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Human cortical expansion involves diversification and specialization 

of supragranular intratelencephalic-projecting neurons 

The neocortex is disproportionately expanded in human compared to mouse, both in its total volume relative 

to subcortical structures and in the proportion occupied by supragranular layers that selectively make 

connections within the cortex and other telencephalic structures. Single-cell transcriptomic analyses of 

human and mouse cortex show an increased diversity of glutamatergic neuron types in supragranular cortex 

in human and pronounced gradients as a function of cortical depth. To probe the functional and anatomical 

correlates of this transcriptomic diversity, we describe a robust Patch-seq platform using neurosurgically-

resected human tissues. We characterize the morphological and physiological properties of five 

transcriptomically defined human glutamatergic supragranular neuron types. Three of these types have 

properties that are specialized compared to the more homogeneous properties of transcriptomically defined 

homologous mouse neuron types. The two remaining supragranular neuron types, located exclusively in deep 

layer 3, do not have clear mouse homologues in supragranular cortex but are transcriptionally most similar to 

deep layer mouse intratelencephalic-projecting neuron types. Furthermore, we reveal the transcriptomic 

types in deep layer 3 that express high levels of non-phosphorylated heavy chain neurofilament protein that 

label long-range neurons known to be selectively depleted in Alzheimer’s disease. Together, these results 

demonstrate the power of transcriptomic cell type classification, provide a mechanistic underpinning for 

increased complexity of cortical function in human cortical evolution, and implicate discrete transcriptomic 

cell types as selectively vulnerable in disease.  
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Introduction 

The neocortex is responsible for many aspects of cognitive function and is affected in 

numerous neurological and neuropsychiatric diseases. Great progress has been made in 

understanding the cell types that make up functional cortical circuitry in rodents 1,2,3, but 

our understanding of cortical cell types in human is far more rudimentary due to the 

relative inaccessibility of human brain tissues. A striking feature of the neocortex is its 

disproportionate expansion in surface area, volume, and neuron number in large-brain 

mammals when compared to the expansion measured in subcortical structures 4,5. In 

addition, the basic cortical architecture in primates, including human, shows a 
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disproportionate increase in the upper or supragranular layers 6, whose glutamatergic 

(excitatory pyramidal projection) neurons make connections to other cortical and 

telencephalic brain regions.  

The supragranular cortex in human has been historically divided into layer 2 (L2) and 3 

(with further subdivision of L3 depending on the cortical area), whereas such distinctions 

are not possible in mouse cortex, where supragranular cortex is referred to as layer 2/3 

(L2/3). At the cellular level, rodent L2/3 pyramidal neurons form a relatively 

homogeneous population based on electrophysiological and morphological properties 1,2,7, 

whereas in primates there is clear heterogeneity of neuron density, size, morphology, 

electrophysiology, and gene expression as a function of cortical depth and projection 

target 8,9,10,11,12,4,13,14,15. For example two main anatomical types have been described in 

human that differ in their dendritic morphology (slender- versus profuse-tufted 13). Many 

intrinsic electrophysiological properties show striking variation as a function of depth in 

supragranular cortex, including h-channel function that may facilitate faithful transmission 

of signals for neurons with long apical dendrites 12. Finally, very large neurons in deeper L3 

of non-human primates send long-range (especially ipsilateral) corticocortical projections 

and express the non-phosphorylated form of heavy chain neurofilament protein, as they 

are immunoreactive to antibody SMI-32 (SMI-32ir) 16. This SMI-32ir neuron population is 

preferentially vulnerable to early degeneration and dramatically reduced in late-stage Alzheimer’s disease 17,18. Together, these observations suggest that the expansion of 

supragranular cortex in primate evolution supports increased complexity of corticocortical 

circuits, and some of these neuron types show a differential vulnerability in human 

neurodegenerative diseases. 

Single-cell and single-nucleus RNA sequencing (RNA-seq) provides a novel technological 

and conceptual approach to analyze neuronal diversity and to directly target the expanded 

supragranular layers at the level of circuit components 19,20,21. Recent studies using these 

methods provide a comprehensive taxonomy of cell types in mouse and human 

cortex 21,19 and allow the quantitative alignment of cell types across species based on 

conserved gene expression. Of the approximately 100 transcriptomically-defined cell types 

(t-types) described per cortical structure in mouse cortex, three glutamatergic neuron t-

types were found in L2/3 22. Human L2 and L3 were similarly composed largely of three 

abundant glutamatergic t-types, with one of the main types exhibiting striking variation as 

a function of cortical depth 11. Alignment of these transcriptomic cell types between species 

showed that all human supragranular glutamatergic neuron types mapped to 

intratelencephalic (IT) projection neuron types in mouse, with the three most abundant 

human and mouse types all mapping to a single type in cross-species alignment 11. In 

addition to these matched types, which we refer to as “homologous” types,  

several glutamatergic neuron types were observed in deep L3 of human cortex that were 

not found in mouse supragranular cortex. Two of these t-types were most like IT neuron 

types located in mouse L5 and L6. Three additional human t-types found in L3-5 mapped 

best to mouse L4 t-types and likely represent the diffuse boundary between L3 and L4 in 

human cortex. The increased transcriptomic diversity of glutamatergic IT types compared 

to rodent suggests that human supragranular cortex may have other divergent cellular 

properties. 
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To test whether these transcriptomically defined cell types represent functional and 

anatomical differentiation between species, we developed a robust technology platform to 

apply the Patch-seq method 23,24,25 to human cortical tissues from neurosurgical resections 

and directly characterized the physiological and morphological properties of supragranular 

neurons. We demonstrate that the transcriptomic classification is highly correlated with 

other features of human glutamatergic neurons, both for different neuron types and for 

variation as a function of cortical depth within type. Homologous supragranular 

glutamatergic neuron types are more phenotypically diversified, or specialized, from one 

another in human compared to mouse. The most abundant neuron type shows 

graded characteristics in transcriptomic, physiological and morphological properties as a 

function of cortical depth. Finally, increased supragranular glutamatergic neuron cell type 

diversity is seen in human cortex with the addition of distinctive neuron types in deep L3 that correspond with the vulnerable neuron populations described in Alzheimer’s disease. 
Results 

Human supragranular cortex is more diverse than in mouse 

The expansion of supragranular layers of the cortex in human compared to mouse 4,26 is 

also accompanied by major differences in cell density and neuron size. Here we compare 

human middle temporal gyrus (MTG) and mouse primary visual cortex (VISp). We chose 

this mouse region because of its rich transcriptomic characterization 19,22. Although we 

would prefer to compare identical regions, the magnitude of differential gene expression 

between mouse regions is far less than the difference seen between species 11 thus these 

data facilitate an informative cross-species comparison. We first characterized 

supragranular layers of cortex based on histology. The combined thickness of the relatively 

thin L2 and very thick L3 in human cortex (1.23 ± 0.15 mm) is on average 1.16 times 

greater than the thickness of the entire mouse cortex (1.06 ± 0.01 mm; Fig. 1a). Using 

neuronal (NeuN+) labeling in 25 µm sections, the average density of human neurons was 

27.7 ± 4.5 thousand cells/mm3 (Fig. 1b; left). This distribution is not homogeneous, with 

higher density in L2 that decreases by half to reach a low point in mid L3 (Fig. 1b; right). In 

contrast, supragranular layers of mouse VISp show 6 times the neuronal density of human 

(165 ± 24.9 thousand cells/mm3) with a homogeneous distribution across cortical depth. 

These results are generally consistent with reported values and distributions for mouse 

and human 4. L3 is often divided into 3A, B, and C based on cytoarchitecture 27, but we did 

not observe sharp changes in cell density or soma size that demarcate subdivisions of L3. 

Instead, the average cross-sectional area of neuron somata doubles from L2 to deep L3 in 

human supragranular cortex in a graded fashion but in mouse is remarkably uniform 

across the depth of supraganular cortex (Fig. 1c, left). The interquartile range of mouse and 

human somata were 44 - 96µm2 and 107 - 253µm2, respectively, with the largest human 

somata exceeding 850µm2. Furthermore, variation in deep L3 neuron soma size is four-fold 

higher in human compared to mouse (Fig. 1c, right); this is clearly visible in human 

histological sections with large and small neurons co-mingling (Fig. 1a). Although NeuN 

does not distinguish glutamatergic pyramidal neurons from GABAergic inhibitory neurons, 

the largest neurons in human supragranular layers are pyramidal in shape (Fig. 1a). 
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There is a similarly higher diversity of molecularly-defined, glutamatergic t-types present 

in human compared to mouse supragranular cortex. Single nucleus RNA-seq analysis of 

human MTG identified five glutamatergic t-types (referred to in shorthand by their most 

selective gene marker) with somata predominantly located in L2 and/or L3 11. Similar 

single cell RNA-seq analysis of mouse VISp and ALM only identified three glutamatergic 

L2/3 t-types in each region that are known to be intratelencephalically projecting (IT) 22. 

Quantitative cross-species alignment mapped the three mouse L2/3 t-types 

(Adamts2, Agmat and Rrad) to three of the human t-types (LTK, GLP2R and FREM3); as 

mentioned, we therefore refer to these types as homologous t-types11. The other two 

human t-types (CARM1P1 and COL22A1) were found in deep L3. Though all five human t-

types mapped to the intratelencephalically projecting (IT) mouse subclass, consistent with 

the finding that supragranular cortex is composed solely of corticocortical- and 

telencephalon-projecting neurons, surprisingly these deep L3 human types were more 

similar transcriptomically to infragranular L5 and L6 IT types in mouse 11.  

Here we extend this result to directly compare transcriptomic heterogeneity of 

supragranular glutamatergic neurons between mouse and human. This can be visualized 

using Uniform Manifold Approximation and Projection (UMAP) for dimension reduction 28, 

where the distance between cells approximates overall differences in gene expression, and 

consequently cells from the same t-type group together (Fig. 1d-e). In human, the overall 

distribution forms an extended continuum across the LTK, GLP2R, FREM3 and CARM1P1 t-

types, with COL22A1 cells located on a separate island (Fig. 1d), while similar analysis of 

the mouse L2/3 types showed much more compact distribution (Fig. 1e). As reported 

previously 11, the largest t-type, FREM3, showed a particularly extended graded 

distribution that could be split into depth-dependent subtypes with more lenient clustering 

(Fig. 1d; top right panel) and that varied as a function of cortical layer (Fig. 1d; bottom right 

panel). This within-type heterogeneity can be quantified by comparing variance explained 

by the first principal component (PC) in real versus shuffled data, while accounting for the 

number of cells in each type. This analysis confirms high heterogeneity in FREM3, with 

lower, generally similar, values for all other human and mouse t-types (Fig. 1f). To 

complement this analysis, we calculated the distinctness (or discreteness) between clusters 

as the number of differentially expressed (DE) genes between pairs of types. Homologous 

types are similarly discrete from one another in both mouse in human, whereas the deep 

L3 CARM1P1 and COL22A1 t-types had many more DE genes when compared to the 

homologous t-types (Fig. 1g). Together these results show similar levels of gene expression 

variability between glutamatergic neurons in human L2 and superficial L3 and mouse 

L2/3, with additional within-type variation and distinctive cell types in deep L3 in human.  
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Figure 1: Comparison of human versus mouse supragranular neurons. a) NeuN IHC 

labeling of neurons in human MTG (left, layers 1-4) and mouse VISp (right, all layers). Higher 

magnification insets in upper L2 and deep L3 illustrate the much larger soma size and 

variability in human compared to mouse, particularly in L3. Scale bar: 100µm, main panels; 

50µm insets. b) Left panel: human neuron density through L2 and L3 is much lower than 

mouse. Tick marks show individual donors. Right panel: Normalized histogram of neuron 

density in mouse (red) and human (green) L2/3. The minimum density in human (arrow) 

separates superficial and deep L3. c) Mean (left panel) and standard deviation (right panel) of 

soma area are uniform throughout the depth of mouse L2/3 but increase with depth in 

human. Normalized L2/3 depth is defined as the distance from the L1 - L2 (or layer 2/3 in 

mouse) border to the soma divided by the total thickness of L2 and L3 combined. Green tick 

marks on right Y axis indicate border between L2 and 3 for each human case analyzed. Error 

bars in b and c are SD of metrics across donors. d) UMAP of 2,948 dissociated human nuclei 

collected 11 from L2 and L3 of human MTG using the top 2,000 most binary genes by beta 

score. Cells are color-coded by t-type, with only cells mapping to the five L2 and L3 

glutamatergic types included. Insets show relevant FREM3 nuclei, color coded either by 

subtype assignment 11 or by dissected layer. Note that not all FREM3 cells are assigned to a 

subtype. e) Comparable UMAP of 981 mouse cells 22 mapping to the three glutamatergic L2/3 

neuron types in VISp. f) Human FREM3 t-type shows significantly more within-type 

heterogeneity than any other human or mouse t-type. Bar plots show average variance 

explained by PC1 across 100 subsets of actual versus permuted data (see Methods). Error bars 

show SD. g) Average number of DE genes between the indicated clusters and all other 

homologous human or mouse t-types. CARM1P1 and COL22A1 have more DE genes than other 

human or mouse types.  
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 Patch-seq pipeline for human neurosurgical tissue analysis 

To measure the electrophysiological and morphological properties of living human 

neurons, it is essential to use vital tissue from neurosurgical resections. A number of 

human studies 12,14,15,29,30 have found that surgically excised human neocortical tissues can 

be extracted, sliced, and maintained long enough to perform slice patch clamp experiments 

(all recordings typically take place within ~12 hours of resection, and in some cases much 

later 31). Critically, prior work established that human MTG t-types are consistently 

identified in both post-mortem and neurosurgically resected tissue, making this a suitable 

platform to establish the correspondence between morpho-electric and transcriptomic cell 

types. Thus, we developed a robust technology platform to apply the Patch-seq 

method 23,24,25 to acute slice preparations from human neurosurgically resected cortical 

tissues (Fig. 2a), and targeted pyramidal neurons from L2 and L3. Patch-seq allowed us to 

record from individual neurons while simultaneously filling each neuron with biocytin for 

subsequent imaging and morphological reconstruction. At the end of each experiment, the 

nucleus of the neuron was captured and processed for RNA-seq, resulting in a collective 

readout of single-cell electrophysiology, morphology and transcriptome 

modalities (Fig. 2b).  

