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Simple Summary: Biodiversity patterns and mechanisms along elevational gradients have long been
the focus of conservation research. However, few studies have been conducted in mountainous areas
of eastern China, especially for small mammals. In this study, we used a standard sampling method to
survey small mammals along the gradient of Qingliang Mountain in eastern China and analyzed the
patterns and mechanisms of diversity and community structure. We found inconsistencies between
different diversity dimensions. Functional and phylogenetic structures were mainly clustered but
showed opposite elevation patterns. Human disturbance and MDE were the main drivers of the
diversity patterns, but with contrasting effects on different dimensions. These findings emphasize
the importance of a multiple dimensions approach to biodiversity conservation and call for increased
conservation efforts in the low and middle elevation regions.

Abstract: Understanding the mechanisms influencing patterns and processes of biological diversity
is critical to protecting biodiversity, particularly in species-rich ecosystems such as mountains. Even
so, there is limited knowledge of biodiversity patterns and processes in the mountains of eastern
China, especially about small mammals. In this study, we examined the taxonomic, functional, and
phylogenetic diversity of small mammal distribution and community structure along the elevational
gradient of Qingliang Mountain, eastern China. We then evaluated how they are influenced by
space (area and mid-domain effect (MDE)), environment (temperature, precipitation, and normalized
difference vegetation index (NDVI)), and human disturbance. The results showed hump-shaped
patterns of taxonomic and phylogenetic diversity along elevation gradients, peaking at 1000 m, unlike
functional diversity, which peaked at lower elevations (600 m). The mean pairwise distance and
mean nearest taxon distance of functional and phylogenetic variance (MFD and MPD, respectively)
were also incongruent. The MFD and MPD showed hump-shaped patterns along elevations; how-
ever, unlike MFD, which peaked at lower elevations (600 m), MPD peaked at higher elevations
(1200 m). The mean nearest functional taxon distance (MNFD) decreased, while the mean nearest
phylogenetic taxon distance (MNTD) increased along the elevation gradient. The higher elevations
were functionally more clustered, while the lower elevations were phylogenetically more clustered,
suggesting that environmental filtering for traits was stronger at higher elevations. In comparison,
phylogenetic conservatism of ecological niches had a stronger influence at lower elevations. The
diversity and community structure indices were inconsistently explained, with human disturbance
and MDE accounting for the biggest proportions of the model-explained variances. Overall, the
results confirm that environmental filtering and human disturbance significantly influence small
mammals’ diversity and community structure. These findings also emphasize the need for increased
conservation efforts in the middle and lower elevation regions of Qingliang Mountain.
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1. Introduction

Mountains are home to nearly 87 percent of the world’s mammals, birds, and am-
phibians, despite only covering 25 percent of the total land area [1]. Due to notable
environmental differences between elevation gradients, mountains portray unique ver-
tical biodiversity patterns [2], making them ideal systems for researching biodiversity
patterns and mechanisms and conservation [3,4]. Despite the high biodiversity they host,
mountains experience high human activity pressure and climate change, and more studies
are needed to enhance the efficacy of conservation measures [5,6]. Identifying the key
biodiversity patterns and the corresponding drivers in mountain ecosystems is crucial for
biodiversity conservation.

In the past few decades, mountain biodiversity patterns have attracted much interest,
with most studies focusing on species richness [7–11]. These studies have highlighted four
main elevational patterns in species richness: decreasing, low plateau, a low plateau with a
mid-elevation peak, and a hump-shaped pattern [5]. Of these patterns, the hump-shaped
pattern has emerged as the most common (45% of all cases), especially in non-flying small
mammals (nearly 90% of all cases) [5]. These studies have also highlighted spatial, climatic,
and habitat productivity variables as the most important drivers of mountain biodiversity
patterns [4,9,12,13].

