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Abstract

The aim of this study was to evaluate the behavior of human Dental Pulp Stem Cells (DPSCs), as well as human osteoblasts,
when challenged on a Biocoral scaffold, which is a porous natural hydroxyapatite. For this purpose, human DPSCs were
seeded onto a three-dimensional (3D) Biocoral scaffold or on flask surface (control). Either normal or rotative (3D) cultures
were performed. Scanning electron microscopic analyses, at 8, 24 and 48 h of culture showed that cells did not adhere on
the external surface, but moved into the cavities inside the Biocoral structure. After 7, 15 and 30 days of culture,
morphological and molecular analyses suggested that the Biocoral scaffold leads DPSCs to hook into the cavities where
these cells quickly start to secrete the extra cellular matrix (ECM) and differentiate into osteoblasts. Control human
osteoblasts also moved into the internal cavities where they secreted the ECM. Histological sections revealed a diffuse bone
formation inside the Biocoral samples seeded with DPSCs or human osteoblasts, where the original scaffold and the new
secreted biomaterial were completely integrated and cells were found within the remaining cavities. In addition, RT-PCR
analyses showed a significant increase of osteoblast-related gene expression and, above all, of those genes highly expressed
in mineralized tissues, including osteocalcin, OPN and BSP. Furthermore, the effects on the interaction between
osteogenesis and angiogenesis were observed and substantiated by ELISA assays. Taken together, our results provide clear
evidence that DPSCs differentiated into osteoblasts, forming a biocomplex made of Biocoral, ECM and differentiated cells.
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Introduction

Bone grafting to replace missing bone with synthetic porous

Biomaterial (i.e. bone graft scaffolds) and associated new bone

formation and remodelling, have been investigated for over 30

years [1]. Limited availability of autografts and the risk of disease

transfer of allografts, however, has produced an increase in

requests for synthetic bone grafts.

Novel approaches for bone substitutes are focused on stimulation

of osteointegration, osteoconduction, osteoinduction as well as

induction of angiogenesis and vascularisation, by designing

bioactive materials with appropriate pore architecture [1].

On the other hand, the scaffolds used in tissue engineering for

bone regeneration must also act as a template for cell adhesion,

migration, proliferation, cell to cell interactions and the formation

of bone-extracellular matrix, providing structural support to the

newly formed tissue.

In addition, they can serve as delivery vehicles for cytokines

such as bone morphogenetic proteins (BMPs), insulin-like growth

factors (IGFs) and transforming growth factors (TGFs) that

stimulate recruited host precursor cells to differentiate into bone-

matrix producing cells [2], thus providing osteoinduction. Finally,

scaffolds for osteogenesis should have an interconnected porosity

so as to help tissue integration and vascularisation.

Porous scaffolds are thought to have all these features: they are

utilized to induce good bone healing by three-dimensional tissue

growth.

Due to their interconnected porous architecture, high compres-

sive breaking stress, good biocompatibility and reabsorbability,

corals have been used as scaffolds for bone tissue engineering.

Transcortical bony defects implanted with coral become vascu-

larised and are invaded by newly formed bone, whereas the coral

is reabsorbed at a rate commensurate with bone formation [3].

It has been postulated that greater regeneration could be

obtained by supplementing a reabsorbable scaffold with osteogenic

cells such as bone marrow stromal cells (BMSCs) or umbilical

cord-derived stem cells to improve clinical outcome [4,5,6]. Stem

cell–based tissue engineering has been shown to be highly

advantageous in bone regeneration when adult mesenchymal

stem cells (MSCs) are used.

Therefore taking into consideration that human dental pulp

stem cells (DPSCs) are MSCs that quickly differentiate into
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osteoblasts and endothelial cells both in vitro and in vivo [7,8], and

are able to successfully repair human bone defects [9] we decided

to use these cells, and primary human osteoblasts for comparison,

to observe their capabilities on a Biocoral scaffold.

Our main objective was to study the osteogenic differentiation

of DPSCs or human osteoblasts, challenged on a Biocoral scaffold,

as well as to provide fundamental information allowing the use of

DPSCs/Biocoral as a suitable engineered biocomplex, made of

human mesenchymal-derived cells and a porous structure, for

defect repair or transplantation purposes.

Results

Cell growth analysis
Cell growth analysis and viability staining with trypan blue

showed that the scaffold did not show significant effects on the

viability of each cell population with respect to its control (flask

surface).

The cell doubling time was of 4560.29 hours for DPSCs seeded

in flasks and of 45.760.18 hours for DPSCs grown on scaffolds.

For osteoblasts, the doubling time was of 3460.15 hours for cells

seeded in flasks versus 33.860.25 for those grown on Biocoral.

