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Abstract—Human daily activity recognition using mobile per-
sonal sensing technology plays a central role in the field of pervasive
healthcare. One major challenge lies in the inherent complexity of
human body movements and the variety of styles when people per-
form a certain activity. To tackle this problem, in this paper, we
present a novel human activity recognition framework based on
recently developed compressed sensing and sparse representation
theory using wearable inertial sensors. Our approach represents
human activity signals as a sparse linear combination of activity
signals from all activity classes in the training set. The class mem-
bership of the activity signal is determined by solving a �1 min-
imization problem. We experimentally validate the effectiveness
of our sparse representation-based approach by recognizing nine
most common human daily activities performed by 14 subjects.
Our approach achieves a maximum recognition rate of 96.1%,
which beats conventional methods based on nearest neighbor, naive
Bayes, and support vector machine by as much as 6.7%. Further-
more, we demonstrate that by using random projection, the task
of looking for “optimal features” to achieve the best activity recog-
nition performance is less important within our framework.

Index Terms—Compressed sensing, human activity recognition,
pervasive healthcare, sparse representation, wearable computing.

I. INTRODUCTION

P ERVASIVE healthcare, the use of pervasive computing
technologies to integrate healthcare monitoring and inter-

vention seamlessly into people’s everyday lives, is a rapidly
expanding area of research that attracts more and more re-
searchers in recent years. As one of the key problems within
its domain, automatically recognizing and logging human daily
activities has significant potential to increase the efficiency of
healthcare providers [1]. Among all the human activity sensing
technologies, wearable sensing system has the advantage of be-
ing with people throughout the day, enabling continuously col-
lecting people’s activity information. This unique characteristic
makes it a perfect platform to deliver long-term personalized
healthcare anywhere and any time, enabling a wide range of
healthcare applications including personal fitness monitoring,
preventive and chronic healthcare, and elderly support [2].

As a pattern recognition problem, recognizing human daily
activities automatically is challenging due to the complex nature
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of human body movements. Over the years, many research stud-
ies have been done to analyze both simple and complex human
activities based on wearable sensors. A large number of them
focus on studying what are the most informative features that
can be extracted from the activity data and what is the most ef-
fective learning machine for classifying these activities [3]–[5].
Another line of research tries to answer the question of what is
the most appropriate computational model to represent human
activity data [6]–[8]. However, despite the significant research
efforts, the scalability of handling large intraclass variations and
the robustness to model parameters of many existing human ac-
tivity recognition techniques are still quite limited.

During the past few years, research on high-dimensional
sparse signals has experienced great breakthroughs. A sparse
signal is “a signal that can be represented as a linear combina-
tion of relatively few base elements in a basis or an overcom-
plete dictionary” [9]. In fact, many real-world signals are high
dimensional and sparse in nature. For instance, smooth images
exhibit sparse structures if represented using a Fourier basis.
Similarly, piecewise smooth images can be regarded as sparse
signals under a wavelet basis [10]. Although the original goal
of exploring a signal’s sparsity is for signal compression and
reconstruction, its discriminative nature has been exploited and
successfully applied to many machine learning/pattern recogni-
tion tasks. Examples include human face recognition [11], iris
identification [12], facial action unit recognition [13], human
speech recognition [14], and object recognition [15]. Inspired
by their success based on their highly scalable ways of data
modeling, in this paper, we explore the sparsity nature of hu-
man daily activity signals sampled from wearable sensors and
propose a sparse representation-based framework for human
daily activity modeling and recognition. An important step of
our approach is the selection of a basis or the design of the
overcomplete dictionary for sparse representation. One option
is to use the standard sparsity-inducing bases such as Fourier
basis, wavelets, and curvelets used in many image processing
techniques. In this study, we follow the method proposed in [11]
to use the training samples directly as the basis to construct the
overcomplete dictionary. The rationale behind this strategy is
that if sufficient training samples are available, it is assumed that
a test sample can be well represented by a linear combination of
training examples from the same activity class, and therefore,
the representation of the test sample in terms of the training
samples is naturally sparse. We have adopted this framework
in our previous work to recognize the location of the wearable
sensors on human bodies [16]. The main goal of this paper is
to study the key characteristics of the sparse representation-
based framework for human activity modeling and recognition.