Neurons were filtered based on a series of quality-control (QC) steps for each modality (see 

Methods). A total of 385 neurons that passed transcriptomic data QC mapped with higher 

confidence to the five supragranular human glutamatergic t-types than to any other neuron 

type. Most neurons in the dataset preserved enough labeling to determine the relative 

depth of the soma with respect to the pia or the L1 - L2 border. Most neurons (283) also 

had sufficiently complete recordings to calculate electrophysiological features. The subset 

of neurons (109) with sufficient biocytin labeling and intact apical dendrites were imaged 

at high resolution, then subsequently manually reconstructed based on the image. L2/3 

pyramidal neurons from mouse visual cortex were analyzed using the same Patch-seq 

platform 32, resulting in 120 neurons with high-quality electrophysiology and 

transcriptome data mapping to the three L2/3 glutamatergic t-types, and 60 neurons with 

data in all three modalities.  

Detailed histological assessment of human surgical tissue 

A major impediment in the field regarding utilization of human neurosurgical tissue for 

functional studies has been the implicit assumption that patient-derived tissue specimens 

are inherently pathological or unhealthy, even for resected tissue distantly located from the 

pathological focus, thereby precluding basic discoveries about the healthy human brain. Yet 

prior studies have provided evidence to challenge this assumption, suggesting that 

surgically-resected cortical tissue slices were healthy and that pyramidal neuron 

morphology and physiology were largely comparable for tumor-derived versus epilepsy-

derived tissue specimens, indicating the absence of overt disease-specific cellular 

pathology 12,14,31. To address this important issue further, we established a platform for 

comprehensive histological assessment of human surgical cases and performed an 

independent quantitative analysis to test for correlations or alterations in neuronal 

properties with respect to cellular markers of pathology. 
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Figure 2: Human Patch-seq pipeline workflow and quantitative histological 

assessment of surgical tissue specimens. a) Example resected tissue specimen from human 

middle temporal gyrus is processed into a series of 350 µm-thick slices according to a 

standardized sampling plan. b) Workflow for patch clamp recording using standardized 

stimulus protocols and feature extraction code (1), followed by RNA-seq on extracted 

nucleated patches (2). Slices are stained with DAPI and biocytin-filled neurons are visualized 

with DAB as chromogen, imaged, and digitally reconstructed for morphological feature 

calculation and analysis (3). c) Immunohistochemistry and imaging on human surgical 
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specimens using a panel of cellular markers, as indicated. Images were scored independently 

by three neuropathologists (from 0-3, where 0 is normal and 3 is most pathological), and the 

scores were averaged. Full image series are shown for the donor with the lowest (top) and 

highest (bottom) average marker score, demonstrating the range of cases in the study. Insets 

reveal cellular details. Scale bars: 50 µm for all insets and 100 µm for larger panels. Individual 

marker scores are indicated below each image. d) Histograms for four cellular markers across 

all donors, and for the average score across all markers in aggregate by donor (N=number of 

cases). e) Summary of statistical analysis comparing calculated electrophysiological features 

from recorded neurons in low (0-1) vs. high (1-3) score bins for GFAP and IBA1 cellular 

markers. P-values are shown as -log10(p-value). f) Summary plots of four selected 

electrophysiological features: Time constant (tau), Resting Membrane Potential (RMP), Input 

Resistance (Ri), and Voltage sag (sag) comparing neurons in low vs. high score bins for GFAP 

(blue/cyan) and IBA1 (purple/pink). Asterisk (*) indicates p<0.05 (Bonferoni corrected). 

Boxes show median and quartiles, whiskers show trimmed range without outliers >1.5 IQR 

beyond quartiles. Individual neuron data points horizontally jittered for clarity. GFAP low: 60 

neurons; GFAP high: 125 neurons; IBA1 low: 170 neurons and IBA1 high: 15 neurons. 

We included several well-established histological markers for evaluating cellularity (Nissl), 

neuronal density and layer orientation (NeuN), astrogliosis (glial fibrillary acidic protein, 

GFAP), microglial activation state (IBA1), non-phosphorylated neurofilament-H (using 

antibody SMI-32), and cellular proliferation (Ki-67). Immunostained tissue sections were 

digitized, compiled by donor, and independently scored by three neuropathologists using a 

4-point scale, where 0 is normal and 3 is overtly pathological (see Methods). To show the 

range of surgical tissue cases included in this study, images from the case with the lowest 

average score (mean of 6 marker scores = 0.06) are contrasted with images from the case 

with the highest average score (mean of 6 marker scores = 1.83) (Fig. 2c). In the highest-

scored case, cellular abnormalities were clear, including astrogliosis, microglial activation, 

and the presence of Ki-67+ cells. However, this was rare, and most cases had average 

scores <1.0 (Fig. 2d), a range considered not overtly pathological. In addition, we found 

very low correlation of the 6 cellular markers with each other, with only Ki-67 and Nissl 

(cellularity) being modestly correlated (Extended Data Fig. 1). Taken together, the low 

correlation among the various markers and low range of average scores indicate a lack of 

pathology for the vast majority of surgically-resected cortical tissue samples in this study. 

To assess the relationship between pathological scores and physiological properties, we 

binned all supragranular glutamatergic neurons derived from cases with average scores 

between 0-1 (low) and 1-3 (high) and directly compared the electrophysiological features 

of neurons with low versus high scores. For every neuron we calculated 18 

electrophysiological features including input resistance (Ri), membrane time constant 

(tau), spike frequency adaptation (adaptation), voltage sag, resting membrane potential 

(RMP), and various spike-related features (Fig. 2e). Comparisons were made only if there 

were at least 10 neurons in low and high groups for each cellular marker. As such, our 

analysis was limited to GFAP and IBA1 markers (the markers with the widest spread of 

scores). Other markers such as SMI-32 and NeuN were highly skewed toward 0, such that 

all neurons derived from these markers would fall into the low bin, precluding further 

analysis. Among the 18 electrophysiological features analyzed for GFAP and IBA1, only one 
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feature (resting membrane potential, RMP) related to IBA1 was significantly different 

between low versus high groups. Neurons in the high IBA1 group were approximately 5 mV 

more hyperpolarized at rest than neurons in the low IBA1 group (Fig. 2f). The remaining 

17/18 features for IBA1 and all 18 features for GFAP were not statistically different 

between low and high groups, indicating that high scores for these specific cellular markers 

are overall not associated with aberrant intrinsic electrophysiological properties. This lack 

of association between pathology and electrophysiology can also be seen at the aggregate 

level in a UMAP projection of all electrophysiological features (Extended Data Fig. 2) - cells 

split by pathology (tumor/epilepsy) are distributed in an unstructured manner across the 

dataset (as are splits by other available patient characteristics including age and gender).  

 

 

Figure 3: Classification of human Patch-seq neurons from supragranular cortex based 

on transcriptomics. a) Density scatter plot showing the average expression of homologous 

genes between the three human and mouse homologous types in dissociated cells and nuclei 

(left), and between dissociated nuclei and Patch-seq cells in human (right). Dashed lines 

indicate two-fold enrichment, with number of DE genes shown in the off-diagonal corners. p~0 
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for both plots. b) Joint UMAP of dissociated human nuclei from Fig. 1d and 385 glutamatergic 

Patch-seq neurons from supragranular cortex in MTG. Patch-seq neurons are classified using 

Seurat and then displayed in the same UMAP space as dissociated nuclei. Left plot shows cells 

color-coded by collection strategy. Right plot shows only Patch-seq neurons color-coded by 

mapped t-type. c) Joint UMAP of dissociated mouse cells from Fig. 1e and 133 glutamatergic 

Patch-seq neurons from supragranular cortex in VISp, which were classified as described for 

mouse GABAergic neurons 32. Panels and labels as in b. d) Depth distribution of neurons in 

human and mouse supragranular cortex, grouped and colored by t-type. Top plot shows depth 

from pia in µm. Bottom plot shows scaled depth within L2/3. Boxes show median and 

quartiles, whiskers show trimmed range without outliers >1.5 IQR beyond quartiles. 

Individual neuron data points horizontally jittered for clarity. e) Location of t-types within the 

cortex (indicated by red dot) demonstrated using multiplex FISH. Layer boundaries indicated 

by black lines. Mouse cortex is aligned to human cortex at the L1/L2 border. T-type is 

indicated below each image along with t-type specific color bar. Scale bar: 100 µm.  

High-confidence Patch-seq neuron t-type mapping 

A key component of our Patch-seq approach is reliable mapping of Patch-seq cells to t-

types. This issue is particularly important when analyzing individual neurons from many 

human individuals (potential donor-to-donor variability) undergoing neurosurgical 

procedures (potential disease or injury signatures). Our prior report describing the t-type 

classification used here 11 demonstrated that t-types were robust across individuals and 

between acute neurosurgical and postmortem frozen tissues and could be validated in 

independent donors with multiplex fluorescence in situ hybridization (mFISH) panels 

derived from these data to confirm their laminar localization. However, neurons collected 

via Patch-seq can exhibit contamination not seen in dissociated cells 33, arising from 

adjacent neurons and/or non-neuronal cells that enter the patch pipette. Furthermore, capturing only a portion of a neuron’s content could lead to increased variability and false 
negatives (dropouts). Indeed, we found much more reliable mapping when the cell nucleus 

was extracted, presumably due to a more consistent amount of cellular RNA and perhaps 

also to occlusion of the pipette opening by the nucleus against contamination.  

To quantify the effect of contamination and gene dropout, we compared median gene 

expression levels of homologous t-types between platforms and between species (Fig. 3a). 

Expression data from dissociated mouse whole cells and human nuclei were moderately 

correlated (R=0.57, p~0, Fig. 3a, left), but with higher gene detection in whole cells, as 

previously shown 21. By comparison, dissociated nuclei and Patch-seq cells from matched 

human t-types were highly correlated (R=0.85, p~0, Fig. 3a, right). Relatively few genes 

(177 genome-wide) showed enriched expression in dissociated nuclei relative to Patch-seq 

cells, suggesting that high quality transcriptomes collected in this data set do not show the 

increased dropout rate reported in our previous study 32. This is likely because we are 

comparing our human Patch-seq cells to a reference of dissociated human nuclei, rather 

than dissociated mouse cells. In contrast, we identified 2,670 genes with at least four-fold 

enrichment in Patch-seq, including genes associated with extra-nuclear compartments such 

as the mitochondria (p<10-12) and ribosome (p<10-9), genes regulating cell death (p<10-18), 

RNA-binding genes (p<10-8) including immediate early genes, and markers for non-

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/


12 

 

neuronal cells such as microglia (p<10-20). Some of the top genes in these categories 

include COX3, FOS, and IL1B, which all show >100-fold enrichment in Patch-seq cells. These 

results indicated that Patch-seq cells likely contain some RNA collected from extra-nuclear 

compartments and from nearby contaminating cells (particularly microglia) and may show 

some activity-dependent transcription. However, these effects are minor compared to 

species differences and we find overall high consistency and similar quality between Patch-

seq cells and dissociated nuclei. 

Data alignment methods have been developed to match t-types across conditions where 

variability across data sets is dramatically higher than variability between t-types 34,35,36. 

These strategies have been successful for comparisons of cells in different cortical regions 

or even in different species using the t-type classifications used in the current study 11,37,22. 

Here, human Patch-seq cells were mapped using the cell type classification workflow in 

Seurat (V3) 34,35, after first filtering out genes potentially associated with the undesirable 

sources of variation described above (also see Methods). Additionally, many neurons 

patched in mouse (but not human) supragranular cortex co-expressed GABAergic and 

glutamatergic genes; therefore, mapping of mouse neurons included an additional filtering 

step requiring expression of intronic reads that map to glutamatergic t-types as well as use 

of an extended reference data set (Methods). After alignment, Patch-seq cells intermix with 

dissociated cells and nuclei in a low-dimensional UMAP projection space in both human 

(Fig. 3b) and mouse (Fig. 3c), and cells assigned to the different t-types are generally co-

localized in distinct locations in this space, indicating good agreement between platforms. 