Cultures and scanning electron microscopy
DPSCs isolated from the dental pulps of healthy individuals

were sorted for c-kit/CD34/flk-1. Both primary osteoblasts and

DPSCs were seeded on Biocoral scaffolds, as well as on flasks (flask

surfaces) in standard cultures and then processed for scanning

electron microscope (SEM) analysis at 4, 8 and 24 h. Cell density

and morphology on both surfaces were investigated. On Biocoral

surfaces, a very small number of cells (either DPSCs or osteoblasts)

was detectable at the times considered (data not shown). This can

be due to the fact that cells that quickly moved into the cavities

inside the Biocoral, rich in depressions and deep, rounded pits of

widely varying shape and size (Fig. 1A–D). In Biocoral cavities,

cells were attached to the surface and did not show a flattened or

spherical shape (Fig. 1 E–H). Cells seemed to reach a stabilized

shape only after 8 h of culture, although DPSCs (Fig. 1 E,F) and

primary osteoblasts displayed osteoblastic features at 24 h (Fig. 1

G, H).

Histological evaluation
Histological sections of DPSCs and osteoblasts seeded on

Biocoral showed a diffuse bone formation within this scaffold,

although it was impossible to establish the exact amount of new

bone deposition, because it was disseminated within the internal

cavities (Fig. 2 A,B). In the control sample (Fig. 2C), being the

Biocoral made of hydroxyapatite and having a bone-like structure,

it displays the same Alizarin red staining of mineralized structures

detectable for both DPSCs and osteoblasts. The cells were clearly

observable in all the samples, inside the structure and up to the

surface of the pores (Fig. 2 A,B). In particular, it was possible to

observe that cells were located inside the cavities.

Toluidine blue staining confirmed the presence of cells and their

colonization inside the Biocoral, entrapped in it (Fig. 2 C). On

flask surfaces, mineralized bone nodules formation was observed

and stained with Alizarin red (Fig. 2D).

Expression of bone-associated genes
To evaluate the effects of the Biocoral scaffold on osteogenic

differentiation, we performed RT-PCR analyses for bone-

associated genes in DPSC cultures either grown on Biocoral

scaffold, or on a flask surface, at different times of their

differentiation (7-15-30 days). Osteoblasts grown in the same

conditions, as mentioned above, were used as controls.

RT-PCR analyses (Fig. 3 and Tables 1 and 2) revealed that no

differences for Runx-2 expression were detectable in DPSCs

seeded both on the Biocoral scaffold and on flask surfaces,

although its expression increased from day 7 to day 15.

Conversely, in osteoblasts, Runx-2 expression considerably

decreased in cells seeded on Biocoral scaffold.

Figure 1. Scanning electron microscopy (SEM) micrographs. This figure shows the Biocoral scaffold structure at different magnification (see
scale bars at the bottom of each micrograph) (A–D) evidencing size and regularity of porosity and pore interconnections. SEM micrographs showing
(E–F) DPSCs and (G–H) human osteoblasts grown on Biocoral scaffold at 8 h and 24 h after seeding. Cell adhesion and spreading on scaffold porosity
can be observed.
doi:10.1371/journal.pone.0018721.g001

Biocoral and DPSCs for Bone Repair
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Osterix was another marker of osteoblast differentiation that we

considered in our observations. Actually, its expression showed a

slight but progressive increase from day 7 to day 15 in both DPSCs

and osteoblasts.

Bone Alkaline Phosphatase (BAP) was highly expressed by

DPSCs on both Biocoral and flask surfaces, while osteoblasts

showed a lack of expression, when cultured on Biocoral scaffold.

The expression of Osteopontin, which is considered one of the

major sialoprotein of the extracellular matrix of bone and serves as

a bridge between cells and hydroxyapatite [10], was increased at

day 30 in DPSCs and already at day 7 in osteoblasts grown on

Biocoral scaffold.

Osteonectin, a glycoprotein that binds calcium and that is

secreted by osteoblasts during bone formation, initiating mineral-

ization and promoting mineral crystal [11], was shown to be

considerably expressed in all DPSCs samples at the same levels,

while ii was slightly decreased in osteoblasts grown on Biocoral

scaffold.

Bone sialoprotein (BSP), a significant component of the bone

extracellular matrix was slightly expressed by DPSCs, but its

expression was up-regulated starting from day 15 on Biocoral

scaffold. The same results were detected in osteoblasts.

Noteworthy, the expression of osteocalcin, which is a late stage

marker of osteogenic differentiation, was found to be strongly

increased in the presence of the Biocoral scaffold in both DPSCs

and osteoblasts, with respect to their controls during the osteoblast

differentiation.