The mid-domain effect (MDE), which assumes spatial boundaries limit species disper-
sal and drive them towards the center of an area, resulting in a mid-domain peak in species
richness [14], has been one of the most researched drivers of biodiversity patterns along ele-
vation gradients. Like MDE, productivity is recurrently observed as a vital driver of species
richness patterns, with positive relationships between productivity and diversity as commu-
nities with high productivity can support more individuals and thus more species [15,16].
Similarly, temperature and precipitation significantly affect species richness directly or
indirectly [17–20], although they do not predict a single pattern along the elevation gradi-
ent, making it unclear how well they correspond to species richness [5]. Notably, human
disturbance has increasingly emerged as an important driver of biodiversity patterns, with
recent studies noting a strong negative effect of disturbance on diversity [21–23].

While previous studies of mountain biodiversity patterns offered an essential theoreti-
cal basis for diversity research and conservation efforts, most used species richness only
and ignored or downplayed the influences of differences in species’ ecological functions
and evolutionary history [24,25]. Thus, most previous studies may be over-simplistic
or misleading for a holistic understanding of species assembling dynamics. Therefore,
researchers have gradually opted for multidimensional community characterization ap-
proaches, incorporating species’ traits and phylogenetic differences into diversity measures
to better reflect ecological and evolutionary processes [26]. Although some studies have
found that elevational patterns of functional and phylogenetic diversity are congruent
with species richness patterns [25], others have found them incongruent [24,27], suggesting
that different mechanisms drive different biodiversity dimensions. Thus, a multidimen-
sional diversity analysis accounting for taxonomic, functional, and phylogenetic diversity
is essential to better understanding biodiversity patterns along elevational gradients.

Compared with studies on the elevational patterns of species richness and diversity,
the community structure and the underlying drivers have been less studied. Studies have
shown that community structure is mainly driven by environmental filtering, dispersal
limitation [28], and biological interactions [29]. Environmental filtering constrains species
within specific environmental conditions, eliminating those that cannot adapt to the lim-
its [27,30,31]. As a result, species may undergo trait convergence to enhance their survival
in particular habitats, such as high altitudes and deserts [32,33]. On the other hand, bio-
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logical interactions often favor trait differentiation to minimize high competition pressure
between closely related species [31,34]; it is the dominant driver of assembling dynam-
ics in species-rich communities. Because co-existence mechanisms across environmental
gradients [26] can lead to communities structured by multiple factors, it is essential to
understand the role of these mechanisms in community assembly, as conclusions often
differ between regions due to historical, climatic, and species composition variations [6].

Currently, research on elevational biodiversity patterns in China is mainly concen-
trated in the southwest regions, such as the Tibetan Plateau and Hengduan Mountains,
with little research in eastern China, especially on small mammals. Qingliang Mountain,
the highest mountain in the Tianmu Mountain Range, is not only a representative area of
the hilly landscape in eastern China but also one of the 35 priority areas for biodiversity
conservation in China. It has a complex topography that maintains a high level of biodiver-
sity, including rare and endemic species [35,36]. The mountain’s small mammal diversity
and community structure remain poorly understood. In the present study, we investigated
the composition and elevational patterns of small mammal taxonomic, functional, and
phylogenetic diversity and community structure in Qingliang Mountain for the first time.
We trapped small mammals using standardized techniques and assessed the role of spatial
(mid-domain effect (MDE)), environmental (mean annual temperature, annual precipita-
tion, normalized difference vegetation index (NDVI)) variations, and human disturbance
in determining the elevational patterns. Our aims were to (1) examine the elevational
patterns of small mammals in Qingliang Mountain based on taxonomic, functional, and
phylogenetic diversity, (2) analyze the functional and phylogenetic structures of small
mammals along elevational gradients, and (3) assess the influence of environmental, spatial,
and human disturbance factors on the diversity and community structure patterns.

2. Materials and Methods
2.1. Study Area

This study was conducted in Qingliang Mountain, 30◦03′–30◦09′ N; 118◦45′–118◦53′ E
(Figure 1), the main peak of Tianmu Mountain (elevation 1787 m) and the second-highest
peak in eastern China. The vegetation of the mountain is stratified into zones along the
elevation gradient, comprising evergreen broad-leaved forest (elevation < 700 m), broad-
leaved mixed forest (700–1200 m), deciduous broad-leaved forest (1200–1500 m), and
montane coppice, scrubs, meadows, and swamps (>1500). The National Nature Reserve,
established in 2007, covers only the higher elevations (mostly > 1300 m), implying that the
many farms and villages in the lower elevations may threaten the mountain’s biodiversity.