2168-2194/$31.00 © 2013 IEEE
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Fig. 1. MotionNode sensor and its placement. (a) MotionNode platform.
(b) During data collection, a single MotionNode is packed firmly into a mobile
phone pouch and attached to the participant’s front right hip.

To achieve this goal, we study the robustness of the framework
related to different feature dimensions and different selections
of features. We also compare the recognition performance ob-
tained with sparse representation to some conventional activity
recognition approaches such that the advantages of the proposed
sparse representation-based approach can be clearly and better
illustrated.

The organization of the paper is as follows. We first give a
brief review on some of the existing approaches for human ac-
tivity recognition using wearable sensors. Then, we introduce
the sensing platform and dataset used for this study. Next, we
describe the details of our sparse representation-based frame-
work and present the experimental results. Finally, we conclude
this paper and outline our future work.

II. RELATED WORK

A large number of existing human activity recognition tech-
niques concentrate on feature studies. For example, in [17], the
authors extracted features based on linear-discriminant analysis
(LDA) and applied artificial neural nets for classification. Their
procedure achieved 97.9% average recognition accuracy over
15 different human activities and three static states. In [18], the
authors claimed that the classification performance could be im-
proved by selecting features for each activity separately. Similar
results were also found in [19] where the authors used feature
selection techniques to demonstrate that a feature’s usefulness
was dependent on the specific activity to be inferred.

Another line of research focuses on designing computational
models to represent human activity signals. In [7], the authors
used motion trajectories in 3-D space to characterize each ac-
tivity. In [20], the authors proposed to use motion primitives
to build activity models where motion primitives are defined
as the most basic units shared by all the activity classes. Re-
cently, researchers have attempted to model activities using
manifold learning, in which the goal is to capture the intrinsic
low-dimensional manifold structure embedded in the activity
signals. For example, the authors in [8] used local linear em-
bedding (LLE) to capture the geometric structure of the activity
signals. As another example, the authors in [21] applied isomap
to construct the low-dimensional activity manifolds and used a
dynamic time warping technique for manifold recognition.

Unlike the existing approaches just mentioned, the framework
we propose in this study leverages the sparsity property of hu-

TABLE I
STATISTICS OF THE PARTICIPANTS FOR DATA COLLECTION

man activity signals and builds the human activity models from
a totally different perspective. As we demonstrate in the fol-
lowing sections, the sparse representation-based approach has
great potential in handling the feature sensitivity issue reported
in both [18] and [19].

III. SENSING PLATFORM AND DATASET

The wearable sensing device we use for this study is called
MotionNode1 [see Fig. 1(a)]. MotionNode is an accurate high-
performance inertial measurement unit that integrates a three-
axis accelerometer, a three-axis gyroscope, and a three-axis
magnetometer. It has been widely used in real-time 3-D mo-
tion tracking applications. In this study, we use the three-axis
accelerometer and the three-axis gyroscope to sense the human
activity signals. Each axis of the accelerometer and the gyro-
scope can sense ±6 g acceleration and ±500 dps rotation rate,
respectively. The sampling rates for both accelerometer and gy-
roscope are set to 100 Hz. This is high enough to capture all the
details of the person’s movements. Another important reason
we use MotionNode is that its sensor size is extremely small
such that it can be attached to a person’s body in a nonintrusive
manner.

Fourteen participants with diversity in gender (7 male, 7 fe-
male), age, height, and weight were recruited for this study. The
statistics of age, height, and weight are listed in Table I. The
data collection was carried out in an open environment. Each
participant was asked to perform nine types of activities: walk
forward, walk left, walk right, go upstairs, go downstairs, jump
up, run, stand, and sit. We chose these activities because they
correspond to the most basic and common activities in people’s
daily lives and are useful for applications such as physical fitness
monitoring and assisted living for elderly people. During data
collection, a MotionNode was packed inside a mobile phone
pouch that was attached firmly onto the participant’s right front
hip. A miniature laptop was used to record sampled data from
MotionNode [see Fig. 1(b)]. To capture day-to-day variations
and reduce the interindividual correlation to the minimum, each
participant was asked to perform five trials for each activity on
different days at various indoor and outdoor locations with no
instructions on how the activities should be performed. By doing
this, participants could perform these activities based on their
own styles. We expect that the diversity in performance style
could cover a wide range of population.