Biocytin staining facilitated identification of the precise cortical depth for each neuron and 

demonstrated a clear sublaminar distribution for each t-type in human L2 and L3 and in 

mouse L2/3 (Fig. 3d). In human, these sub-laminar Patch-seq distributions were 

remarkably consistent with histological mFISH-based spatial t-type distributions (Fig. 3e; 

described previously for L3 and L4 t-types 11) and layer dissections in the original studies 

that used dissociated cells and nuclei 11,22. Depth distributions were also generally 

consistent between Patch-seq and mFISH for the three L2/3 glutamatergic t-types in mouse 

(Fig. 3e). Human LTK neurons were found primarily in L2 and in the border region of L2 

and L3. GLP2R neurons were found primarily in upper L3, with some neurons found in L2. 

FREM3 neurons spanned L2 and L3, continuing into L4, consistent with their 

heterogeneous gene expression profile. CARM1P1 and COL22A1 were found almost entirely 

in deep L3 and along the L3/L4 border. Mouse L2/3 transcriptomic types also overlapped 

within sub-laminar space. Rrad and Adamts2 neurons were located closer to the L1-L2/3 

border, while Agmat neurons were more broadly distributed and had a greater frequency 

in deep L2/3. Collectively, these results indicate that Patch-seq data are consistent with 

reference classifications from dissociated cells or nuclei and that mapping can be robust 

despite many potential sources of technical noise and technical variation in human cases. 
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Figure 4: Human L2 and L3 glutamatergic t-types show greater morphological and 

electrophysiological differentiation than their homologous mouse L2/3 glutamatergic 

t-types. a) Morphology and electrophysiology descriptions of the three prominent human L2 
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and upper L3 glutamatergic neuron types: LTK, GLP2R, and FREM3. In each panel, 

morphology is described on top: Left, 4 representative examples of morphological 

reconstructions from each t-type. Scale bar = 250 µm. Right, Histogram of the average apical 

dendrite branch density (normalized to the maximum value for each t-type) for all 

reconstructed cells from each t-type. Bottom panels compare the intrinsic electrophysiological 

responses for 66 LTK, 25 GLP2R and 136 FREM3 neurons. For each panel, colored lines are 

individual neurons, solid black line represents the mean of all neurons in that t-type, dashed 

gray line represents the global mean of the other 2 homologous t-types in that species. Left is 

an overlaid response to -70 and -30 pA current injections (scale bar = 10 mV, 1.0 s), center left 

are hyperpolarizing pulses normalized to their peak deflection to allow for a sag comparison, 

shown is the range -0.5 to -1.0 (scale bar = 0.5 s). Right is a representative suprathreshold 

spiking response (top, scale bar = 20 mV, 0.5 s), and the normalized instantaneous firing rates 

for a suprathreshold pulse, demonstrating the neuron’s firing rate adaptation (bottom, scale 

bar = 0.5 s). b) Morphology and electrophysiology descriptions of the three L2/3 

glutamatergic t-types in mouse visual cortex: Adamts2, Rrad, and Agmat. Panel descriptions 

are the same as in (A). Scale bar = 250 µm. Electrophysiological responses are shown for 9 

Adamst2, 43 Rrad and 55 Agmat cells. c) and d) UMAP representation of electrophysiology 

and morphology space (left in each panel) generated from calculated features in each 

modality. Right panel in each shows the same feature space projected onto sparse principal 

components (SPCA), with contributing features listed on each axis. e) and f) Effect size 

(explained variance) for one-way ANOVA of each electrophysiology (e) and morphology (f) 

feature vs. t-type for human (green) and mouse (red). Stars indicate significance at FDR 

(False Discovery Rate) < (0.05, 0.01, 0.001). Boxplots on right show data distribution by t-type 

for the four features with the largest effect size in human. Gray bars indicate significant 

pairwise comparisons (p<0.05, FDR-corrected Mann-Whitney test). Boxes show median and 

quartiles, whiskers show trimmed range without outliers >1.5 IQR beyond quartiles. 

Individual neuron data points horizontally jittered for clarity. 

Increased morpho-electric specialization in human L2-3 t-types 

We first analyzed the three homologous L2 and L3 human and L2/3 mouse t-types, 

focusing on two main questions. Are there distinguishing morpho-electric phenotypes of t-

types, and are they more distinct from one another in human versus mouse? The morpho-

electric properties of these three t-types in aggregate were very consistent with previous 

reports of slice physiology recordings from human L2 and L3 pyramidal neurons 12,13, 

indicating that the Patch-seq method facilitates comparable analyses. However, with the 

transcriptome as the basis, human t-types showed clear qualitative morpho-electric 

differences (Fig. 4a; Extended Data Fig. 3). One of the most obvious differences between 

human t-types was cell size (e.g., dendrite height and total length), necessarily varying 

dramatically given the large thickness of human supragranular cortex and the laminar 

selectivity of different t-types with apical dendrites that extend to L1. LTK neurons were 

found primarily in L2 and upper L3. Morphologically, they were relatively short, but 

extended multiple apical branches into L1. Electrophysiologically, they exhibited a regular 

firing pattern with little firing rate adaptation and no sag. GLP2R neurons were found just 

deeper than LTK neurons, primarily in upper L3. They tended to have fewer dendritic 

branches for their longer apical extent, and often had a distinct apical tuft in L1. 
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Electrophysiologically, GLP2R neurons exhibited LTK-like electrophysiology, lacking 

adaptation and higher input resistance, but differed from LTK neurons in that they had 

pronounced sag. The FREM3 t-type represented 56.7% of supragranular glutamatergic 

neurons collected in L2 or L3 dissections 11, with a laminar distribution that spanned the 

entire distribution of LTK and GLP2R and had morpho-electric properties that were 

overlapping but distinct from those t-types. FREM3 neurons varied from small neurons in 

upper L2 to very large neurons in the deeper part of L3 and had a gradient of morpho-

electric properties like the graded transcriptional properties described above. Upper 

L2 FREM3 neurons had an apical dendrite restricted to L1 and L2 and regular firing while 

the large, deep L3 FREM3 neurons had an apical dendrite that spanned L1-3 and a heavily 

adapting firing rate (described further below). Apical dendrites of FREM3 and LTK neurons 

branched much closer to the soma than GLP2R neurons at the same depth, resulting in 

more radial branching across layers. 

Mouse L2/3 t-types also had heterogeneous electrophysiological and morphological 

properties, but in general were more like one another than the human t-types (Fig. 4b; 

Extended Data Fig. 4). As mentioned, each of the three t-types had distributions spanning 

all of L2/3, although there was a trend for Adamts2 and Rrad to be more superficial (Fig. 

3e). Similarly, each of these t-types contained neurons with wide and tufted 

branching 2,38,39. Since we are comparing non-homologous brain regions between species, 

we verified that the electrophysiological differences between L2/3 glutamatergic neurons 

in mouse visual cortex compared to mouse temporal association area (TEa), a region of 

rodent cortex previously used for human temporal cortex comparisons 12,40,41,42, were far 

smaller than those seen between mouse VISp and human temporal cortex (Extended Data 

Fig. 5).   

To quantify the magnitude of differences between and within transcriptomic types, we 

calculated 18 electrophysiological features that characterize passive, single action 

potential, and suprathreshold properties as well as 60 morphological features that capture 

the extent and complexity of basal and apical dendrites, their distribution across cortical 

layers and soma position. In UMAP representations of the combined human and mouse 

electrophysiology and morphology data (Fig. 4 c and d), human and mouse neurons occupy 

separate islands, reflective of the number and magnitude of differences in morpho-electric 

properties (Extended Data Table 1). A sparse principal component analysis (SPCA) 

projection of the electrophysiological features (Fig. 4c right) was used to select small 

groups of features that determine two axes of greatest variability across the dataset. The 

first (y-axis) is dominated by features largely related to passive properties (e.g., dendrite 

surface area and membrane composition), including membrane time constant and input 

resistance. Variability along the second (x-axis) principally differentiates between human 

neurons and is explained by properties like adaptation rate and sag that are less clearly 

related to neuron size. Likewise, an SPCA projection of morphological features (Fig. 4d 

right) shows that features related to the total size of apical dendrites (length, volume, and 

surface area) and the spatial extent of apical and basal dendrites best explain the species 

differences, while additional basal dendrite size features capture further variability 

between human neuron t-types. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.31.018820doi: bioRxiv preprint 

https://www.authorea.com/users/280755/articles/416019-human-cortical-expansion-involves-diversification-and-specialization-of-intratelencephalic-projecting-excitatory-neurons-nature-template?mode=edit#author-label-803139
https://doi.org/10.1101/2020.03.31.018820
http://creativecommons.org/licenses/by-nd/4.0/


16 

 

To quantify the degree of separation or overlap in different features between mouse and 

human t-types, we ran a one-way ANOVA for the effect of t-type on each calculated 

electrophysiology and morphological feature. For electrophysiological features (Fig. 4e), 

3/18 showed differences between t-types that explained >10% of feature variance (R2>0.1) 

for both human and mouse (FDR<0.05 for mouse features, <10-5 for human). However, the 

mouse types were distinct in input resistance and two related AP shape features (width 

and downstroke) with a maximum R2 =0.12, while the human types showed distinct firing 

properties (f-I slope and rheobase) in addition to input resistance, with a maximum R2 

=0.16. For morphological features (Fig. 4f), 16/60 features had R2 >0.15 between the 

human t-types (FDR<10-3), compared to 12/60 for the mouse t-types (with 10/12 

significant at FDR<0.05). This quantitative analysis confirms the qualitative observation 

that the main supragranular human t-types are more morpho-electrically specialized from 

one another than their mouse homologues, primarily in terms of morphology, but with a 

moderate contrast in electrophysiology as well.  

Finally, we also quantified to what degree this morpho-electric differentiation can be used 

to differentiate among the human t-types and mouse t-types, training a random forest 

classifier to predict t-type identity using electrophysiological or morphological features. 

Homologous human t-types were predicted with 67% accuracy using 

electrophysiological features, while mouse t-types were predicted with 54% 

accuracy. Classifying based on morphological and electrophysiological features combined 

resulted in slightly improved performance of 69% for human neurons and 60% for mouse 

neurons (Extended Data Fig. 6). This moderate cross-species contrast in predictability 

reinforces the contrast in t-type differentiation from ANOVA, although the overall accuracy 

is low, limited in part by low cell numbers for some human and mouse t-types. 

Additionally, in both analyses the between-type variability in the human t-types may be 

partially obscured by the significant variability within the FREM3 t-type, as discussed 

below. 

Human FREM3 t-type exhibits depth-dependent morpho-electro-

transcriptomic variation 

As described above, the FREM3 t-type displays graded features as a function of cortical 

depth. Anatomically, FREM3 neurons span the full depth of L2 and L3 and send apical 

dendrites to L1, at distances of > 1 mm, which is greater than the entire thickness of mouse 

VISp (Fig. 3d, 5b). Transcriptomically, FREM3 is also the most heterogeneous t-type among 

the human L2/3 glutamatergic t-types, exhibiting graded gene expression that correlates with the cell’s inferred laminar location based on relatively coarse laminar dissections (Fig. 
1d and 11). Patch-seq laminar positions confirm this depth vs. transcriptome relationship 

directly. UMAP plots of the FREM3 neuron population generated based on transcriptomic 

data reveal a clear relationship between soma depth and gene expression (Fig. 5a). 

Superficial neurons with somata in L2 and upper L3 (<500 µm from the border of L2 and 

L3) mostly appear at the top of the transcriptomic UMAP space and transition gradually 

into neurons with somata located 500-1000 µm from this border (Fig. 5a). Deep L3 

neurons (1500 µm) all appear at the bottom of the transcriptomic UMAP space with a 

partial separation between the superficial and deep sub-regions. Similarly, multiple 
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electrophysiological and morphological features (apical and basal dendrites) vary 

continuously with depth (Fig. 5b, c) in agreement with previous findings 13,14,12. Graded 

change in morphological phenotype across the cortical depth is shown in the 

representative morphological reconstructions in Figure 5b. Graded change in 

electrophysiological properties, including sag and action potential latency, is shown in the 

raw traces colored by soma depth in Figure 5c. 