Moreover, we analyzed also BMP-2 and VEGF expression.

Regarding BMP-2 expression, it was significantly up-regulated in

DPSCs seeded in the Biocoral scaffold, with respect to DPSCs

seeded in the flask surfaces. In osteoblasts no significant differences

were detectable.

RT-PCR analyses revealed that VEGF, which is a potent

angiogenic stimulator that plays an important role during bone

formation, was highly expressed in all the samples.

ELISA assays
ELISA assays (Fig. 4) were performed on culture media in order

to detect the amounts of VEGF and BMP-2 growth factors at 7, 15

and 30 days. The time steps were chosen in order to understand

the kinetics of the relative amounts of both morphogens secreted

by the cells (DPSCs or osteoblasts) in both conditions: seeded and

cultured either on the Biocoral scaffold or on a flask surfaces.
VEGF. The amount of VEGF secreted by DSPCs

considerably and significantly increased from 7 up to 30 days on

Biocoral scaffold (p,0.01) (Fig. 4A); interestingly, the amounts of

VEGF secreted by cells seeded on Biocoral were significantly

higher than those found in samples on flask surfaces (p,0.01)

(Fig. 4A) .

On the other hand, VEGF amounts secreted by osteoblasts on

flask surfaces were found to be significantly decreased from day 15

up to day 30. In addition, the VEGF amount belonging to

Biocoral samples, when compared with the amounts belonging to

osteoblasts in flask surface, were found to be significantly higher

(p,0.01). (Fig. 4B)
BMP-2. From 7 to 30 days, while BMP-2 amounts released by

DSPCs on flask surfaces were found to be of low amounts, those

secreted by cells cultured with Biocoral scaffolds were found to be

significantly increased up to 15 days (p,0.01), although they had

then dropped at day 30 (Fig. 4 C).

In addition, the amounts of BMP-2 levels secreted by osteoblasts

on Biocoral were much higher (p,0.01) than those secreted by

osteoblasts on flasks at day 7, then these levels tended to decrease

by day 15 days of culture, up to day 30 (Fig. 4 D).

Discussion

Up to a few years ago, the gold standard for bone grafting

surgical procedures was considered to be the use of autologous

bone grafts, capable to stimulate bone growth and implant

fixation. However, limited amounts of bone are available for

autografting and the harvesting procedures involve high donor site

Figure 2. Histological sections. Light microscopic images showing the Biocoral scaffold that is (A) loaded with DPSCs after 30 days of 3D culture
and stained with Alizarin red and Toluidine Blue or (D) only with Toluidine Blue, showing the red staining of bone and the blue staining of cells
(arrows) that are completely entrapped within the Biocoral cavities; or (B) loaded with human osteoblasts after 30 days of 3D culture and stained with
Alizarin red and Toluidine Blue or (E) only with Toluidine Blue, also showing the red staining of bone and the blue staining of entrapped cells (arrows),
inside the Biocoral cavities; (C) Alizarin red and Toluidine blue staining of Biocoral without cells. Arrows indicate Biocoral cavities without cells; (F) the
Alizarin red stains a calcification nodule (arrow) obtained from DPSCs cultured for 30 days on a flask surface (control). Original magnification 4006.
doi:10.1371/journal.pone.0018721.g002

Biocoral and DPSCs for Bone Repair
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Figure 3. RT-PCR analyses for osteoblast-specific genes. The analyses were performed on the following genes: Osterix, Runx-2, Osteocalcin,
VEGF, BMP-2, osteonectin, BAP, BSP, osteopontin (OPN). It is possible to observe that at 7, 15 and 30 days of culture cells grown on flask surface (lane

Biocoral and DPSCs for Bone Repair
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morbidity [1]. Allografts from bone banks are readily available,

but the complication rate is high with the risks of graft-versus-host

disease, transmission of infectious diseases and graft failure

[12,13,14]. Therefore, alternative methods including those using

stem/progenitor cells have been recently investigated [7,8,15] and

human trials have already been successfully carried out [9].

Actually, in bone tissue engineering, mainly regarding large

defects, a possible strategy involves the culture of osteogenic cells

on porous scaffolds. Osteogenesis occurs by seeding the scaffolds

before implantation with cells that will establish new centres for

bone formation [2], such as osteoblasts and mesenchymal cells that

have the potential to commit to an osteoblastic lineage. The aim is

to achieve a tool for bone grafting by using autologous

mesenchymal stem cells (MSC). Human MSCs (hMSCs) are an

attractive cell source because they are readily extracted from

several sites in humans such as adipose tissue, dental pulp or bone

marrow [4,5,6]. Among the hMSCs, dental pulp stem cells have

been demonstrated to be ideal for their use in bone differentiation

and tissue engineering [7,8,9,15] .