2.2. Sampling

From November to December 2019, we used standardized techniques to sample small
mammals in Qingliang Mountain. Transects were laid along elevational gradients at in-
tervals of 200 m, and trap lines were set at 25 m below or above the transect lines. Field
surveys were conducted from 300 m (forest edge) to 1700 m (the top of the mountain). Con-
sequently, seven transects were laid: at 400 (300–500) m; 600 (500–700) m; 800 (700–900) m;
1000 (900–1100) m; 1200 (1100–1300) m; 1400 (1300–1500) m; and 1600 (1500–1760) m. Four
trap lines were set in key habitat types at each elevation band. The trap lines were set along
the middle of each elevation band to reduce edge effects. Sherman traps were then placed
at 10 m intervals along the trap lines. In addition, five plastic bucket pitfalls were placed at
spots where shrews were likely to inhabit along the trap lines. Oats were used as bait in the
Sherman traps, while no bait was used in the bucket pitfalls. The traplines were sampled
for two consecutive nights, with traps checked once and rebaited the next morning.

In total, around 1000 trap nights were accumulated for each elevation band. We
identified the captured individuals to the species level and recorded their body mass and
external morphological trait measurements. Stuffed skins and cleaned intact skulls of select
samples were also prepared as voucher specimens. All specimens collected for this study
are stored at the Anhui Normal University, Anhui, China.
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Figure 1. The map of the study area showing the extent of Qingliang Mountain, Anhui Province,
China, and the sampling points.

2.3. Species Trait Data

Thirteen traits, including five external morphological traits (body mass, head-body
length, hind foot length, tail length, and ear length) and eight dental traits (upper incisors
width, upper incisors depth, lower incisors width, rostrum length, rostrum width, upper
cheek teeth row length, upper cheek teeth row width, jaw lever length) were selected for
assessing functional diversity. These traits were suitable for inferring functional diversity as
they represent species’ feeding and motor adaptations [37,38]. We used the ‘K statistic’ [39]
to further select traits. The statistic quantifies phylogenetic signal (the propensity for related
species to be functionally more similar to each other than to randomly drawn species within
a community). Values of K ≥ 1 indicate the presence of a phylogenetic signal, with K close
to 0 indicating a weak phylogenetic signal [39]. The ‘K statistic’ was calculated using
the ‘multiphylosignal’ function in the R package picante [40]. Eventually, only traits with
significant phylogenetic signals (p < 0.05) were retained (Table S1) for estimating functional
diversity. The morphological and craniodental traits of specimens used in this study are
shown in Table S2.

2.4. Phylogenetic Analyses

We used two mitochondrial genes (Cytochrome b, CYTB, and Cytochrome c oxidase
subunit 1, COI) to infer an input phylogenetic tree for estimating phylogenetic diversity
indices. The total genomic DNA of specimens was extracted using a DNA extraction kit
(Qiagen DNeasy Blood and Tissue Kit, Beijing, China). The complete CYTB and COI genes
were amplified using primers and PCR conditions from He et al. [41]. The PCR products
were purified and sequenced in both directions using the BigDye Terminator Cycle kit
v.3.1 (Invitrogen, Waltham, MA, USA) on an ABI 3730xl sequencer (Applied Biosystems,
Waltham, MA, USA).

The resulting sequences were edited using DNASTAR Lasergene SeqMan 7.1 and
aligned with MEGA-X. We then used Bayesian inference (BI) to reconstruct the phylogenetic
relationships of specimens in PhyloSuite [42] based on the best-fit partitioning schemes
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estimated using PartitionFinder v.2.0. The posterior distributions were calculated by
Markov chain Monte Carlo (MCMC) sampling from 20 million generations. The first 25%
of the samples were discarded as burn-in before the trees were summarized into a single
tree (based on Maximum clade credibility) using TreeAnnotator v2.6.4. The tree was then
viewed, labelled, and exported in FigTree 1.4.4. It was used as input for estimating the
phylogenetic diversity and structure indices (Figure S1).