1http://www.motionnode.com/
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Fig. 2. Block diagram of the sparse representation-based human activity recognition framework.

TABLE II
FEATURES CONSIDERED IN THIS STUDY

IV. SPARSE REPRESENTATION-BASED FRAMEWORK

The block diagram of our sparse representation-based frame-
work for human activity modeling and recognition is illustrated
in Fig. 2. The proposed framework consists of two stages: train-
ing stage and recognition stage. In the training stage, a sliding
window is used to segment the streaming activity signals sam-
pled from the wearable sensors into a sequence of fixed-length
windows. In this study, the window is set to be 4 s long with 50%
overlap. Here, we assume that all the important information of
each activity is contained inside each window. This information
is extracted by computing various features over the sampled
sensor data within each window to form a feature vector. The
feature vectors from training samples of all activity classes are
then concatenated together to construct the overcomplete dic-
tionary. In the recognition stage, the unknown stream of activity
signal is first segmented and transformed into a feature vector
in the same manner as in the training stage. Its sparse represen-
tation based on the overcomplete dictionary constructed in the
training stage is then extracted and imported into the classifier
for classification. In the remainder of this section, we explain
every component of this framework in detail.

A. Feature Extraction

For wearable sensor-based human activity recognition, a va-
riety of features have been intensively investigated in previous
studies. Table II shows the list of features we consider in this
study. Some of them, such as mean, variance, correlation, and

entropy, have proved to be useful for wearable sensor-based
human activity recognition. Features like zero crossing rate,
mean crossing rate, and first-order derivative are also consid-
ered because these features have been successfully applied in
similar recognition problems such as human speech recognition
and handwriting recognition problems. We also include physical
features proposed in [5] such as movement intensity, eigenval-
ues of dominant directions, and averaged velocity along heading
direction since they have been reported to be able to boost the
classification performance. All these features are extracted from
both accelerometer and gyroscope. In total, the dimensionality
of the input feature space is 110.

B. Feature Selection Versus Random Projection

As stated in Section I, one goal of this work is to study how the
choices of features and the dimensions of feature space affect
the performance of our sparse representation-based framework.
We want to understand not only the effect of using the features
in Table II themselves but also the effect of using the linear
combinations of these features based on some linear transfor-
mations. There are many types of linear transformations that can
be used. Popular examples include principal component analysis
(PCA) [22] and LDA [23]. In this study, we are particularly in-
terested in using random projection as the linear transformation
since it has been proved very powerful to encode information
effectively in many applications and can be implemented much
more efficiently than PCA and LDA [24]. In random projection,
a linear transformation is represented as a random matrix R
whose entries are independent and identically distributed (i.i.d.)
random variables from a zero-mean Gaussian distribution in
which each row is normalized to have unit length [25]. As a re-
sult, the newly generated features are linear combinations of all
the original features in Table II with randomly generated coef-
ficients. Compared to the features generated by PCA and LDA,
these randomly projected features are less structured but encode
the information from all the original features. We will compare
the effects of using the original features selected from the feature
set listed in Table II and the transformed features generated by
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random projection on the recognition performance in the next
section.

C. Overcomplete Dictionary Construction and Sparse
Representation

Assume that there are k distinct activity classes to recog-
nize and ni training samples from class i, i ∈ [1, 2, . . . , k].
Recalling that each training sample is represented as an m-
dimensional feature vector, we arrange the given ni train-
ing samples from class i as columns of a data matrix Di =
[xi,1 ,xi,2 , . . . ,xi,ni

] ∈ Rm×ni . Here, we make a key assump-
tion that given sufficient training samples from class i (i.e., the
number of columns of the data matrix Di is large enough), any
new test sample y ∈ Rm that belongs to the same activity class
can be approximately represented as a linear combination of the
training samples in Di

y = αi,1xi,1 + αi,2xi,2 + · · · + αi,ni
xi,ni

(1)

with coefficients αi,j ∈ R, j = 1, 2, . . . , ni .
Next, we define a new matrix A that concatenates the training

samples from all the activity classes as

A = [D1 ,D2 , . . . ,Dk ] ∈ Rm×n

= [x1,1 , . . . ,x1,n1 ,x2,1 , . . . ,x2,n2 , . . . ,xk,1 , . . . ,xk,nk
]