Natural coral exoskeleton has the best mechanical properties of

the porous calcium-based ceramics, given that its pores range from

150 to 600 mm in diameter, with interconnecting pore sizes

averaging approximately 260 mm in diameter. These dimensions

are similar to that of spongy bone, thus making coral an excellent

base for the spread of new bone ingrowth. In addition, calcium-

phosphate materials can be technologically modified, chemically

and structurally designed with specific architecture, forms, and

geometry [16] . All of these properties could drive cell functions,

forcing cells to express the desired osteogenic phenotype [17] .

On the other hand, we have recently demonstrated [18] that a

sintered titanium surface, due to its specific topographical

characteristics, allows DPSCs to quickly differentiate into

osteoblasts and produce considerable amounts of bone with

respect to other titanium surfaces (machined) meaning that the

scaffold’s surface is of paramount importance for cell differenti-

ation and fate.

In the present study we show that stem cells quickly move within

Biocoral cavities and then they start to differentiate into

osteoblasts. Differentiation and matrix mineralization in vitro

involve a considerable expression of genes as well as protein

production, leading to the mineralization.

Our findings demonstrate that Biocoral scaffold induced an

increase osteoblast-related gene expression in DPSCs. In fact, we

observed an increase in mRNA expression of the bone-associated

transcription factors, like Osterix and Runx-2 and a strong up-

regulation of osteocalcin, a marker of late-stage osteoblast

differentiation. These findings suggest that DPSCs are differenti-

ating into osteoblasts.

Furthermore, to assess the effects on mineral formation, we

decided to detect BSP and OPN mRNA expression and we found

that both BSP and OPN mRNAs were up-regulated in DPSCs

culture grown on Biocoral. Taking into consideration that

formation of mineralized matrix is a definitive hallmark of

osteoblastic differentiation, we can assume that Biocoral scaffold

stimulates osteoblast differentiation and function inducing matrix

mineralization as confirmed also by Alizarin Red staining.

On the other hand, the osteoblast cell culture, that we used as a

control, underwent bone differentiation, since these cells are

already self-committed. In fact, osteoblasts cultured on the

Biocoral scaffold showed a high expression of the late-stage

differentiation markers, including OPN, BSP and osteocalcin,

whereas the expression of early-stage markers, like Runx-2, BMP-

2 and BAP, decreased. The findings can be also explained

considering that, as it is well known, the expression of Runx-2 and

BAP in bone formation has an important role in the early and

middle stages of differentiation, while the expression of BSP, OPN

C) or on Biocoral (lane B) were analyzed for the expression of early, middle and late stage osteoblast differentiation genes. See Table 1 and 2 for
quantification data.
doi:10.1371/journal.pone.0018721.g003

Table 1. Densitometry measurement of mRNA level for DPSCs sedeed on Biocoral scaffold (B) and flask surface(C).

Day Osterix Runx-2 Osteocalcin

C B C B C B

7 0.44960.11 5.77660.92** 4.38060.91 6.11461.12 0.042660.03 1.07060.24**

15 12.260.53 12.45660.45 10.32560.70 11.12560.68 0.05560.04 0.95360.13**

30 12.54860.64 12.46060.59 10.01460.82 12.28660.95 0.18160.09 1.01960.15**

VEGF BMP-2 Osteonectin

C B C B C B

7 7.89161.15 9.54360.92 10.63860.24 14.50960.35* 9.19760.79 8.06960.93

15 9.69760.81 8.54060.63 5.10460.16 15.86560.98** 10.51460.81 9.36461.54

30 8.66560.27 9.05960.12 8.40660.31 15.49060.43** 11.07061.06 9.55861.87

BAP BSP Osteopontin

C B C B C B

7 13.86060.12 10.02562.89 1.66160.01 1.66560.01 2.50860.37 6.74860.45**

15 12.69760.79 11.57261.81 3.64160.58 5.90160.34* 4.91560.79 6.03560.13

30 11.58960.15 11.81060.12 5.09060.25 8.64660.18* 11.99760.26 14.35160.31*

*p,0.005.
**p,0.001.
doi:10.1371/journal.pone.0018721.t001
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and osteocalcin has a significant role in the late stages of osteoblast

differentiation.

In addition, in this study, we have assayed the amount of

morphogens secreted by stem cells and osteoblasts by ELISA

assay. Our results show that the amount of BMP-2 and VEGF

secreted by DPSCs seeded on Biocoral scaffold were increased

with time, with respect to the already differentiated cells, thereby

establishing the interaction between osteoblast function and

angiogenesis which are combined, closely associated processes

leading to bone formation [7], although these data do not agree

with RT-PCR analyses. Post-transcriptional regulations of gene

expression enable cells to control the contents of their proteomes.