2.5. Diversity Indices

We calculated small mammals’ taxonomic, functional, and phylogenetic diversity in
each elevation band. We used the observed species richness to measure taxonomic diversity,
Rao’s quadratic entropy (RaoQ) to measure functional diversity, and Faith’s phylogenetic
diversity index to measure phylogenetic diversity [43]. The RaoQ index is calculated as the
sum of weighted trait differences and represents the mean distance of traits between two
random individuals [44]. Before estimating RaoQ, we first used Gower distance to calculate
pairwise functional dissimilarity distances between all species. RaoQ was calculated using
the function ‘dbFD’ in R package FD [45]. Phylogenetic diversity was calculated using the
function ‘pd’ in the R package picante. We also calculated the mean pairwise phylogenetic
distance (MPD) and the mean pairwise functional distance (MFD) to evaluate the overall
phylogenetic and functional dissimilarity in communities. Because MFD and MPD cannot
detect finer-scale phylogenetic patterns, we further calculated the mean nearest functional
taxon distance (MNFD) and the mean nearest phylogenetic taxon distance (MNTD) to
assess the average phylogenetic and functional distance of each species to its closest relative
in communities [46]. The MPD and MFD were calculated using the R package picante with
the ‘mpd’ function. The MNTD and MNFD were calculated with the same package using
the ‘mntd’ function.

2.6. Functional and Phylogenetic Structure

We calculated the nearest taxon index (NTI) and net relatedness index (NRI) based
on the mean pairwise phylogenetic and functional taxon distances and mean nearest
phylogenetic and functional taxon distances. These indices were used to infer community
assembly processes when traits were conserved (with a significant phylogenetic signal). The
NRI measures the relatedness between taxa at the base of the phylogenetic tree, reflecting
the basal-weighted community assembly dynamics. The NTI measures the relatedness
of the nearest taxa at the tip of a tree, reflecting tip-weighted community dynamics [47].
The NRI and NTI values < 0 (overdispersion) indicate that competitive exclusion may
be the dominant driver of community structure. In contrast, NRI and NTI values > 0
(clustering) indicate that environmental filtering may be the dominant driver of community
structure [41]. The NRI and NTI values > 1.96 reflect significant clustering, while NRI and
NTI values < −1.96 reflect significant overdispersion [47]. The NTIs were calculated using
the ‘ses.mntd’ function in R using the picante package while the NRIs were calculated using
the ‘ses.mpd’ function in the same package.

2.7. Explanatory Variables

The 3D surface area of each 200 m elevational band from 300 to 1700 m was calculated
in ArcGIS 10.6 (ESRI, Redlands, CA, USA) based on the GDEM 30-m digital elevational data
(NASA, https://www2.jpl.nasa.gov/srtm/, accessed on 12 April 2016). The MDE values
were estimated using RangeModel5 [48]. Annual precipitation and mean annual tempera-
ture features were extracted from WordClim (https://www.worldclim.org, accessed on
14 March 2020) at the 30s (1 km2) resolution. As a proxy for the total vegetation cover, the
normalized difference vegetation index (NDVI) was obtained from NASA MOD13 products
(https://ladsweb.modaps.eosdis.nasa.gov/search/order/3, accessed on 21 March 2021)
for November and December 2019. Human disturbance (HD) was estimated as the propor-
tion of artificial land coverage from the Globeland30 (http://www.globallandcover.com,

https://www2.jpl.nasa.gov/srtm/
https://www.worldclim.org
https://ladsweb.modaps.eosdis.nasa.gov/search/order/3
http://www.globallandcover.com
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accessed on 27 March 2021) [49] land cover data product. All data sampling was performed
in ArcGIS 10.6 (ESRI, Redlands, CA, USA).