(2)

where n = n1 + n2 + · · · + nk . In such case, the matrix A can
be seen as an overcomplete dictionary of n prototype elements.
Based on the assumption just mentioned, we can express the test
sample y from class i in terms of the overcomplete dictionary
A as

y = Aα (3)

where

α = [0, . . . , 0, αi,1 , αi,2 , . . . , αi,ni
, 0, . . . , 0]T (4)

is a sparse coefficient vector whose entries are zero except those
associated with class i. Therefore, α can be regarded as a sparse
representation of y based on the overcomplete dictionary A.
More importantly, the entries of α encode the identity of y.
In other words, we can infer the class membership of the test
sample y by finding the solution of the linear system of equations
of (3) that is expected to be sparse.

D. Sparse Recovery via �1 Minimization

Based on the theory of linear algebra, the solution of the linear
system of equations of (3) depends on the characteristic of the
matrix A. If m > n, the system y = Aα is overdetermined and
the solution can be found uniquely. However, in most real-world
applications, the number of prototypes in the overcomplete dic-
tionary is typically much larger than the dimensionality of the
feature representation (i.e., m � n). Therefore, the linear sys-
tem of equations of (3) is underdetermined and has no unique
solution.

Traditionally, this difficulty is solved by choosing the mini-
mum �2 solution. That is, the desired coefficients have minimum

�2 norm

α̂ = arg min
α

‖α‖2 subject to y = Aα (5)

where ‖.‖2 denotes the �2 norm. The solution of the aforemen-
tioned problem is given by

α̂ = A†y (6)

where A† is the pseudoinverse of A. However, this solution
yields a nonsparse coefficient vector that is not informative for
our activity recognition task.

Recent research in the field of compressed sensing [26], [27]
has shown that if α is sufficiently sparse, it can be recovered by
solving the �1 minimization problem instead

α̂ = arg min
α

‖α‖1 subject to y = Aα (7)

where ‖.‖1 denotes the �1 norm. This optimization problem,
also known as Basis Pursuit (BP), is built on a solid theoretical
basis and can be solved very efficiently with traditional linear
programming techniques whose computational complexities are
polynomial in n [28].

In practical real-world applications, signals are always noisy.
As a result, it may not be possible or reasonable to model the
test sample exactly as a sparse linear combination of the training
samples as in (3). In such cases, (3) can be modified to explicitly
account for limited noise with

y = Aα + e (8)

where e is the noise term with bounded energy ‖e‖2 < ε. With
such modification, the sparse solution of (8) can still be ef-
ficiently computed by solving the following �1 minimization
problem via second-order cone programming [28]:

α̂ = arg min
α

‖α‖1 subject to ‖Aα − y‖2 ≤ ε. (9)

E. Classification via Sparse Representation

Given a new test sample y in the form of an m-dimensional
feature vector from one of the k activity classes, we first compute
its sparse coefficient vector α̂ by solving (9). To identify the
class membership of y, we adopt the classification strategy by
comparing how well the various parts of the coefficient vector
α̂ associated with different activity classes can reproduce y,
where the reproduction error is measured by the residual value.
Specifically, the residual of class i is defined as

ri(y) = ‖y − Aδi(α̂)‖2 (10)

where δi(α̂) is a characteristic function that selects only the co-
efficients in α̂ associated with class i. Therefore, ri(y) measures
the difference between the true solution y and the approximation
using only the components from class i. Finally, y is classified
as the activity class c that gives rise to the smallest residual value

c = arg min
i

ri(y). (11)

As an example, Fig. 3(a) and (c) illustrates the two coeffi-
cient vectors recovered by solving (9) with the noise tolerance
ε = 0.03 for two test samples from two activities: walk forward
and running, respectively. As illustrated, both of the recovered
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Fig. 3. Sparse representation solutions via �1 minimization and the corresponding residuals for two test samples from walk forward and running, respectively.
(a) Sparse coefficient solution recovered via �1 minimization for one test sample from activity walk forward. (b) Residual values with respect to the nine activity
classes. The test sample is correctly classified as walk forward (index number 1). The ratio between the two smallest residuals is 1:2.2. (c) Sparse coefficient
solution recovered via �1 minimization for one test sample from activity running. (d) Residual values with respect to the nine activity classes. The test sample is
correctly classified as running (index number 6). The ratio between the two smallest residuals is 1:3.8.