Therefore, the protein production does not always show the same

trend of m-RNA expression. Post-transcriptional regulations could

be occurred justifying different results between RT-PCR and

ELISA for VEGF analyses. The latter may explain the differences

that we have found and described.

In conclusion, with this study we provide clear evidence that

stem cells (namely DPSCs) differentiating into osteoblasts lead to a

biomineralization, supported by the bioscaffold surface, that is

capable to induce a rather complex gene expression as well as

bone morphogenetic protein production. The biocomplex made of

osteoblasts originating from dental pulp stem cells and Biocoral

seems to be a reliable new tool for bone tissue engineering.

Materials and Methods

Dental pulp extraction and digestion
Human dental pulp was extracted from third molar teeth of 8

healthy adults with written informed consent, approved by our

Internal Ethical Committee (Second University Ethical Commit-

tee) and following our protocol [8]. Before extraction, each subject

was checked for systemic and oral infection or diseases. Only

disease-free subjects were selected. Each subject was pretreated for

a week with professional dental hygiene. Before extraction, the

dental crown was covered with 0.3% chlorhexidine gel (Forhans,

NY, USA) for 2 min and then the pulp was extracted with a

dentinal excavator or a Gracey curette.

Dental pulp stem cell and primary osteoblasts cultures
Once removed, each pulp was immersed in a digestive solution

(type I collagenase 3 mg/ml plus dispase 4 mg/ml in phosphate

buffer saline, PBS, containing 100 U/ml penicillin, 100 mg/ml

streptomycin) for 1 h at 37uC in agitation. The solution was then

filtered through 70 mm Falcon strainers (Becton and Dickinson,

Franklin Lakes, NJ, USA). After filtration, cells were pooled and

immersed in MegaCell Minimum Essential Medium (Sigma,

Milan, Italy) supplemented with 10% FBS, 100 mM 2P-ascorbic

acid, 2 mM L-glutamine, 100 U/ml penicillin, 100 mg/ml

streptomycin (all purchased from Invitrogen, San Giuliano

Milanese, Milan, Italy) and placed in 75 ml flasks with filtered

valves. Flasks were incubated at 37uC and 5% CO2 and the

medium changed twice a week. Just before cells become confluent,

they were subdivided into new flasks. Stem cells were sorted (see

below) only when their number was at least 1,000,000 cells per

flask. This number was achieved around day 22, when they were

still undifferentiated. Differentiated cells were obtained from

sorted stem cells cultured for at least 30 days in a-MEM culture

medium with 20% FBS (all purchased from Invitrogen, San

Giuliano Milanese, Milan, Italy); in fact, FBS promotes osteoblas-

tic differentiation when used at a high percentage, as we have

previously demonstrated [8,19].

Human osteoblasts were obtained from cortical mandible of

healthy patients free of bone-related disease, who underwent of

third molar extraction. Bone chips were rinsed three times in

phosphate buffered saline (PBS), broken into small pieces and

cultured in alpha-MEM supplemented with 10% FBS. Primary

osteoblast cultures were kept in a humidified atmosphere of 5%

CO2 at 37uC. Both DPSCs and primary osteoblasts were seeded

onto Biocoral scaffolds of constant size (5 mm diameter and

1,5 mm thick); 200 ml of 105cells/ml were seeded onto each

scaffold in 24-well plates with a sterile syringe. Cells were

Table 2. Densitometry measurement of mRNA level for osteoblasts sedeed on Biocoral scaffold (B) and flask surface(C).

Day Osterix Runx-2 Osteocalcin

C B C B C B

7 9.45261.01 6.85860.95 9.55461.4 8.13362.01 0.89060.12 1.09060.23*

15 7.28460.62 7.51061.23 11.76660.81 3.65660.54** 0.78060.14 1.13460.35*

30 6.09460.76 6.90560.45 10.13660.34 2.51060.92** 0.75460.28 1.10460.35*

VEGF BMP-2 Osteonectin

C B C B C B

7 8.42160.67 8.47760.86 5.38860.53 3.34661.98 8.39260.43 4.79960.56*

15 7.40060.89 7.99661.21 6.05960.48 4.58061.03 9.33260.67 6.49460.55*

30 7.27160.97 7.04161.11 5.94260.93 4.67261.24 7.91060.71 5.30160.49*

BAP BSP Osteopontin

C B C B C B

7 5.35260.67 0.64160.13** 13.96161.10 6.79063.76 4.87560.87 14.47161.14**

15 11.21660.84 3.10460.12** 12.19860.92 14.79660.75* 6.93960.79 11.62261.11**

30 7.82061.3 0.31660.21** 11.18760.74 14.46461.23* 5.65160.64 9.88860.89**

*p,0.005.
**p,0.001.
doi:10.1371/journal.pone.0018721.t002
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PLoS ONE | www.plosone.org 6 April 2011 | Volume 6 | Issue 4 | e18721



incubated for 2 hours at 37uC in 5% CO2 atmosphere before

adding the culture medium to a total volume of 1 ml.