2.8. Data Analyses

We used polynomial regression to explore and plot the elevational distribution of
different diversity dimensions. The bivariate correlation between diversity indices was
calculated using Pearson Correlation Coefficients.

Hierarchical partitioning was used to estimate the explanatory power of the five
variables on diversity variances. The analysis was performed using the R package hier.part.
Hierarchical partitioning [50] can reduce the effect of variable collinearity and can be used
to determine the proportion of diversity variances accounted for by predictor variables.

Further, we also conducted multiple regression analyses to explore the main ex-
planatory variables driving diversity variances along the elevation gradient. Before the
multiple regression analysis, all variables were z-score standardized, and their normality
and homoscedasticity checked. We calculated the variance inflation factor (VIF) of each
variable in the models to check for and handle multicollinearity, with only variables with
VIFs < 10 consequently considered [4,24]. Automated model selection was performed in R
using MuMIn, ranked by corrected Akaike information criterion (AICc). Model averaging
with the ‘model.avg’ function in R package MuMIn was used to combine models with
nearly-equivalently supported models (∆AICc < 2).

3. Results

We trapped 508 individuals of small mammals, comprising 14 species in 10 genera
from over 6500 trap nights, at a trap success rate of 7.92%. The number of individuals
trapped per elevational band ranged from 28 to 128, and species ranged from five to 10.
Among the 14 species, three belonged to the order Eulipotyphla and 11 were in the order
Rodentia. The elevational range of each species is shown in Figure 2.

Figure 2. The elevational distribution ranges of small mammal species in Qingliang Mountain used
in this study.
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Taxonomic, functional, and phylogenetic diversity showed hump-shaped patterns
with elevation, unlike functional diversity (Figure 3). Taxonomic and phylogenetic diver-
sity peaked around 1000 m, while functional diversity peaked around 600 m. The MFD
exhibited a pattern almost similar to functional diversity, peaking at 600 m, while the MPD
showed a hump-shaped pattern, peaking at 1200 m. The MNFD decreased while MNTD
linearly increased as elevation increased (Figure 4). Pearson correlation results showed that
taxonomic and phylogenetic diversity were strongly correlated (but not significantly) with
functional diversity; there were no significant correlations between other phylogenetic and
functional diversity indices (Table 1).

Figure 3. Elevational patterns of small mammal taxonomic diversity (TD), functional diversity (FD),
phylogenetic diversity (PD) along a 1400 m elevational gradient in Qingliang Mountain, Anhui,
China. The gray dashed line represents the best-fit line.

Figure 4. Elevational patterns mean pairwise functional distance (MFD), mean pairwise phylogenetic
distance (MPD), mean nearest functional distance (MNFD), and mean nearest taxon distance (MNTD)
of small mammals along a 1400 m elevation gradient in Qingliang Mountain, Anhui, China. The gray
dashed line represents the best-fit line.
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Table 1. Bivariate Pearson correlation coefficients between multiple diversity dimensions of small
mammals in Qingliang Mountain.

Index SR FD PD MPD MFD MNTD MNFD

SR 1 ***
FD −0.341 1 ***
PD 0.973 *** −0.372 1 ***

MPD 0.672 −0.154 0.778 * 1 ***
MFD −0.293 0.996 *** −0.321 −0.089 1 ***

MNTD 0.707 −0.73 0.771 * 0.482 −0.694 1 ***
MNFD −0.588 0.635 −0.482 0.123 0.648 −0.595 1 ***

SR, Species richness; FD, Functional diversity; PD, Phylogenetic diversity; MFD, the mean pairwise functional
distances; MPD, the mean pairwise phylogenetic distance; MNFD, the mean nearest functional distance; MNTD,
the mean nearest taxon distance. * p < 0.05; *** p < 0.001.