coefficient vectors are sparse. Moreover, the majority of the large
coefficients are associated with the training samples belonging
to the same activity class. Fig. 3(b) and (d) shows the corre-
sponding residual values with respect to the nine activity classes.
As illustrated, both test samples are correctly classified since the
smallest residual value is associated with the true activity class.
To show the robustness of our residual-based classification strat-
egy, we calculate the ratios between the two smallest residuals
for each test sample. The larger the ratio value, the more robust
the classification result. In the examples of Fig. 3(b) and (d),
the ratios between the two smallest residuals are 1:2.2 for walk
forward and 1:3.8 for running. We obtain similar results for the
other seven activities.

F. Classification Confidence Measure

The residual-based classification strategy described in the
previous section only provides a classification result whose con-
fidence is unknown. To quantify the classification confidence,
we use the metric sparsity concentration index (SCI) proposed
in [11]. The rationale behind the design of SCI is based on the
sparse recovery results illustrated in Fig. 3. Specifically, a test
sample classified with high confidence should have a sparse rep-
resentation whose nonzero entries concentrate mostly on one
activity class, whereas a test sample classified with low con-
fidence should have sparse coefficients spread widely among
multiple activity classes.

Based on this observation, the SCI of a coefficient vector α
is defined as

SCI(α) =
k · maxi ‖δi(α)‖1 / ‖α‖1 − 1

k − 1
(12)

With this definition, SCI takes values between 0 and 1. For
a coefficient vector of a test sample recovered via �1 mini-
mization, if the SCI value is close to 1, that is, the value of
maxi ‖δi(α)‖1 / ‖α‖1 ≈ 1, it indicates that the test sample can
be approximately represented using training samples only from
a single activity class. On the other hand, if the SCI value is
close to 0, that is, maxi ‖δi(α)‖1 / ‖α‖1 ≈ 1/k, it corresponds
to the situation where no single activity is dominant such that
the nonzero coefficients are distributed over all activity classes.
For example, the SCI values of the two test samples from walk
forward and running in Fig. 3 are 0.44 and 0.57, respectively.
Furthermore, we can manually set up a threshold τ ∈ [0, 1] such
that only test samples with SCI values equal or larger than τ are
considered. As will be shown in the next section, τ can be used
as an input parameter of the overall human activity recognition
system such that it can be tuned by users to achieve the desired
performance.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of our sparse
representation-based framework. For the evaluation procedure,
we use the leave-one-subject-out cross-validation strategy.
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Fig. 4. Impact of feature dimension.

Specifically, we use the data from 13 subjects as training ex-
amples. Data from the left-out subject are used for testing. This
process iterates for every subject. The final result is the averaged
value over all the subjects.

The framework was implemented in MATLAB programming
environment. The �1 minimization was performed using the �1-
magic package.2 The noise tolerance ε was set to 0.03. We use
the classification accuracy as the single quality metric for all our
experiments. The classification accuracy ACC is defined as

ACC =
TP + TN

TP + TN + FP + FN
(13)

where the variables TP, TN, FP, and FN, respectively, represent
the number of True Positive, True Negative, False Positive, and
False Negative outcomes in a given experiment.

A. Effect of the Feature Dimension and Comparison to
Baseline Algorithms

As our first experiment, we examine the framework’s clas-
sification performance with respect to different feature dimen-
sions, and compare it to three classical classification methods:
nearest neighbor (NN), naive Bayesian classifier (NBC), and
support vector machine (SVM). We choose these three classi-
fication methods as the baseline algorithms because the advan-
tages of our proposed sparse representation-based approach can
be clearly and better illustrated. In particular, Fig. 4 illustrates
the average classification accuracy rates as a function of feature
dimension, ranging from 10 to 100, with interval equal to 10.
Each curve represents one classification method, respectively.
At each dimension, features are selected based on the sequential
forward selection (SFS) since it is reported in [5] as a very ef-
fective feature selection method. In such case, we compare the
performance of the four classification methods using the same
feature set.