To explore the full range of depth-related variation across all data modalities, we calculated 

correlations with normalized L2/3 depth for each electrophysiological, morphological and 

gene feature. Nine out of 18 physiological features were significantly correlated with depth 

(FDR<0.05, 7/18 FDR<0.01; Supplementary Data 1). The three strongest electrophysiology 

correlations with depth were the increase in sag and AP (Action Potential) upstroke / 

downstroke ratio and the decrease in AP latency at rheobase (Fig. 5c). 37 out of 58 

morphological features were correlated with depth (FDR<0.05, 28/58 FDR<0.01). While 

features like apical height are effectively constrained to follow the distance from the soma 

to L1, many functionally independent features were also strongly correlated, including the 

maximum length of basal dendrites (Fig. 5b) and soma radius (Extended Fig. 11; 

Supplementary Data 1). 790 genes were correlated with depth (FDR<0.05) and GO (gene 

ontology) enrichment analysis on this gene set revealed a variety of significantly enriched 

functional categories (Fig. 5d, Supplementary Data 1) that predict functional variation in 

different neuronal phenotypes. Graded genes were enriched for genes associated with 

synaptic transmission, and developmental processes like cell migration and neuron 

projection morphogenesis. For example, the receptor tyrosine kinase gene MET is 

implicated in neuronal growth, synaptic function and cortical circuit function, while Netrin-

G1 (NTNG1) is involved in axonal and dendritic outgrowth associated with specific circuit 

formation. These molecular differences suggest differences in neuronal connectivity 

in FREM3 neurons as a function of their laminar position.  
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Figure 5: Morpho-electric-transcriptomic features of FREM3 neurons vary according to 

laminar depth. a) FREM3 neurons plotted in transcriptomic UMAP space (as in Fig. 3c). Each 

cell is colored based on its relative position within L2-3. Depth color scale shown at 

right. b) FREM3 neurons exhibit a range of sizes for morphologies spanning L2-3. Scale bar = 

250 µm. Apical height and basal maximum (max) branch distance are positively correlated 

with depth. For (b-d), all regressions shown are significant at FDR<10-7. c) Top, 

electrophysiology data traces colored based on each neuron’s relative position within L2-3 

(scale at right). Top left, hyperpolarizing pulses normalized to their peak deflection to allow 

for a sag comparison (N=124). Top middle, overlaid first action potential during a rheobase 

current injection (scale bar = 25 mV, 1.0 ms, traces aligned to the time of threshold), as well as 
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the corresponding phase plots (x axis, mV; y axis, mV/ms). Top right, Initial action potentials 

at rheobase for FREM3 neurons (N = 141) aligned to the time of stimulus onset. Bottom, 

summary plots show in FREM3 neurons that sag and action potential (AP) upstroke / 

downstroke ratio are positively correlated with depth while latency to AP firing at rheobase is 

negatively correlated with depth.  d) Representative gene examples for three GO categories 

with pronounced depth dependence of expression in FREM3 neurons, chemical synaptic 

transmission, neuron projection morphogenesis, and regulation of cell migration.  

Deep L3 human glutamatergic t-types are morpho-electrically distinct 

The CARM1P1 and COL22A1 human t-types do not have homologous types in mouse 

supragranular cortex, although they were shown to be most like glutamatergic IT types in 

deeper infragranular layers of mouse cortex 11. This could be interpreted as a species 

difference in cellular migration of conserved types to different laminar positions; however, 

the deeper L3 FREM3 neurons taken alone also map best to infragranular mouse IT t-types 

(data not shown). Rather, there appears to be an overall shift in transcriptomic similarity 

by depth of human neurons to mouse neurons such that deeper L3 is more like L5 and L6 

in mouse, and CARM1P1 and COL22A1 t-types likely represent evolutionarily new types in 

human (and at least other primate species (Bakken et al., bioRxiv 2020)). This finding is 

consistent with previous work 43 that uncovered a set of genes showing a dramatic shift 

from L5 expression in mouse cortex to expression in large L3 pyramidal neurons in human 

temporal and visual cortex.  

The morpho-electric properties of CARM1P1 and COL22A1 neurons differed markedly from 

the human L2 and L3 homologous types (Fig. 4; Extended Data Fig. 7) and each other (Fig. 6 

a-d). Though CARM1P1 and COL22A1 neurons co-mingle with the largest FREM3 neurons 

and also have large somata (Extended Data Fig. 8), they are restricted to the deepest part of 

L3 where they form a highly diverse set of putative IT projection neuron types. In order to 

understand how CARM1P1 and COL22A1 differ from these deep FREM3 neurons 

specifically, we split the FREM3 t-type by depth, with the neuronal density minimum in L3 

as a dividing line (L2/3 depth = 0.575; Fig. 1c), and directly compared the morpho-electric 

properties of these deep types. In contrast to deep FREM3 neurons, the CARM1P1 t-type 

exhibited extensive proximal apical oblique and basal dendritic branching (Fig. 6a). In 

fact, CARM1P1 neurons had the largest total dendritic length of all the L2 and L3 t-types, 

despite having a shorter apical dendrite length on average. Electrophysiologically,  

CARM1P1 neurons exhibited a faster action potential upstroke than the other deep types 

(Fig. 6c). This extensive dendritic branching did not predict a lower input resistance, which 

was higher than deep FREM3 neurons (Fig. 6c).  

COL22A1 differed notably from CARM1P1 and deep FREM3 neurons. COL22A1 had very 

sparse dendritic branching (Fig. 6a). The primary apical dendrite branched near the soma 

and extended just one or two branches into superficial layers. Minimal L1 branching was a 

consistent feature of the deepest L3 glutamatergic neurons across multiple t-

types. COL22A1 neurons exhibited very high input resistance (Fig. 6c) and thus were the 

most responsive to current injection, displaying a steeper firing frequency to current input 

gain relative to the other deep L3 t-types. Interestingly, COL22A1 neurons showed a smaller 
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amount of sag than CARM1P1 neurons (Fig. 6b) located at an equivalent distance from pia, 

indicating that this property is t-type-specific rather than depth-specific.  

Repeating the ANOVA analysis of electrophysiological and morphological features with 

these three deep types showed that as a group they are quantitatively as well as 

qualitatively more distinct than the three human homologous L2 and L3 types described in 

Fig. 4. ANOVA differences were seen in 15 out of 18 electrophysiological features and 24 

out of 60 morphological features (FDR<0.05) (Supplementary Data 1). Many of these 

features showed very large effect sizes, with the variance explained by type surpassing 

40% (R2>0.4) for 4 electrophysiological and 20 morphological features, while no features 

met this threshold for the three homologous types (maximum R2 =0.26).  

To understand transcriptional differences that may be predictive of phenotypic differences 

between CARM1P1, COL22A1, and deep FREM3 neurons, we used genesorteR 44 with 

slightly relaxed parameters (quant = 0.7) to identify DE genes selective for one or two of 

these three t-type sets, and found 219 such marker genes (Extended Data Fig. 9). Since 

dissociated nuclei were not collected using sublaminar dissections, deep FREM3 neurons 

were defined as FREM3 neurons dissected from L3 or L4 that were assigned to subtype f73 

(Fig. 1), which colocalizes with deep FREM3 Patch-seq neurons in UMAP space (Fig. 3c, 5a). 

Furthermore, 77 of these 219 marker genes (including four genes shown in Fig. 6e) were 

also defined as marker genes by Patch-seq, where cortical depth was explicitly measured, 

suggesting the selection of deep FREM3 neurons in dissociated nuclei was reasonable.  

Differences in morpho-electric properties of the three deep L3 t-types were reflected in DE 

genes enriched for GO terms associated with neuronal connectivity, structure, and synaptic 

signaling, including axon (p=3.5 10-6; Bonferroni corrected), synapse (p=5.3 10-5), calcium 

ion binding (p=0.008), and extracellular matrix organization (p=0.00002). For example, 

cannabinoid receptor type 1 (CNR1) is highly expressed in the COL22A1 t-type but not in 

the CARM1P1 t-type (Fig. 6e), implying a cell-type specific difference in the effects of 

cannabinoid compounds. In contrast, both PHLDB2 and COBLL1 are highly expressed 

in COL22A1 and CARM1P1 t-types, with PHLDB2 displaying slightly more specific 

enrichment of expression in these t-types. COBLL1 is a morphogenesis-associated gene that 

has been shown to promote dendrite branching and the formation of actin filament 

membrane ruffles 45. Similarly, PHLDB2 localizes to dendritic spines of hippocampal 

neurons where it plays an important role in regulation of long-term potentiation by 

affecting the density of glutamate receptors, and knockout of this gene impairs the 

formation of memories in mice 46. KCNK2, which shows relatively selective expression in 

COL22A1 neurons, is a potassium channel, which can convert between voltage-insensitive 

potassium leak current and voltage-dependent outward rectifying current depending on 

phosphorylation 47, and knockdown of this gene in mice impairs the migration of late-born 

neurons destined to become glutamatergic neurons in L2/3 48.  

Differential connectivity patterns of glutamatergic neurons have been described in L3 of 

macaque temporal cortex based on immunolabeling for the SMI-32 antibody that 

recognizes non-phosphorylated epitopes of the neurofilament heavy chain 16. SMI-32ir 

neurons preferentially make long-range ipsilateral projections, whereas neurons that are 

not SMI-32ir tend to make more proximal local projections 16. Furthermore, the SMI-32ir 
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L3 neurons show selective vulnerability in AD 17,18. These observations in monkey are 

consistent with our finding that connectivity-related genes vary between t-types. To assess 

the relationship between deep L3 t-type and projection phenotypes we combined SMI-32 

immunoreactivity with mFISH for markers of FREM3, CARM1P1 and COL22A1 neurons (Fig. 

6f). The large FREM3 and CARM1P1 neurons were SMI-32ir, while COL22A1 neurons were 

not SMI-32ir. Furthermore, the gene coding SMI-32, NEFH, also shows increased expression 

in deep FREM3 and CARM1P1 relative to COL22A1 and all the superficial glutamatergic t-

types (Fig. 6e). This finding creates a putative link between transcriptomically-defined cell 

types, long-range target specificity, and vulnerable neuron populations in AD.  
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Figure 6 (previous page): Human deep L3 glutamatergic t-types are morphologically 

and electrophysiologically distinct. a) Top panels, representative morphological 

reconstructions of the two deep human L3 glutamatergic t-types, CARM1P1 and COL22A1 

neurons, compared to the deep FREM3 neurons. Scale bar = 250 µm. Bottom panels, 

histogram of average apical dendrite branch length (normalized to the maximum value for 

each t-type) for all reconstructed neurons from each t-type. b) Electrophysiological 

description of the intrinsic electrophysiology responses of 21 deep FREM3, 17 CARM1P1 and 

37 COL22A1 neurons. For each panel, colored lines are individual cells, solid black line 

represents the mean of all neurons in that t-type, dashed gray line represents a global mean 

across the other two deep human t-types. Top left is an overlaid response to -70 and -30 pA 

current injections (scale bar = 10 mV, 1.0 s); bottom left are hyperpolarizing pulses 

normalized to their peak deflection to allow for a sag comparison (scale bar = 0.5 s), shown is 

the range -0.5 to -1.0. Center top shows overlaid first action potential during a rheobase 

current injection (scale bar = 25 mV, 1.0 ms), center bottom is the corresponding phase plot (x 

axis, mV; y axis, mV/ms). Top right is a representative suprathreshold spiking response (scale 

bar = 20 mV, 0.5 s), and bottom right are the normalized instantaneous firing rates for a 

suprathreshold pulse, demonstrating adaptation of firing rate (scale bar = 0.5 s). Bottom: 

histogram of rheobase current injections (left axis) and frequency to current relationships for 

each neuron (right axis), normalized to the mean rheobase current for each t-type. c and d) 

Summary of electrophysiology (c) and morphology (d) features that discriminate the three 

deep t-types from each other. Features shown were selected from significant ANOVA results 

(FDR<10-7 in c, FDR<10-2 in d). Gray bars indicate significant pairwise comparisons (p<0.05, 

FDR-corrected Mann-Whitney test). Boxes show median and quartiles, whiskers show 

trimmed range without outliers >1.5 IQR beyond quartiles. Individual neuron data points 

horizontally jittered for clarity. e) A selection of five marker genes that are differentially 

expressed in the deep L3 human t-types. f) SMI-32 immunostained MTG tissue. FREM3  

and CARM1P1neurons that are SMI-32ir indicated by pink dots and those not SMI-32ir 

indicated by blue dots. Layer boundaries indicated at left of image, Scale bar = 100 µm. 

Representative SMI-32 immunoreactivity photomicrographs, along with mFISH for t-type 

specific genes shown for FREM3 (top) and CARM1P1 (middle) t-types. At right, representative 

mFISH composite images showing labeling for DAPI, neurofilament H, CARTPT and RORB in 

the same cell. White box indicates region of image shown at right where  CARTPT  

and RORB are shown separately and then combined.  At bottom, representative mFISH 

composite images showing labeling for DAPI, neurofilament H, and t-type-specific genes 

for LTK t-type (LAMP5 and LTK), GLP2R t-type (CUX2 and GLP2R) and COL22A1 t-type 

(COL22A1 and RORB) Scale bar = 10 µm. Marker gene expression in Extended Data Fig. 10).  

Discussion 

Understanding the fundamental cellular components of cortical circuits has been a major 

goal of neuroscience from the time of Ramón y Cajal 49. However, a robust, quantitative, 

widely agreed upon definition of cell types and delineation of cellular diversity has been 

elusive due to the high degree of cellular complexity and low-throughput techniques 

available for cellular analysis that lead to underpowered statistical analyses. This challenge 

is compounded in human cortex, where limited access to tissue, high variation across 
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individuals, and lack of reliable genetic tools have severely limited progress. Recent 

advances in single-cell or single-nucleus transcriptomics have revolutionized our 

understanding of cellular diversity. Recent studies involving tens of thousands of cells from 

single cortical regions in mouse and human have derived cellular classifications, based on 

similar patterns of gene expression, that appear to mirror many aspects of cellular 

cytoarchitecture, function, and developmental origins 22,11. In principle, the transcriptome 

represents the complete set of genes coding for cellular phenotypes, but for the most part 

the high degree of neuronal diversity described by transcriptomics analyses remains to be 

validated as meaningful by demonstrating correlation with other structural and functional 

properties. Furthermore, transcriptomics provides evidence both for discrete cell classes as 

well as more continuous variation within cell classes 11,22,50,51 whose functional relevance 

has not yet been demonstrated in the adult nervous system. This transcriptomic landscape 

provides a powerful framework for bounding the problem of cellular diversity, allowing 

targeted analysis of transcriptomically-defined cell types coupled with analysis of other 

neuronal phenotypes using techniques such as the triple modality Patch-seq method used 

here. 