Biocoral Scaffold
The calcium-carbonate coral-derived material (Genus Porites)

evaluated in this study presents a chemical composition very

similar to human bone [20]. Biocoral consists of more than 98%

calcium carbonate in crystal form (aragonite) and other elements

(F and Sr 0.7–1%, Mg 0.05–0.2%,Na,1%, K,0.03%,

P,0.05%, water,0.5%, and amino acids,0.026%). Among all

these elements, the presence of strontium is fundamental, as it can

effectively promote mineralization processes [21]. Biocoral is

biocompatible and osteoconductive and interestingly, it possesses

an average porosity of 50% and it is similar to cancellous bone,

with an architecture composed by strongly interconnected pores of

variable diameter (250–500 mm).

Tissue engineering and rotating cultures
In order to achieve 3-dimensional tissue formation, we

challenged DPSCs and primary osteoblasts in a roller apparatus

(Wheaton, Millville, NJ) with Biocoral scaffold.

At least 500,000 cells after sorting were gently plated onto 3-

dimensional scaffolds made of Biocoral. Samples were placed in

the roller apparatus and left for 30 days at a speed of 6 rpm in an

incubator at 37uC and 5% CO2. At the end of the experiments, all

the specimens were processed for histological observations, as

specified below.

FACScanning, sorting and differentiation
Cells were sorted using both morphological traits (high side

scatter and low forward scatter) and antigenic criteria (firstly using

CD117 and CD34, and then flk-1), as specified previously

[7,8,9,19]. Only cells that co-expressed all these markers (5% of

total cell population) were sorted in order to obtain a

homogeneous population, called DPSC. Briefly, cells were

detached using 0.02% EDTA in PBS and pelleted by centrifuga-

tion (10 min at 1,000 rpm), washed in PBS at 0.1% BSA at 4uC
and incubated with 1 mg/ml of antibody. Cells were washed in the

same solution once and were processed for sorting (FACsorter

ARIA II, Becton & Dickinson, Franklin Lakes, NJ, USA). The

mouse anti-human antibodies CD117 (c-kit), CD34, and flk-1 were

purchased from DBA, Segrate, Milan, Italy.

For indirect immunofluorescence cytometric assay, FITC and

PE-labeled goat anti-mouse (Santa Cruz) were used. The purity of

sorted populations was routinely 90%. Isotype antibodies were

used as controls.

Osteogenic differentiation was achieved as previously reported

[7,8,9]. Briefly, SBP-DPSCs were cultured with 20% FBS for 15

days without passaging, after which cells were cultured with 20%

FBS. We have extensively demonstrated that SBP-DPSCs do not

require dexametasone or addition of other substances to achieve

osteodifferentiation and bone production (Laino et al, 2005; 2006,

d’Aquino et al., 2007). To monitor differentiation, the cells were

examined using mouse anti-human antibodies to CD44, the

transcription factor Runx-2 (all from Santa Cruz, CA, USA). For

Runx-2 analysis, cells were processed using the Caltag Fix & Perm

Kit (Invitrogen, Milan, Italy) following the manufacturer’s

guidelines. Isotypes were used as controls. All data were analyzed

using CellQuest software.
Figure 4. ELISA assays for BMP-2 and VEGF protein secretion.
These observations were performed on DPSCs and human osteoblast

secretions at 7, 15 and 30 days of culture. Data are given as average
values 6SD. *p,0.001.
doi:10.1371/journal.pone.0018721.g004
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Cell growth analysis
In order to assess the scaffold’s ability to sustain cell growth and

expansion (of both DPSCs and osteoblasts), growth curves for cells

seeded on scaffolds versus cells seeded on flask surfaces were

compared. For this purpose, cells were seeded in equal densities in

24 well-plates (see above) and harvested by trypsinization. After

washing in PBS, the cell suspension was diluted 1:1 with 0.4%

trypan blue solution (Sigma–Aldrich), and viable and non-viable

cells were counted using the hemocytometer chamber under an

inverted microscope. Cells from triplicate samples were considered

at 24 h intervals for 10 days. The average cell count of each day

was used to determine growth curves and doubling time.