As shown in the figure, NN and NBC have relatively worse
performance. The maximum recognition rates for NN and

2http://www-stat.stanford.edu/∼candes/l1magic/

NBC are 91.3% and 89.4%, respectively. In comparison, SVM
achieves a better performance than both NN and NBC at each
individual feature dimension when feature dimension is equal
or larger than 30, with the best rate of 94.8%. For our sparse
representation-based classification method (SR), the perfor-
mance is the worst when feature dimension is less than or
equal to 30. This observation indicates that using fewer than
30 features is not sufficient to recover the sparse signals via
�1 minimization with no information loss. However, when the
feature dimension is equal to or larger than 40, SR achieves con-
sistent performance and beats all the other three classification
methods, achieving a maximum recognition rate of 96.1% when
feature dimension is equal to 60.

To take a closer look at the classification result, Table III
shows the confusion table for feature dimension equal to 50.
The overall averaged recognition accuracy across all activities
is 95.2%, with eight out of nine activities having precision and
recall values higher than 90%. If we examine the recognition
performance for each activity individually, both walk left and
walk right achieve very high precision and recall values. Fur-
thermore, they never get confused with each other. For jump up,
although it has a near 100% precision value, it only achieves a
recall value of 92.9%. This is because some of the samples of
jump up are misclassified as run forward but not vice versa. For
walk forward, it is interesting to notice that it can be misclas-
sified as any other walk-related activities. This is exactly the
same as go upstairs except that go upstairs never gets misclas-
sified to go downstairs. Finally, sit on a chair has a relatively
low recall value because it is mostly confused with stand. This
result makes sense since both sit on a chair and stand are static
activities, and we expect difficulty in differentiating different
static activities especially when the sensing device is attached
to the hip of the participants.

B. Effect of the Choice of Features and Random Projection

In this section, we study the effect of different choices
of features and random projection on the classification per-
formance of our framework. Similar to the previous section,
Fig. 5 shows the average classification accuracy rates versus
feature dimension from 10 to 100. The red curve with as-
terisks represents the standard SR method using features se-
lected based on the SFS feature selection method mentioned
previously. The black curve with circles represents the stan-
dard SR method using features randomly selected without the
help from any feature selection algorithm. The blue curve
with triangles represents the SR method with random projec-
tion. In this study, the entries of our random projection matrix
are independently sampled from a Gaussian distribution with
mean zero and variance 1/n (recall n is the total number of
training samples included in the overcomplete dictionary). As
shown, it is interesting to see that the SR method with ran-
dom projection achieves very similar performance to the stan-
dard SR method using features selected from SFS. In compar-
ison, the SR method with randomly selected features performs
much worse than the other two methods when using 80 or fewer
features. This observation indicates that the choice of features
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TABLE III
CONFUSION TABLE FOR OUR SPARSE REPRESENTATION-BASED HUMAN ACTIVITY RECOGNITION FRAMEWORK WHEN FEATURE DIMENSION IS 50

Fig. 5. Impact of feature choices.

plays a significant role in our sparsity-based framework if ran-
dom projection is not used. On the other hand, by using ran-
dom projection, the task of looking for “optimal features” to
achieve the best performance is less important. In other words,
the random projected features should perform as well as features
selected by many effective feature selection algorithms.

C. SCI as a Measure of Confidence

Finally, as our last experiment, we examine the role of the
classification confidence measure SCI as a tunable input param-
eter of the recognition system.

As explained in the previous section, we set up a threshold
τ ∈ [0, 1] such that only test samples with SCI values equal or
larger than τ are considered. Fig. 6 shows the average classi-
fication accuracy rates by sweeping the threshold τ through a
range of values starting from 0 to 1, with interval equal to 0.1.
As expected, the accuracy rate increases monotonically as the
threshold τ increases from 0 to 1. The classification accuracy
reaches 100% when the threshold τ is at 0.7. Based on this gen-

Fig. 6. Impact of SCI threshold value on classification performance.

erated curve, the user can set the threshold τ to a specific value to
make the recognition system achieve the desired performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a sparse representation-based
framework for human daily activity modeling and recognition
using wearable sensors. In conclusion, our framework achieves
a better performance compared to the methods using NN, NBC,
and SVM when the feature dimensions are equal to or larger
than 40. Furthermore, we demonstrate that by using random
projection, our framework can achieve competitive performance
compared to the one with finely selected features. Based on the
promising results exhibited from our approach, we plan to test it
on larger datasets containing more types of human activities. We
will also consider implementing this approach on mobile phones
and build activity recognition-based healthcare applications for
field studies in the near future.
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