A consistent critique of cellular and molecular studies using neurosurgically resected 

tissues is that there must be huge variation associated with disease state and 

neuropathology that will obscure any coherent results. Indeed, many studies have used 

human surgical tissue from the pathological focus to identify disease-related phenomena 
52,53,54,55,56. However, a growing number of studies have shown highly consistent 

results using neocortical tissues distal to the sites of frank pathology 14,57,15,29,12,13. To 

rigorously explore this variability, in the current study we implemented a standardized 

histological analysis with markers for neurons, astrocytes and microglia to look for neuron 

loss, glial proliferation or inflammatory responses, along with blinded neuropathologist 

scoring. Importantly, we found little evidence for consistent disease- or pathology-related 

alterations of the physiological features measured when using cortical tissues from MTG 

(predominantly epilepsy cases) or frontal cortex regions (predominantly tumor cases) with 

no obvious gross pathology.  These findings indicate that typical cellular properties can be 

robustly studied in surgically resected human neocortical tissues. Indeed, a remarkable 

result from the current study is the stereotypy of neuron types, measured 

transcriptomically, morphologically and physiologically, across human neurosurgical 

specimens from 90 different tissue donors with many uncontrolled axes of variation such 

as age, gender, ethnicity, disease condition and severity. This indicates that the basic 

cellular blueprint is highly robust across individuals and can be studied routinely using 

surgically-excised tissues from hospitals around the world. The magnitude of differences 

observed between human and mouse here highlight the importance of taking advantage of 

such clinical tissues to gain a strong understanding of the details of human brain functional 

organization in health and disease.  

A principal result of the current study is that the transcriptomes of neurons in human 

supragranular cortex are well-correlated with morphological and physiological features, as 

well as cortical depth. Many morpho-electric features vary between transcriptomic cell 

types. The LTK t-type contains the smallest neurons and is largely restricted to L2, while 

the GLP2R t-type is found in L2 and superficial L3 with fewer dendrites and minimal 
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branching in L2. The FREM3 t-type found throughout L2 and the full depth of L3 has small 

to large neurons across this depth. The CARM1P1 and COL22A1 t-types are highly 

distinctive and found exclusively in deep L3 with wide, highly branched apical dendrites 

and tall, very sparse apical dendrites, respectively. In addition, the most abundant FREM3 t-

type shows strong continuous variation as a function of cortical depth transcriptomically; 

this molecular variation is correlated with continuous variation of the morphological and 

physiological features of these neurons. For example, apical and basal dendritic length both 

increase with depth. Multiple other physiological features also vary with depth such as 

input resistance and sag. Together these results suggest that the transcriptome serves as 

something of a Rosetta stone for understanding supragranular glutamatergic neurons and 

reveals several organizational principles. First, morpho-electro-transcriptomic neuron 

types occupy different depths in supragranular cortex, which has more diversity than 

previously described. Second, cortical layers are enriched for specific neuron types, but are 

also highly heterogeneous with multiple neuron types that cross laminar boundaries. 

Finally, continuous variation of a single (FREM3) t-type through the full ~1mm-depth of 

human supragranular cortex is a major axis of functional organization. 

New analytical techniques aligning transcriptomic datasets 34,58 have enabled mouse and 

human transcriptomic databases to be related 11. These analyses indicated a general 

conservation of cortical cell types but with substantial species differences. In supragranular 

cortex, neurons from all three mouse and the three most abundant human glutamatergic 

types all mapped to a single cross-species superset, rather than at the finest level of 

resolution in either species. Neuronal diversity increased in deep L3 and L4 (whose 

boundaries are not sharp), and these human types mapped either to mouse L4 types, or, 

surprisingly, to deep layer mouse neurons. Importantly, in mouse the relationship between 

axonal projection class and transcriptomic types has been established, and the distinction 

between IT neuron types and locally or deep subcortically projecting neurons is very 

robust. All the human deep L3 types map to IT types, suggesting that (as in mouse and 

monkey) the neurons that make up supragranular cortex are all part of the IT class. 

Comparative analysis of the anatomical and physiological properties of mouse and human 

supragranular neurons substantiate and extend the previous transcriptomic results and 

illustrate that the evolutionary expansion of supragranular cortex is accompanied by many 

changes in glutamatergic neuron types. These differences can be summarized as 1) 

increased phenotypic differentiation of conserved transcriptomic types, 2) increased 

degree of graded variation as a function of depth in the cortex within the most abundant 

type, and 3) increased neuronal diversity with addition of new types in deep L3.  

On the first point, a prominent result predicted by cytoarchitecture is that the main IT 

types that make up L2 and L3 in human are much more different from one another than 

their L2/3 homologues in mouse. One aspect of this is simply the anatomical positioning of 

cell bodies, which has become more spread out in the ~1 mm depth of human L2 and L3 

compared to the ~250 µm depth of mouse L2/3. There is an easily definable L2 in human 

cortex where the majority of L2 LTK neurons are located, whereas GLP2R neurons extend 

deeper into L3, and FREM3 neurons are found throughout L2 and L3. As discussed above, 

many other physiological features and anatomical features vary among these human 

neuron types; in contrast, although there is some variation in depth within L2/3, mouse 
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supragranular neurons appear to be quite homogeneous and very few features differ 

among the three mouse types. 

The second notable difference between mouse and human is the high degree of depth-

dependence for features of the most abundant FREM3 t-type compared to mouse. A variety 

of anatomical features vary as a function of depth in this type, and the variance as a whole 

can be quite large; for example, the maximum basal dendritic path length varies from 100 

to 300 µm from L2 to the deepest part of L3, and the soma diameter from 8 to 28 µm. 

Physiological features, including sag, latency, and spike shape (upstroke/downstroke 

ratio), also vary as a function of depth and differ significantly between mouse and human. 

These features may work in concert with previously reported distinctive human intrinsic 

membrane properties to mediate between-species differences in spatial-temporal synaptic 

integration 15,40,42,12.  

Finally, the deep part of human L3 contains a greater diversity of neuron types than 

observed in mouse L2/3. As described previously using only transcriptomics, these 

neurons map best to mouse L5 and L6 infragranular IT neurons 11. As described here, these 

two t-types, CARM1P1 and COL22A1, are highly distinctive transcriptomically, anatomically, 

and physiologically. The CARM1P1 neurons are very large with profuse basal and oblique 

dendrites, similar to the largest FREM3 neurons in deep L3 but most often with apical 

dendrites that conspicuously do not reach L1. The COL22A1  neurons are very different, 

with elongated somas and simple untufted apical dendrites that frequently do not reach L1. 

How should this species difference be interpreted? At least two plausible explanations 

exist. One possibility is that these human supragranular types are homologous to the best 

transcriptomically matching mouse infragranular types but have migrated to different 

cortical locations in development. This idea is supported by transcriptomic similarity and 

earlier observations that many mouse infragranular layer genes are instead found 

predominantly in human supragranular layers 43. In this interpretation, this increased 

supragranular neuron diversity represents an anatomical (and functional) reorganization 

of the cortical microcircuit. Another possibility is that these represent evolutionarily 

distinct neuron types that are similar to mouse infragranular IT types. Because this 

homology alignment is based on transcriptomic similarity, new types that have coopted 

preexisting transcriptional programs will appear similar. Indeed, even the deeper half of 

the conserved FREM3 t-type, if mapped to mouse types independently from the more 

superficial FREM3 neurons, align best with deep layer mouse IT neuron types. A 

parsimonious explanation may come from developmental biology. The cortex is generated 

in an inside-out fashion with neurons destined for more superficial layers generated 

sequentially from a common progenitor pool over time. Transcriptomically, this 

developmental sequence is reflected in the adult, with neurons in adjacent layers showing 

greatest similarity; single cell transcriptomics has extended this to show a general depth-

dependence to similarities that may reflect developmental origin. Human excitatory neuron 

corticogenesis is dramatically extended compared to mouse, and it could be that the overall 

progression along this developmental trajectory is shifted such that the expanded L2 and 

L3 occur at different times along this trajectory. 

By whichever mechanism, the outcome is that the deeper part of L3 contains a greater 

diversity of IT neurons in human relative to mouse cortex. Neurons in this area have long 
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been an area of focused study in non-human primate species, where large deep L3 

pyramidal neurons have been shown to selectively express (along with pyramidal neurons 

in L5 and L6) the non-phosphorylated form of heavy chain neurofilament protein 16,59. 

Neurons in the non-human primate expressing this protein in L3c are known to make long-

range, predominantly ipsilateral projections compared to more locally projecting neurons. 

We show here that the deeper L3 FREM3 and CARM1P1 neurons, but not 

the COL22A1 neurons, express the mRNA for NEFH and label with antibody SMI-32 in 

human L3. SMI-32 immunolabeling has been shown to be depleted in L3 magnopyramidal 

neurons in AD progression 18,17, indicating a selective vulnerability of the largest long-range 

association neurons and consequent disruption of cortical networks affected in AD 

pathology. The current results add to this finding by showing that neurofilament-H maps 

onto the transcriptomic, morphological, and physiological classification, labeling some 

types but not others. This refined cellular perspective serves as a new roadmap for future 

studies investigating selective neuron vulnerability and resistance, and for exploring the 

functional implications of loss of those connections in AD. 

Methods 

Detailed descriptions of all experimental data collection methods in the form of technical white papers can also be found under ‘Documentation’ at http://celltypes.brain-map.org. 

Human tissue acquisition 

Surgical specimens were obtained from local hospitals (Harborview Medical Center, 

Swedish Medical Center and University of Washington Medical Center) in collaboration 

with local neurosurgeons. All patients (Extended Data Table 2) provided informed consent 

and experimental procedures were approved by hospital institute review boards before 

commencing the study. Tissue was placed in slicing artificial cerebral spinal fluid (ACSF) as 

soon as possible following resection. Slicing ACSF was comprised of (in mM): 92 N-methyl-

D-glucamine chloride (NMDG-Cl), 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES), 25 D-glucose, 2 thiourea, 5 Na-L-ascorbate, 3 Na-

pyruvate, 0.5 CaCl2.4H2O and 10 MgSO4.7H2O 60. Prior to use, the solution was equilibrated 

with 95% O2, 5% CO2 and the pH was adjusted to 7.3 by addition of 5N HCl solution. 

Osmolality was verified to be between 295-305 mOsm/kg. Human surgical tissue 

specimens were immediately transported (15-35 min) from the hospital site to the 

laboratory for futher processing. 

Mouse breeding and husbandry 

All procedures were carried out in accordance with the Institutional Animal Care and Use 

Committee at the Allen Institute for Brain Science. Animals (<5 mice per cage) were 

provided food and water ad libitum and were maintained on a regular 12 hour light–dark 

cycle. Animals were maintained on the C57BL/6J background, and newly received or 

generated transgenic lines were backcrossed to C57BL/6J. Experimental animals were 

heterozygous for the recombinase transgenes and the reporter transgenes.  
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Tissue processing 

For mouse experiments, male and females were used between the ages of P45 and P70 were anesthetized with 5% isoflurane and intracardially perfused with 25 or 50 ml of 0-4°C 

slicing ACSF. Human or mouse acute brain slices (350 μm) were prepared with a 
Compresstome VF-300 (Precisionary Instruments) or VT1200S (Leica Biosystems) 

vibrating microtome modified for block-face image acquisition (Mako G125B PoE camera 

with custom integrated software) before each section to aid in registration to the common 

reference atlas. Brains or tissue blocks were mounted for slicing with the optimal 

orientation for preserving intactness of apical dendrites of cortical pyramidal neurons. 

Slices were transferred to an oxygenated and warmed (34 °C) slicing ACSF for 10 min, then 
transferred to room temperature holding ACSF of the composition (in mM): 92 NaCl, 2.5 

KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 D-glucose, 2 thiourea, 5 Na-L-ascorbate, 3 Na-

pyruvate, 2 CaCl2.4H2O and 2 MgSO4.7H2O 60 for the remainder of the day until transferred 

for patch-clamp recordings. Prior to use, the solution was equilibrated with 95% O2, 5% 

CO2 and the pH was adjusted to 7.3 using NaOH. Osmolality was verified to be between 

295-305 mOsm/kg.  

Patch-clamp recording 

Slices were bathed in warm (32-34°C) recording ACSF containing the following (in mM): 

126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 12.5 D-glucose, 2 CaCl2.4H2O and 2 

MgSO4.7H2O (pH 7.3), continuously bubbled with 95% O2 and 5% CO2. The bath solution contained blockers of fast glutamatergic (1 mM kynurenic acid) and GABAergic synaptic transmission (0.1 mM picrotoxin). Thick-walled borosilicate glass (Warner Instruments, 

G150F-3) electrodes were manufactured (Narishige PC-10) with a resistance of 4–5 MΩ. 
Before recording, the electrodes were filled with ~1.0-1.5 µL of internal solution with biocytin (110 mM potassium gluconate, 10.0 mM HEPES, 0.2 mM ethylene glycol-bis (2-

aminoethylether)-N,N,N′,N′-tetraacetic acid, 4 mM potassium chloride, 0.3 mM guanosine 5′-triphosphate sodium salt hydrate, 10 mM phosphocreatine disodium salt hydrate, 1 mM adenosine 5′-triphosphate magnesium salt, 20 µg/ml glycogen, 0.5U/µl RNAse inhibitor 

(Takara, 2313A) and 0.5% biocytin (Sigma B4261), pH 7.3). The pipette was mounted on a 
Multiclamp 700B amplifier headstage (Molecular Devices) fixed to a micromanipulator 

(PatchStar, Scientifica). 