Although NRI and NTI showed assemblages were mainly clustered, there were signif-
icant differences between indices at high and low elevations. The functional NRI values
above 1000 m elevations were usually higher than below 1000 m, indicating that the func-
tional structure was relatively more clustered at the higher elevations. The functional
NRI was inconsistent with the NTI. The NTI did not significantly vary across elevation
gradients. In contrast, the phylogenetic NRI and NTI were lower at elevations below
1000 m and above 1000 m, with NRI > 2 below 1000 m, indicating that lower elevations
were phylogenetically more clustered (Figure 5).

Figure 5. The patterns of phylogenetic and functional structure of small mammal communities along
the elevational gradients in Qingliang Mountain. The gray dashed line represents the best-fit line.

The hierarchical partitioning indicated that MDE and human disturbance were the
most important factors for taxonomic, functional, and phylogenetic diversity, MFD, and
MPD variances (Figure 6). Respectively, MDE respectively explained 29%, 24%, 27%, 27%,
and 33% of the variances, while human disturbance explained 21%, 23%, 23%, 21%, and
19%. The MNFD was best explained by NDVI (26%) and mean annual temperature (16%),



Animals 2022, 12, 1915 9 of 16

while MNTD was best explained by mean annual temperature (30%), annual precipitation
(24%), and NDVI (24%).

Figure 6. The proportion of the independent contribution of each predictor variable to model-
explained diversity variances derived by hierarchical partitioning. Abbreviations: TD, taxonomic
diversity; FD, functional diversity; PD, phylogenetic diversity; MFD, mean pairwise functional
distance; MPD, mean pairwise phylogenetic distance; MNFD, mean nearest functional taxon distance;
MNTD (P), mean nearest phylogenetic taxon distance; AP, annual precipitation; AT, mean annual
temperature; HD, human disturbance; MDE, the mid-domain effect; NDVI, normalized difference
vegetation index.

Similar to hierarchical partitioning, model selection showed that MDE and human
disturbance were the strongest explanatory variables for most diversity indexes (Table 2).
The difference was that human disturbance became more important (with higher standard-
ized beta coefficients) than MDE for taxonomic, functional, and phylogenetic diversity
and MFD. Human disturbance was the only factor negatively correlated with taxonomic
and phylogenetic diversity. Human disturbance and MDE were positively correlated with
functional diversity and MFD, while MDE was the only factor retained in the best model
for MPD. NDVI and mean annual temperature had the strongest contribution (negative
correlation) to the MNFD and MNTD variance, respectively.
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Table 2. Results of best model selection exploring associations between multiple biodiversity indices
and five predictor variables along elevation gradients in Qingliang Mountain.

Multidimensional Metrics
Standard Coefficient of the Best Model

MDE HD NDVI AT AP R2
adj AICc

Species richness (SR) −0.796 0.561 25.754
Functional diversity (FD) 0.600 0.914 0.948 23.280

Phylogenetic diversity (PD) −0.846 0.659 23.982
MFD 0.644 0.886 0.941 24.112
MPD 0.726 0.432 27.545

MNFD −0.727 0.434 27.531
MNTD −0.904 0.780 20.926

MFD, the mean pairwise functional distances; MPD, the mean pairwise phylogenetic distance; MNFD, the
mean nearest functional distance; MNTD, the mean nearest taxon distance; MDE, the mid-domain effect; AT,
mean annual temperature; AP, annual precipitation; NDVI, normalized difference vegetation index; HD, human
disturbance. R2

adj is the adjusted r2 value for multiple regressions.

Model averaging for the top models with ∆AICc < 2 for functional diversity, MPD,
MFD, and MNFD yielded similar results to model selection, with human disturbance and
MDE being the two most important predictors of functional diversity and MFD variances.
The MDE was also the most important factor for MPD, while NDVI was the most important
explanatory factor for MNFD (Table S3).

4. Discussion
4.1. Elevational Patterns of Small Mammal Diversity

In the present study, the elevational patterns of small mammals in Qingliang Moun-
tain were studied for the first time. We found that small mammal taxonomic diversity
patterns along the elevational gradients were hump-shaped, peaking at about 1000 m
(Figure 3). This pattern is consistent with most previous studies of small mammals in
different regions [51,52] and appears to be the dominant pattern along elevational gradi-
ents. Functional and phylogenetic diversity also showed similar patterns along elevational
gradients. However, while elevational diversity curves of phylogenetic and taxonomic
diversity were similar, the functional diversity curve was significantly different. Specifically,
the phylogenetic diversity peaked at 1000 m, like taxonomic diversity, while functional
diversity peaked at lower elevations (600 m).

