HKU1-S protein. Nevertheless,
for the first time, this study provided experimental evidence to
support the idea that O-Ac-Sia, by interacting with S1 of hCoV-
HKU1, serves as an essential determinant for viral attachment
during the early entry step and that HE possesses 9-O-AC-esterase
or even broader activity and primarily acts as a RDE for hCoV-
HKU1 infection. hCoV-HKU1 is similar to BCoV and hCoV-
OC43, employing its two surface proteins, S and HE, to complete
the viral infection cycle in a concerted manner, with S protein
mediating receptor binding and entry and HE protein mediating
RDE activity late in the infection cycle to facilitate viral progeny
release and achieve efficient virus dissemination (23, 26).
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