The composition of bath and internal solution as well as preparation methods were made 

to maximize the tissue quality, to align with solution compositions typically used in the 

field (to maximize the chance of comparison to previous studies), and modified to reduce 

RNAse activity and ensure maximal recovery of mRNA content. 

Electrophysiology signals were recorded using an ITC-18 Data Acquisition Interface 

(HEKA). Commands were generated, signals processed, and amplifier metadata were 

acquired using MIES (https://github.com/AllenInstitute/MIES/), written in Igor Pro (Wavemetrics). Data were filtered (Bessel) at 10 kHz and digitized at 50 kHz. Data were 
reported uncorrected for the measured (Neher 1992) –14 mV liquid junction potential 
between the electrode and bath solutions. 
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Prior to data collection, all surfaces, equipment and materials were thoroughly cleaned in 

the following manner: a wipe down with DNA away (Thermo Scientific), RNAse Zap 

(Sigma-Aldrich) and finally with nuclease-free water. 

Neuron targeting: For human slices, pyramidal shaped neurons in L2 and 3 were targeted 

to recording. For mouse experiments, pyramidal neurons in L2/3 were targeted, either 

tdTomato- pyramidal neurons when recording from a transgenic line that labels 

interneurons, or tdTomato+ neurons when recording from a line that labels different 

populations of L2/3 glutamatergic neurons, specifically Oxtr-T2A-Cre and Penk-IRES2-Cre-

neo, each crossed to the Ai14 tsTomato reporter line. 

After formation of a stable seal and break-in, the resting membrane potential of the neuron 

was recorded (typically within the first minute). A bias current was injected, either 

manually or automatically using algorithms within the MIES data acquisition package, for 

the remainder of the experiment to maintain that initial resting membrane potential. Bias currents remained stable for a minimum of 1 s before each stimulus current injection. To be included in analysis, a cell needed to have a >1GΩ seal recorded before break-in and an initial access resistance <20 MΩ and <15% of the Rinput. To stay below this access 

resistance cut-off, cells with a low input resistance were successfully targeted with larger 

electrodes. For an individual sweep to be included, the following criteria were applied: (1) the bridge balance was <20 MΩ and <15% of the Rinput; (2) bias (leak) current 0 ± 100 pA; and (3) root mean square noise measurements in a short window (1.5 ms, to gauge high frequency noise) and longer window (500 ms, to measure patch instability) <0.07 mV and 0.5 mV, respectively. 
Upon completion of electrophysiological examination, the pipette was centered on the 

soma or placed near the nucleus (if visible). A small amount of negative pressure was 

applied (~-30 mbar) to begin cytosol extraction and attract the nucleus to the tip of pipette. 

After approximately one minute, the soma had visibly shrunk and/or the nucleus was near 

the tip of the pipette. While maintaining the negative pressure, the pipette was slowly 

retracted in the x and z direction. Slow, continuous movement was maintained while 

monitoring pipette seal. Once the pipette seal reached >1GΩ and the nucleus was visible on 
the tip of the pipette, the speed was increased to remove the pipette from the slice. The 

pipette containing internal solution, cytosol and nucleus was removed from pipette holder 

and contents were expelled into a PCR tube containing the lysis buffer (Takara, 634894). 

 cDNA amplification and library construction  

We performed all steps of RNA-processing and sequencing as described for mouse Patch-

seq cells 32. We used the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (Takara, 

634894) to reverse transcribe poly(A) RNA and amplify full-length cDNA according to the manufacturer’s instructions. We performed reverse transcription and cDNA amplification 
for 20 PCR cycles in 0.65 ml tubes, in sets of 88 tubes at a time. At least 1 control 8-strip 

was used per amplification set, which contained 4 wells without cells and 4 wells with 10 

pg control RNA. Control RNA was either Universal Human RNA (UHR) (Takara 636538) or 

control RNA provided in the SMART- Seq v4 kit. All samples proceeded through Nextera XT 
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DNA Library Preparation (Illumina FC-131-1096) using either Nextera XT Index Kit V2 Sets 

A-D(FC-131-2001,2002,2003,2004) or custom dual-indexes provided by IDT (Integrated 

DNA Technologies). Nextera XT DNA Library prep was performed according to manufacturer’s instructions except that the volumes of all reagents including cDNA input 
were decreased to 0.2x by volume. Each sample was sequenced to approximately 1 million 

reads.   

RNA sequencing data processing  

Fifty-base-pair paired-end reads were aligned to GRCh38.p2 using a RefSeq annotation gff 

file retrieved from NCBI on 11 December 2015 for human and to GRCm38 (mm10) using a 

RefSeq annotation gff file retrieved from NCBI on 18 January 2016 for mouse 

(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/). Sequence alignment was 

performed using STAR v2.5.3 61 in two pass Mode. PCR duplicates were masked and 

removed using STAR option “bamRemoveDuplicates”. Only uniquely aligned reads were 
used for gene quantification. Gene counts were computed using the R Genomic Alignments package summarizeOverlaps function using “IntersectionNotEmpty” mode for exonic and 
intronic regions separately 62. Expression levels were calculated as counts of exonic plus 

intronic reads. For most analyses, log2(counts per million [CPM] + 1) transformed values 

were used.  

Morphological Reconstruction 

Biocytin histology  

A horseradish peroxidase (HRP) enzyme reaction using diaminobenzidine (DAB) as the 

chromogen was used to visualize the filled cells after electrophysiological recording, and 

4,6-diamidino-2-phenylindole (DAPI) stain was used identify cortical layers as described 

previously 2.  

Biocytin labeled neuron imaging 

Mounted sections were imaged as described previously 2. Briefly, operators captured 

images on an upright AxioImager Z2 microscope (Zeiss, Germany) equipped with an 

Axiocam 506 monochrome camera and 0.63x optivar. Two-dimensional tiled overview 

images were captured with a 20X objective lens (Zeiss Plan-NEOFLUAR 20X/0.5) in 

brightfield transmission and fluorescence channels. Tiled image stacks of individual cells 

were acquired at higher resolution in the transmission channel only for the purpose of 

automated and manual reconstruction. Light was transmitted using an oil-immersion 

condenser (1.4 NA). High-resolution stacks were captured with a 63X objective lens (Zeiss 

Plan-Apochromat 63x/1.4 Oil or Zeiss LD LCI Plan-Apochromat 63x/1.2 Imm Corr) at an 

interval of 0.28 µm (1.4 NA objective) or 0.44 µm (1.2 NA objective) along the Z axis. Tiled 

images were stitched in ZEN software and exported as single-plane TIFF files.  
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Morphological reconstruction 

Reconstructions of the dendrites and the full axon were generated for a subset of neurons 

with good quality transcriptomics, electrophysiology and biocytin fill. Reconstructions 

were generated based on a 3D image stack that was run through a Vaa3D-based image 

processing and reconstruction pipeline 63. Images were used to generate an automated 

reconstruction of the neuron using TReMAP (Zhou 2016). Alternatively, initial 

reconstructions were created manually using the reconstruction software PyKNOSSOS 

(Ariadne-service) or the citizen neuroscience game Mozak (Mosak.science)64. Automated or 

manually-initiated reconstructions were then extensively manually corrected and curated 

using a range of tools (e.g., virtual finger, polyline) in the Mozak extension (Zoran Popovic, 

Center for Game Science, University of Washington) of Terafly tools 65,66 in Vaa3D. Every 

attempt was made to generate a completely connected neuronal structure while remaining 

faithful to image data. If axonal processes could not be traced back to the main structure of 

the neuron, they were left unconnected. 

Before morphological feature analysis, reconstructed neuronal morphologies were 

expanded in the dimension perpendicular to the cut surface to correct for shrinkage 13,67 

after tissue processing. The amount of shrinkage was calculated by comparing the distance 

of the soma to the cut surface during recording and after fixation and reconstruction. A tilt 

angle correction was also performed based on the estimated difference (via CCF 

registration) between the slicing angle and the direct pia-white matter direction at the cell’s location 2.  

Slice Immunohistochemistry 

Immunohistochemistry 

Tissue slices (350 µm-thick) designated for histological profiling were fixed for 2-4 days in 

4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) at 4°C and transferred to 

PBS + 0.1% sodium azide for storage at 4°C. Slices were then cryoprotected in 30% sucrose, 

frozen and re-sectioned at 30 µm using a sliding microtome (Leica SM2000R). Sections 

were stored in PBS+azide at 4°C in preparation for immunohistochemical and Nissl 

staining. Specific probes (vendor, dilution) used were: Neu-N (Millipore #MAB377, 

1:2000); SMI-32 (Biolegend #801704, 1:2000); GFAP (Millipore #MAB360, 1:1500); 

Parvalbumin (Swant #PV235, 1:2000); Iba-1 (Wako #019-19741, 1:1000); Ki67 (Dako 

#M724001-2, 1:200). Full immunohistology protocol details available at http://help.brain-

map.org/download/attachments/8323525/CellTypes_Morph_Overview.pdf?version=4&modif

icationDate=1528310097913&api=v2 

Slide imaging 

Colorimetric IHC and other histologically-stained whole slides (i.e. Nissl-stained 

preparations) for brightfield imaging were scanned using an Aperio ScanScope XT slide 

scanner (Leica Biosystems, Germany). The samples were illuminated using a 21DC Halogen 

Lamp (Techniquip, USA). Brightfield images were acquired using ScanScope Console 
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(v101.0.0.18) and controller (ve101.0.4.446) at 10x magnification (objective lens 20x/0.75 

NA Plan Apo, 0.5x magnifier) resulting in a pixel size of 1.0 µm/pixel. 

Multiplex fluorescent in situ hybridization (FISH) 

Fresh-frozen human postmortem brain tissues were sectioned at 14-16 μm onto Superfrost 
Plus glass slides (Fisher Scientific). Sections were dried for 20 minutes at -20°C and then 

vacuum sealed and stored at -80°C until use. The RNAscope multiplex fluorescent v1 kit was used per the manufacturer’s instructions for fresh-frozen tissue sections (ACD Bio), 

except that fixation was performed for 60 minutes in 4% paraformaldehyde in 1X PBS at 

4°C and protease treatment was shortened to 10 minutes. For combined RNAscope and 

immunohistochemistry, primary antibodies were applied to tissues after completion of 

mFISH staining. Primary mouse anti-Neurofilament H (SMI-32, Biolegend, 801701) was 

applied to tissue sections at a dilution of 1:250. Secondary antibodies were goat anti-mouse 

IgG (H+L) Alexa Fluor conjugates (594 or 647). Sections were imaged using a 60X oil 

immersion lens on a Nikon TiE fluorescence microscope equipped with NIS-Elements 

Advanced Research imaging software (version 4.20). For all RNAscope mFISH experiments, 

positive cells were called by manually counting RNA spots for each gene. Cells were called positive for a gene if they contained ≥ 3 RNA spots for that gene. Lipofuscin 
autofluorescence was distinguished from RNA spot signal based on the larger size of 

lipofuscin granules and broad fluorescence spectrum of lipofuscin. The following probe 

combinations were applied to label cell types of interest: (1 - LTK) LTK (NM_002344.5), 

LAMP5 (NM_012261.3); (2 – GLP2R) GLP2R (NM_004246.2), CUX2 (NM_015267.3); (3 – 

FREM3) RORB (NM_006914.3), FREM3 (NM_001168235.2); (4 – CARM1P1) RORB, 

CARTPT NM_004291.3); (5 – COL22A1) RORB, COL22A1 (NM_152888.3); (6 – Adamts2) 

Cbr3 (NM_173047.3), Neurod1 (NM_010894.2), Cdh13 (NM_019707.4); (7 – Rrad) Nr4a3 

(NM_015743.3), Cux1 (NM_009986.4), Cdh13; (8 – Agmat) Pou3f2 (NM_008899.2), Igfbp7 

(NM_001159518.1), Coch (NM_001198835). Experiments were repeated on at least N=2 

donors per probe combination for both mouse and human. 

Quantification of human and mouse soma size  

Images of NeuN+ stained sections from human MTG (1 section per donor for 5 donors) and 

mouse VISp (1 section per animal for 3 animals) (described above) were imported into 

ImageJ for processing. ROIs were drawn around cell bodies and exported as “.roi” files for 
downstream processing. In both species, L4 is defined as a band of densely packed, small 

granular cells, and the upper bound of this band (which includes overlying large pyramidal 

cells) is treated as the border between L3 and 4. The border between L1 and 2 is defined as 

the sharp boundary between the cell-sparse zone of L1 and the is a cell-dense zone of L2. In 

mouse, the border between L2 and 3 is indistinguishable and not defined. In human MTG, 

the boundary between L2 and 3 can be closely approximated as transition from densely 

packed small pyramidal cells to less densely packed larger pyramidal cells, which is largely 

consistent among donors.  