Scanning electron microscope (SEM)
Cells were fixed in 2.5% glutaraldehyde (EM grade) in 0.1 M

phosphate buffer, postfixed in 0.1% OsO4 in the same buffered

solution for 1 h and, after critical point drying and gold-palladium

coating, observed by SEM (JEOL-6700F, Tokyo, Japan).

Histological evaluations
As above specified, after 3-D culture, all the specimens were

immersed in a fixative solution of 10% buffered formalin at

pH 7.2 with 0.1 M sodium phosphate, for 4 h at room

temperature and left overnight at 48uC. The specimens were

processed to obtain thin ground sections with the Precise 1

Automated System (Assing, Rome, Italy). The specimens were

dehydrated in an ascending series of alcohol rinses and embedded

in a glycolmethacrylate resin (Techonovit 7200 VLC; Kulzer,

Wehrheim, Germany). After polymerization, the specimens were

sectioned along their longitudinal axis with a high-precision

diamond disc to about 150 mm and ground down to about 30 mm

with a specially designed grinding machine. The slides were

stained with alizarin red or toluidine blue. The slides were

observed in normal transmitted light under a Leitz-Laborlux

microscope (Laborlux S, Leitz, Wetzlar, Germany). The histo-

morphometry was performed using a light microscope (Laborlux

S, Leitz) connected to a high-resolution video camera (3CCD JVC

KYF55B), and interfaced to a monitor and personal computer.

This optical system was associated with a digitizing pad (Matrix

Vision GmbH) and a histometry software package with image

capturing capabilities (Image- Pro Plus 4.5; Media Cybernetics

Inc., Milan, Italy). Experiments were performed in quadruplicate.

Alizarin Red staining
For Alizarin Red staining, fixed cells or histological sections

were incubated for 10 min at room temperature in a solution

containing 1% Alizarin Red pH 4.3. Specimens were then washed

with distilled water and viewed under the light microscope.

Semi-quantitative RT-PCR analysis
Total RNA was extracted from specimens at 7, 15 and 30 days

using TRI Reagent (Sigma, Milan, Italy), following the manufac-

turer’s instructions, treated with DNase (Promega) to exclude

DNA contamination and stored at 280uC until the assays. cDNA

synthesis was carried out from total RNA (1 mg) using Superscript

II reverse transcriptase (Invitrogen Celbio Italy, San Giuliano

Milanese, Milan, Italy), and random primers. PCR analyses were

carried out in triplicate using a TC-312 thermal cycler (Techne,

Burlington, NJ, USA), in which samples underwent a 2-minute

denaturing step at 94uC, followed by 35 cycles of 94uC for 30 s,

54–60uC for 60 s, 72uC for 30 s, and a final extension step at 72uC
for 4 minutes. Each PCR reaction was performed in a total

volume of 25 ml containing Tris buffer 10 mM pH 8, 0.2 mM of

each dNTP, 1.5 mM MgCl2, and 0.2 mM of each primer, Taq

DNA polymerase 1 U and 1 ml of each cDNA. The primer

sequences were as follows: RUNX-2 forward, 59-CACTCAC-

TACCACACCTACC-39, reverse 59-TTCCATCAGCGTCAA-

CACC-39; Osterix forward-59-GCAAAGCAGGCACAAAGAA-

G-39, reverse 59-AGGGAATGAGTGGGAAAAGG-39; Osteocal-

cin forward 59-CATGAGAGCCCTCACA-39, reverse 59-AGA-

GCGACACCCTAGAC-39; VEGF forward 59-TGACAGGGAA-

GAGGAGGAGA-39, reverse 59CGTCTGACCTGGGGTAGA-

GA-39; BMP-2 forward 59-CGTGTCCCCGCGTGCTTCTT-39,

reverse 59-GGCTGACCTGAGTGCCTGCG-39; Osteonectin

forward 59-AAACCCCTCCACATTCCC-39, reverse 59-ATTT-

TCCGCCACCACCTC-39; Osteopontin forward 59-GCCGA-

GGTGATAGTGTGGTT-39, reverse 59–TGAGGTGATGTC-

CTCGTCTG-39; BAP forward 59-TCAAACCGAGATACAAG

CAC -39, reverse 59-GGCCAGACCAAAGATAGAGT -39; BSP

forward 59- GGGCAGTAGTG ACTCATCCG -39, reverse 59-

TTCTCAGCCTCAGAGTCTTCA- 39. GAPDH was used as an

internal control. The amplification products were separated on a

2% agarose gel in Tris-acetate EDTA (TAE) buffer. The RT-PCR

experiments were made in triplicate.