Soma areas were defined as the number of pixels contained in each ROI, scaled by the 

number of pixels per µm. Cortical depth was defined for each cell as the position of that cell 
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centroid relative to pia (absolute depth) or relative to the L1/2 and L3/4 boundaries 

(scaled depth) at that position in the tissue. The number of neurons per mm2 of L2/3 cortex 

(absolute density) is the number of neurons per image scaled by the area of the image 

where cell counts were assessed. For measuring surface density and cell area across L2/3 

cortical depth, L2/3 was split into 20 evenly size bins and the relevant measurements 

within each bin were calculated independently per section (one section per donor) and the 

average and standard deviation across sections were reported. The first and last bins are 

omitted from plots as they display boundary effects. Relative (scaled) neuron density scales 

to 1 for each donor and is defined as the fraction of total neuron count in each bin. In 

human, a nadir of scaled density was identified at -0.575, which we define as a quantitative 

boundary between superficial and deep L3 in this manuscript.  

Analysis of data from dissociated cells/nuclei  

Reference data used in this study include dissociated excitatory cells (mouse) or nuclei 

(human) collected from human MTG 11 and mouse VISp 22, and are all publicly accessible at 

the Allen Brain Map data portal (https://portal.brain-map.org/atlases-and-data/rnaseq). In 

human, cells from the five previously identified L2/3 glutamatergic types were retained, 

subsampling to match the laminar distribution of neurons included in the Patch-seq data 

set as closely as possible, leaving a total of 2,948 neurons from LTK, GLP2R, FREM3, 

CARM1P1, and COL22A1 t-types. In mouse, all neurons from the three L2/3 glutamatergic t-

types (Adamts2, Rrad, and Agmat) were retained. Data sets were visualized as follows. 

First, the top 2,000 most binary genes by beta score 11, which is defined as the squared 

differences in proportions of cells/nuclei in each cluster that expressed a gene above 1, normalized by the sum of absolute differences plus a small constant (ε) to avoid division by 

zero. Scores ranged from 0 to 1, and a perfectly binary marker had a score equal to 1. 

Second, the Seurat pipeline 34,35 (more details below) was used to scale the data, reduce the 

dimensionality using principal component analysis (30 PCs). These PCs were then used to 

generate a Uniform Manifold Approximation and Projection (UMAP) 28. Finally, data and 

metadata such as cluster, subcluster, layer, and gene expression are then overlaid onto this 

UMAP space with using different colored or shaded points.  

Cluster heterogeneity is defined as average observed variance explained by the first PC 

compared with permuted data after accounting for differences in the number of cells per 

cell type. To get this, we i) randomly selected 80 cells from each cell type, ii) identified the 80 most variable genes using the “FindVariableFeatures” Seurat function with selection.method=”vst”, iii) performed PCA after removing outlier cells, iv) calculated the 
percent of variance explained by the first PC, v) repeated i-iv for 100 sets of data where the 

expression levels for each gene are shuffled across the 80 cells to break gene correlations 

but retain other gene statistics, and vi) identify the average and standard deviation of PC1 

for observed vs permuted data. Cluster discreteness is defined as the average number of DE 

genes between a given type and each of the remaining homologous t-types (LTK, GLP2R, 

and FREM3 t-types in human; Rrad, Agmat, and Adamts2 t-types in mouse). In this case 

pairwise differential expression is defined using the de_score function in the “scrattch.hicat” R library 22 after subsampling each cluster to 80 cells, and only the genes 

with higher expression in the relevant cluster are considered. The getMarkers function 
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from the genesorteR R library (https://github.com/mahmoudibrahim/genesorteR) 44 was 

used to identify genes differentially expressed genes between deep FREM3 (f73 subtype; 

collected from L3 or L4 dissection), COL22A1, and CARM1P1 neurons, using all default 

parameters except quant=0.7. To validate the cell selection for deep L3 (since sublaminar 

dissection was not performed on the dissociated nuclei data), this analysis was repeated on 

Patch-seq neurons from these three types collected in deep L3 (scaled depth < -0.575). 

Gene ontology (GO) enrichment analysis was performed using ToppGene 68 with default 

settings, and Bonferroni corrected p-values are reported unless stated otherwise.  

Dataset curation  

Patch-seq cells were included in this data set if they met the following criteria. All neurons: 

1) had high-quality transcriptomic data, measured as the normalized summed expression of “on”-type marker genes (NMS, adapted from the single-cell quality control measures 

in 33) greater than 0.4; and 2) retained a soma through biocytin processing and imaging 

such that an accurate laminar association could be made. In addition, mouse neurons were: 

1) located within VISp; 2) either tdTomato- or tdTomato+ from a line known to label 

glutamatergic neurons (i.e. tdTomato+ neurons from known inhibitory mouse lines were 

excluded); 3) mapped to L2/3 IT VISp Rrad, L2/3 IT VISp Agmat, or L2/3 IT VISp Adamts2 

using Seurat mapping (as described below); and 4) mapped to L2/3 IT VISp Rrad, L2/3 IT 

VISp Agmat, L2/3 IT VISp Adamts2, or L4 IT VISp Rspo1 in a separate Seurat mapping 

analysis where only reads located within gene introns are considered for both data sets. 

This final filter removes Patch-seq cells that jointly express markers for GABergic and 

glutamatergic cells, likely representing L2/3 GABAergic neurons contaminated with 

adjacent glutamatergic cells. We do not find examples of such cells in human, possibly due 

to a much smaller sampling of GABAergic cells than in the mouse. 

Identifying transcriptomic types  

Due to the differences in gene expression between Patch-seq and dissociated cells (see Fig. 

3a and 32), we used transcriptomes of dissociated human nuclei from 11 or cells from 22 as 

reference dataset for human and mouse, respectively, and mapped Patch-seq 

transcriptomes to the reference data to identify their cell types. Prior to data transfer, we 

filtered genes potentially related to technical variables. X- and Y-chromosomes were 

excluded to avoid nuclei mapping based on sex. Many mitochondrial genes have expression 

correlated with RNA-seq data quality in dissociated nuclei data 11, so nuclear and 

mitochondrial genes downloaded from Human MitoCarta2.0 69 were excluded as well. We 

also find that Patch-seq cells often have high expression of non-neuronal marker genes, so 

any genes most highly expressed in a non-neuronal cell type are excluded. Finally, any 

genes showing at least four-fold higher expression in dissociated nuclei vs. Patch-seq cells 

in the included cell types (or vice versa) were excluded as potentially platform dependent. 

In total 23,129 of 50,281 genes (46%) remained in human and a comparable fraction for 

mouse. Variable genes for mapping were selected as described above for dissociated nuclei 

data visualization, by using the top 2000 remaining genes by beta score as input into the 

procedure described below.   
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For both species, we mapped Patch-seq data sets to the relevant dissociated cells or nuclei 

reference using Seurat V3 (https://satijalab.org/seurat/) 34,35 following the tutorial for 

Integration and Label Transfer with default parameters for all functions, except when they 

differed from those used in the tutorial, and replacing variable gene selection with the 

genes described above. More specifically, we first define a low (30) dimensional PCA space 

of the dissociated cells or nuclei data set and then project this onto the Patch-seq data set. 

We then found transfer anchors (cells that are mutual nearest neighbors between data 

sets) in this subspace. Each anchor is weighted based on the consistency of anchors in it’s 
local neighborhood, and these anchors were then used as input to guide label transfer (or 

batch-correction), as proposed previously 70. We then scaled the data, reduced the 

dimensionality using principal component analysis, and visualized the results with Uniform 

Manifold Approximation and Projection (UMAP) 28. This process is done using the “FindTransferAnchors” and “TransferData” R functions, which provides both the best 
mapping cell type and a confidence score. For mouse data, the three homologous types did 

not provide a heterogenous enough reference data set, and therefore a larger set of 

glutamatergic and GABAergic cell types was used as reference. Cell type assignments for 

most cells were robust to choice of reference data set and to changes in parameter settings. 

Some cells with expression levels intermediate to two cell types changed calls between 

different runs; however, the cell type-level results presented are robust to these small 

changes.  

Gene expression of Patch-seq cells was visualized by projection into the UMAP space 

calculated from dissociated nuclei using a combination of Seurat and the R implementation of the “umap” library (https://github.com/tkonopka/umap). More specifically, the Seurat data integration pipeline (functions “FindIntegrationAnchors” and “IntegrateData”) was 
used to calculated a scaled data for both data sets and PCA was performed on this 

integrated space. The first 30 PCs from both data sets, as well as the UMAP coordinates calculated for dissociated nuclei above were input into the umap pipeline and the “predict” 
function was used to project the Patch-seq cells into UMAP coordinates. As above, data and 

meta-data were then overlaid on these umap coordinates.   

Comparison of gene expression between species  

Gene orthologs between mouse and human were pulled from the gene orthologs table on 

NIH (https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_orthologs.gz) on 22 November 2019. 

Only genes with unique orthologs between mouse and human were included in cross 

species analyses.   

Electrophysiology feature analysis 

Electrophysiological features were measured from responses elicited by short (3 ms) 

current pulses and long (1 s) current steps as previously described (Gouwens et al., 2019). 

Briefly, APs were detected by first identifying locations where the smoothed derivative of 

the membrane potential (dV/dt) exceeded 20 mV/ms, then refining based on several 

criteria including threshold-to-peak voltage and time differences and absolute peak height. 

For each AP, threshold, height, width (at half-height), fast after-hyperpolarization (AHP), 
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and interspike trough were calculated (trough and AHP measured relative to threshold), 

along with maximal upstroke and downstroke rates dV/dt and the upstroke/downstroke 

ratio (i.e., ratio of the peak upstroke to peak downstroke). Additional features from 

supratheshold sweeps included the rheobase and slope of the firing rate vs. current curve 

(f-I slope); the first spike latency initial firing rate (inverse of first ISI), measured at 

rheobase; and the mean firing rate and spike frequency adaptation ratio (mean ratio of 

consecutive ISIs), measured at ~50 pA above rheobase. Subthreshold features included the 

resting membrane potential (RMP), time constant (tau) from responses to short pulses, 

input resistance from responses across hyperpolarizing long steps, and sag ratio from 

response at ~ -100 pA. All feature calculation used the IPFX package (Intrinsic Physiology 

Feature Extraction, https://github.com/AllenInstitute/ipfx).  

Morphology feature analysis 

Morphological features were calculated as previously described2. Briefly, feature 

definitions were collected from prior studies1,71. Features were calculated using the version 

of neuron_morphology package 

(https://github.com/alleninstitute/neuron_morphology/tree/dev). Reconstructed neurons 

were aligned in the direction perpendicular to pia and white matter. Additional features, 

such as the laminar distribution of axon, were calculated from the aligned morphologies. 

Shrinkage correction was not performed (see above), features predominantly determined 

by differences in the z-dimension were not analyzed to minimize technical artifacts due to 

z-compression of the slice after processing. 

Analysis of features by t-type and species  

Combined datasets of electrophysiological and morphological features across homologous 

t-types from mouse and human were visualized by an analysis pipeline of data imputation 

and standardization, followed by projection to two dimensions using UMAP or 

SPCA (sklearn and umap python packages) 72,73. Cells with more than 3/18 

electrophysiological features missing were dropped, the remaining missing 

features were imputed as the mean of 5 nearest neighbors (“KNNImputer”), 
and features were centered about the median and scaled by IQR (“RobustScaler”). The 

SPCA regularization parameter was adjusted to minimize nonzero features while 

preserving dataset structure. All features with coefficients over 0.05 were reported directly 

in the case of electrophysiology or summarized by feature categories for morphology. 

For each feature, differentiation by t-type was assessed by running a one-way ANOVA for 

the feature by t-type, using the statsmodels package 74. This analysis was repeated 

separately for the 3 mouse and human homologous t-types, as well as the 3 deep human t-

types (with the subset of deep FREM3 cells only). Results were reported as fraction of 

variance explained (𝜂2 or R2) and heteroscedasticity-robust F test p-value (“HC3”), 
corrected for false discovery rate (Benjamini-Hochberg procedure) across all features for 

each data modality. Post-hoc Mann-Whitney rank tests were run across pairs of t-types in 

each group (human and mouse homologous types and deep human types) for top-ranked 

features from ANOVA, and results FDR-corrected. 
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For classification of t-types, features were normalized using the standard scaler scalar in sklearn (“StandardScalar”), and the data was randomly assigned with stratification to 
training (70%) and testing sets (30%). The random forest classifier was trained using the 

sklearn package with 600 decision trees. The classification performance was estimated 

after averaging the results of the classifiers trained on 1000 stratified random data splits 

and compared against performance for data with shuffled t-type labels. Confusion matrices 

shown are for a single representative train/test split. 

Analysis of features by depth for FREM3 t-type  

For each electrophysiology, morphology, and gene feature, the depth-related 

variability was assessed by a linear regression of the feature against relative L2/3 depth, 

using the statsmodels package 74. Results were reported as fraction of variance explained 

(R2), Pearson correlation r, and heteroscedasticity-robust F test p-value (“HC3”), corrected 
for false discovery rate (Benjamini-Hochberg procedure) across all features for each data 

modality. Due to the large number of morphology and genes tested, results were 

summarized by calculating GO term enrichment in ToppGene 68 for the set of depth-

correlated genes (FDR<0.05), followed by subselection of representative GO terms using 

REViGO 75. Groups of features were ranked by the group’s highest  R2 , and the features with 

highest correlation shown for the top groups.  

Data and software availability  

The custom electrophysiology data acquisition software (MIES) is available 

at https://github.com/alleninstitute/mies. The Vaa3D morphological reconstruction 

software, including the Mozak extension, is freely available at www.vaa3d.org and its code 

is available at https://github.com/Vaa3D. Code for reproducing most of the analyses 

presented in this work are available on GitHub 

https://github.com/AllenInstitute/patchseq_human_L23.  
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Extended Data Figures 

 

 

Extended Data Figure 1: Correlation between the pathology scores: Pearson correlation 

coefficient between various pathology scores: GFAP, IBA1, SMI-32, Ki-67, NeuN and Nissl.  
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Extended Data Figure 2: Effects of patient metadata on electrophysiology. UMAP 

projection of 18 electrophysiological features, with data points for each neuron colored by t-

type (upper left) and by patient characteristics. In particular, cells split by medical condition 

(upper right) show a lack of correspondence between pathology and electrophysiology.  
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Extended Data Figure 3: Human L2 and L3 excitatory neuron dendritic reconstructions. 

All human L2 and L3 excitatory neuron dendritic reconstructions ordered by t-type and 

aligned by layer to an average cortical template. Apical dendrites are in darker colors, basal 

dendrites in lighter colors.    
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Extended Data Figure 4: Mouse L2/3 excitatory neuron dendritic reconstructions. All 

mouse L2/3  excitatory neuron  dendritic reconstructions ordered by t-type and aligned by 

layer to an average cortical template. Apical dendrites are in darker colors, basal dendrites in 

lighter colors.   
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Extended Data Figure 5: Differences in electrophysiology properties between mouse 

areas is smaller than those seen between mouse and human neurons. Selection of key 

electrophysiological features recorded from L2/3 of mouse VISp and TEa, compared to L2 and 

L3 of human cortex.  
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Extended Data Figure 6: Random forest classification of t-types. (a, b) Confusion matrix 

of the random forest classifier for human and mouse neurons based on electrophysiological 

features. All matrices are normalized by row. (c, d) Confusion matrices of random forest 

classifiers for morphological data for mouse and human neurons. (e, f) Confusion matrix for 

the combined morpho-electric classifier. Classification performance is shown over random 

performance. For human ephys features the most important features were: Rin, tau, AP 

threshold, sag and adaptation. For mouse ephys features were: AP up/down, AP height, int. 

ISI, RMP and AP up. For human morpo classifier the most important features 

were: apical_dendrite_extent_y, basal_dendrite_extent_x_over_y, basal_dendrite_total_volume, 

basal_dendrite_soma_surface, basal_dendrite_emd_with_apical_dendrite. For mouse morpho 

classifier the most important features were: apical_dendrite_pct_intersect_basal_dendrite, 

apical_dendrite_early_branch, apical_dendrite_bias_x, apical_dendrite_soma_percentile_x, 

apical_dendrite_over_basal_dendrite_ratio_xy.  
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Extended Data Figure 7: Visualization of all t-types in combined feature spaces. 

Projection of full electrophysiology (top) and morphology (bottom) feature spaces into two 

dimensions using UMAP (left) and SPCA (right).   

 

 

Extended Data Figure 8: Somata radius by depth and t-type. (a) Soma radius vs. 

normalized L2,3 depth. Each soma is colored by t-type. (b) Average soma radius by t-type for 

human and mouse.  
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Extended Data Figure 9 (previous page): DE genes selective for one or two of 

the CARM1P1, COL22A1, and deep FREM3 t-types, selected using genesorteR.    

 

 

 

 

Extended Data Figure 10: Marker gene expression shown for all five human t-types, 

normalized by gene.  
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Extended Data Tables 
 

 

Feature p-value (FDR-BH) Cohen’s d (human - mouse) 

adaptation 4.6e-15 0.8 

mean firing rate 6.68e-09 -0.61 

AP downstroke rate 0.0 -0.47 

AP fast AHP 6.39e-35 -1.87 

f-I slope 1.2e-05 -0.46 

initial firing rate 3.5e-05 0.75 

input resistance 1.86e-17 1.05 

latency 3.5e-05 -0.43 

AP height 0.0 0.26 

rheobase 1.53e-09 -0.65 

sag 9.67e-14 0.8 

time constant 5.75e-35 1.62 

AP threshold 4.08e-05 -0.46 

AP trough 0.0 0.38 

AP upstroke/downstroke ratio 3.23e-31 -1.81 

AP upstroke rate 1.27e-19 -1.18 

resting membrane potential 9.11e-16 0.97 

AP width 0.08 0.11 

Extended Data Table 1: Cross-species comparison of electrophysiology. For 

homologous t-types, results are shown for unpaired t-tests across species for each feature: 

FDR-corrected p-values as well as Cohen’s d effect size (positive if human values are 
larger). 17out of 18 features are significant at FDR<0.05. 
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Extended Data Table 2: Donor attributes

Donor Gender Age (yr) Ethnicity Medical Condition Hemisphere Lobe Patch-seq IHC scoring
H15.03.006 F 24 Caucasian Epilepsy L Temporal X
H15.06.016 F 27 Caucasian Tumor R Frontal X
H15.06.017 M 65 Asian Epilepsy R Temporal X
H15.06.018 F 19 Caucasian Epilepsy R Temporal X
H16.03.001 M 39 Caucasian Epilepsy L Temporal X
H16.03.002 F 41 not specified Epilepsy L Temporal X
H16.03.003 M 25 not specified Epilepsy R Frontal X
H16.03.005 M 27 not specified Epilepsy R Temporal X
H16.03.006 F 33 not specified Epilepsy R Temporal X
H16.03.007 F 28 Caucasian Epilepsy L Temporal X X
H16.03.008 M 31 not specified Epilepsy R Temporal X
H16.03.009 M 37 not specified Epilepsy L Parietal X
H16.03.010 M 48 Caucasian Epilepsy R Temporal X
H16.03.011 M 42 not specified Epilepsy R Temporal X
H16.06.002 F 35 Caucasian Epilepsy R Temporal X
H16.06.003 F 31 Caucasian Epilepsy L Temporal X
H16.06.004 M 37 Caucasian Epilepsy R Temporal X
H16.06.006 M 42 Caucasian Tumor R Frontal X
H16.06.007 M 26 Caucasian Tumor L Frontal X
H16.06.008 F 24 Hispanic/Latino Epilepsy L Temporal X
H16.06.009 F 48 Caucasian Epilepsy L Temporal X
H16.06.010 M 67 Caucasian Epilepsy L Temporal X
H16.06.011 F 24 Caucasian Epilepsy R Temporal X X
H16.06.012 M 83 not specified Tumor R Frontal X
H16.06.013 F 34 African American Epilepsy L Temporal X
H17.03.002 M 61 not specified Epilepsy R Temporal X X
H17.03.005 M 60 not specified Epilepsy R Temporal X X
H17.03.006 F 67 not specified Epilepsy L Temporal X X
H17.03.007 F 27 not specified Epilepsy R Temporal X X
H17.03.008 F 60 Caucasian Epilepsy R Temporal X X
H17.03.009 M 18 Caucasian Epilepsy R Temporal X X
H17.03.010 F 38 not specified Epilepsy L Temporal X X
H17.03.011 M 30 not specified Epilepsy R Temporal X
H17.03.013 F 41 not specified Epilepsy L Temporal X
H17.03.014 M 20 not specified Epilepsy L Temporal X X
H17.03.015 M 72 not specified Tumor R Temporal X
H17.03.016 M 36 not specified Epilepsy R Temporal X X
H17.06.003 F 23 not specified Epilepsy L Temporal X X
H17.06.004 F 71 not specified Tumor L Parietal/occipital X
H17.06.005 M 38 African-American Epilepsy L Temporal X X
H17.06.006 M 35 not specified Epilepsy L Temporal X X
H17.06.007 F 42 not specified Tumor R Frontal X X
H17.06.009 M 52 Caucasian Tumor L Temporal X X
H17.06.012 M 23 Alaskan Native Epilepsy R Temporal X X
H17.06.013 M 29 Caucasian Epilepsy R Frontal X
H17.06.015 M 19 Caucasian Epilepsy R Temporal X X
H17.06.016 F 55 Caucasian Tumor R Frontal X
H17.26.001 F 58 not specified Tumor R Temporal X
H17.26.002 F 57 not specified Tumor L Temporal X
H17.26.003 M 25 not specified Tumor R Temporal X X
H17.26.004 M 34 Asian Tumor L Temporal X
H17.26.005 F 27 not specified Tumor L Frontal X X
H18.03.002 F 48 not specified Epilepsy L Frontal X
H18.03.003 M 21 not specified Both L Temporal X X
H18.03.004 M 28 not specified Epilepsy L Temporal X X
H18.03.005 F 49 Caucasian Epilepsy R Temporal X X
H18.03.006 F 24 not specified Epilepsy L Parietal X X
H18.03.007 F 59 Caucasian Epilepsy R Temporal X X
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Extended Data Table 2: Donor attributes

H18.03.008 F 19 not specified Epilepsy L Temporal X X
H18.03.009 M 19 not specified Epilepsy R Temporal X X
H18.03.010 M 31 not specified Epilepsy R Temporal X X
H18.03.012 M 22 not specified Both L Temporal X X
H18.03.313 F 23 Caucasian Epilepsy R Temporal X X
H18.03.314 M 31 Caucasian Epilepsy R Temporal X X
H18.03.315 M 40 not specified Epilepsy R Temporal X X
H18.03.316 F 45 not specified Epilepsy L Temporal X X
H18.03.317 M 51 not specified Epilepsy R Temporal X X
H18.03.318 M 60 not specified Epilepsy R Temporal X X
H18.03.319 M 36 not specified Epilepsy R Temporal X X
H18.03.320 M 34 not specified Epilepsy L Temporal X X
H18.03.322 M 38 not specified Epilepsy R Temporal X X
H18.03.323 M 24 not specified Both R Frontal X X
H18.06.001 M 69 Caucasian Tumor L Frontal X X
H18.06.004 F 69 Caucasian Tumor R Temporal X X
H18.06.005 F 57 Caucasian Tumor L Temporal X X
H18.06.358 F 38 Caucasian Tumor R Frontal X X
H18.06.359 M 47 Caucasian Tumor L Frontal X X
H18.06.362 F 63 not specified Tumor R Frontal X X
H18.06.363 M 22 Caucasian Epilepsy R Temporal X X
H18.06.365 F 31 not specified Tumor L Frontal X X
H18.06.366 M 38 not specified Tumor L Temporal X X
H18.06.367 M 58 not specified Tumor R Temporal X X
H18.06.368 M 59 Caucasian Epilepsy L Temporal X X
H18.06.371 M 28 Caucasian Epilepsy L Temporal X X
H18.25.001 M 85 not specified Postmortem R Temporal X
H18.26.001 F 60 not specified Tumor L Parietal X
H18.26.002 M 71 not specified Tumor R Temporal X
H18.26.403 F 68 not specified Tumor R Frontal X X
H18.26.404 M 68 not specified Tumor L Temporal X X
H18.26.405 F 68 not specified Tumor R Temporal X X
H18.28.001 F 50 Caucasian Tumor L Temporal X
H18.28.009 M 41 Caucasian Tumor L Frontal X
H18.28.010 M 33 Caucasian Tumor L Frontal X
H18.28.012 M 72 Caucasian Tumor R Temporal X
H18.28.013 M 45 Caucasian Tumor R Frontal X
H18.28.015 M 51 Caucasian Tumor L Frontal X
H18.28.017 F 72 Caucasian Encephalomyelitis R Frontal X
H18.28.018 F 50 Caucasian Hydrocephalus R Temporal X
H18.28.019 M 68 Caucasian Hydrocephalus R Temporal X
H18.28.020 F 35 Caucasian Tumor R Temporal X
H18.28.025 M 21 Caucasian Tumor R Temporal X
H18.28.026 M 32 Caucasian Tumor R Temporal X
H18.29.124 M 44 not specified Epilepsy R Temporal X
H18.29.125 M 28 not specified Epilepsy L Temporal X
H18.29.126 F 47 not specified Epilepsy L Frontal X
H18.29.127 M 28 not specified Epilepsy L Parietal X
H18.29.134 M 58 not specified Epilepsy R Temporal X
H19.03.301 M 46 not specified Epilepsy L Temporal X
H19.03.302 M 36 not specified Epilepsy R Temporal X
H19.03.304 M 36 not specified Epilepsy R Temporal X
H19.03.305 M 42 not specified Epilepsy L Temporal X
H19.28.001 M 48 Caucasian Tumor R Frontal X
H19.28.003 F 69 Caucasian Hydrocephalus R Occipital X
H19.28.004 F 66 Caucasian Tumor R Frontal X
H19.28.005 M 73 Caucasian Tumor L Temporal X
H19.28.007 M 68 Caucasian Hydrocephalus R Occipital X
H19.29.142 F 65 not specified Tumor L Frontal X
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