ELISA assay
In order to evaluate BMP-2 and VEGF levels in the culture

medium, the complete supernatant medium was collected from

cultures after 7, 15, 30 days from DPSCs and osteoblasts (n = 9),

cultured on different surfaces (Biocoral or flask surface). After

centrifugation to remove particulates, 2 ml aliquots were stored at

220uC. After thawing at room temperature, 0.5 ml were collected

from the aliquots and analyzed with an ELISA kit for BMP-2 or

anti-VEGF (R&D, Milan, Italy). The ELISA experiments were

made in triplicate.

Statistical analysis
ANOVA test was used for statistical evaluation. Level of

significance was set at p,0.05.

Author Contributions

Conceived and designed the experiments: FP VT VD TM FM GP.

Performed the experiments: FP GI ADR VT VD LL. Analyzed the data:

CM FP VD VT RdA GP. Contributed reagents/materials/analysis tools:

AP CM GP. Wrote the paper: FP VT CM GP.

References

1. Hing K (2005) Bioceramic bone graft substitutes:influence of porosity and

chemistry. International Journal of Applied Ceramic Technology 2: 184–199.

2. Groeneveld EH, van den Bergh JP, Holzmann P, ten Bruggenkate CM,

Tuinzing DB, et al. (1999) Mineralization processes in demineralized bone matrix

grafts in human maxillary sinus floor elevations. J Biomed Mater Res 48: 393–402.

3. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, et al. (2000) Tissue-

engineered bone regeneration. Nat Biotechnol 18: 959–963.

4. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants

loaded with autologous mesenchymal stem cells on the healing of canine

segmental bone defects. J Bone Joint Surg Am 80: 985–996.

5. Tai K, Pelled G, Sheyn D, Bershteyn A, Han L, et al. (2008) Nanobiomechanics

of repair bone regenerated by genetically modified mesenchymal stem cells.

Tissue Eng Part A 14: 1709–1720.

6. Zhao L, Weir MD, Xu HH (2010) An injectable calcium phosphate-alginate

hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue

engineering. Biomaterials 31: 6502–6510.

7. d’Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, et al. (2007)

Human postnatal dental pulp cells co-differentiate into osteoblasts and

endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell

Death Differ 14: 1162–1171.

Biocoral and DPSCs for Bone Repair

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e18721



8. Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, et al. (2005) A new

population of human adult dental pulp stem cells: a useful source of living
autologous fibrous bone tissue (LAB). J Bone Miner Res 20: 1394–1402.

9. d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, et al. (2009) Human

mandible bone defect repair by the grafting of dental pulp stem/progenitor cells
and collagen sponge biocomplexes. Eur Cell Mater 18: 75–83.

10. Oldberg A, Franzen A, Heinegard D (1986) Cloning and sequence analysis of rat
bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding

sequence. Proc Natl Acad Sci U S A 83: 8819–8823.

11. Yan Q, Sage EH (1999) SPARC, a matricellular glycoprotein with important
biological functions. J Histochem Cytochem 47: 1495–1506.

12. Jones J, Hench L (2003) Regeneration of trabecular bone using porous ceramics.
Current Opinion Solid State Material Science 7: 301–307.

13. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and
osteogenesis. Biomaterials 26: 5474–5491.

14. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the

art and future trends. Macromol Biosci 4: 743–765.
15. Spath L, Rotilio V, Alessandrini M, Gambara G, De Angelis L, et al. (2010)

Explant-derived human dental pulp stem cells enhance differentiation and
proliferation potentials. J Cell Mol Med 14: 1635–1644.

16. Mangano C, Scarano A, Iezzi G, Orsini G, Perrotti V, et al. (2006) Maxillary

sinus augmentation using an engineered porous hydroxyapatite: a clinical,

histological, and transmission electron microscopy study in man. J Oral

Implantol 32: 122–131.

17. Zhang Y, Wang Y, Shi B, Cheng X (2007) A platelet-derived growth factor

releasing chitosan/coral composite scaffold for periodontal tissue engineering.

Biomaterials 28: 1515–1522.

18. Mangano C, De Rosa A, Desiderio V, d’Aquino R, Piattelli A, et al. (2010) The

osteoblastic differentiation of dental pulp stem cells and bone formation on

different titanium surface textures. Biomaterials 31: 3543–3551.

19. Laino G, Graziano A, d’Aquino R, Pirozzi G, Lanza V, et al. (2006) An

approachable human adult stem cell source for hard-tissue engineering. J Cell

Physiol 206: 693–701.

20. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, et al. (2007) Mesenchymal stem

cell ingrowth and differentiation on coralline hydroxyapatite scaffolds.

Biomaterials 28: 1036–1047.

21. Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal

carbonate by hydrothermal exchange. Nature 247: 220–222.

Biocoral and DPSCs for Bone Repair

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e18721