The correlation analyses showed that taxonomic diversity was highly correlated with
phylogenetic biodiversity, unlike functional diversity, which was not significantly correlated
with taxonomic or phylogenetic diversity (Table 1). These results concur with previous
studies where incongruences between functional and phylogenetic diversity have been
frequently reported [24,26,27], although other studies have reported consistencies [25]. The
MFD and MNFD were higher at lower elevations compared to higher elevations, unlike
MPD and MNTD, which portrayed greater functional variation at lower elevations and
greater phylogenetic variation at higher elevations (Figure 4). In addition to inconsistencies
between function and phylogeny, there were inconsistencies between MFD and MNFD
and between MPD and MNTD, suggesting that trait and phylogenetic variation differed
between basal-weighted and tip-weighted metrics. These inconsistencies provide addi-
tional insight into the changing phylogenetic and functional dynamics of biodiversity [53].
Overall, our results highlight the importance of multidimensional analysis of biodiversity
and call for caution when using any single diversity component as a surrogate for others.

4.2. Community Assembly Mechanisms

Although the patterns of functional NRI and NTI along the elevation gradient were
inconsistent, they were positive, except for NRI in the 600 m bands and NTI in the 1200 m
bands, where values were <0 (Figure 5). In this study, we selected traits with significant
phylogenetic signals to analyze functional diversity and structure; therefore, communities
can be considered functionally and phylogenetically clustered when NRI or NTI values
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were >0 [24]. As such, the results suggest that the small mammal community in Qingling
Mountain functionally clustered overall, with the basal-weighted clustering significantly
greater at high altitudes than at low altitudes. Such a pattern suggests that resource limi-
tation/environmental filtering at high altitudes may have led to high similarity in small
animal traits [54]. The functional NTI was not significantly different across elevations, and
traits were mainly conserved, indicating that homogeneity in functional structure is weak
when considering the closest relatives, potentially reducing competition [55]. Since NTI
measures the distance to the closest relative, it is a more robust index for detecting limiting
similarity. Our results suggest that limiting similarity may not be the primary factor driving
the observed functional clustering [56–58], especially at high elevations. Instead, trait con-
vergence may be the main reason for the functional clustering in Qingliang Mountain. Such
convergence of traits generally results from strong environmental filtering necessitating
species exploiting similar niches to have trait plasticity, which may be independent of
common phylogenetic ancestry [58,59].

The phylogenetic NRI was always positive and decreased with elevation, indicating
clustered phylogenetic structure, with assemblages notably over-clustered at low elevations
and the degree usually decreasing as elevation increased. This pattern suggests that co-
occurring species are more closely related phylogenetically at lower elevations [27]. At low
elevations, phylogenetic clustering may result from intensive human disturbance creating
suitable habitats for some species and eliminating those that are intolerant of the disturbed
environments [27,60,61]. In addition, the phylogenetic NTI and NRI had similar elevational
patterns, with the degree of clustering typically decreasing with elevation. The NTI was >1
at lower elevations but usually <0 at higher elevations, indicating that the tip-weighted
phylogenetic structure was strongly clustered at lower elevations and mainly dispersed at
higher elevations. This pattern suggests that the dispersed phylogenetic structure when
considering closest relatives may arise from competition for limited resources in stressful
environments (cold, wet), typical at higher elevations [24]. Combining the results of
phylogenetic NTI and NRI suggests that community dynamics between closest relatives
dominate the overall phylogenetic structure. In contrast, limited phylogenetic similarity
may drive the phylogenetic clustering of communities at lower elevations [57]. Notably,
the restricted phylogenetic differences for the tip-weighted dimensions may lead to an
unstable phylogenetic structure of the overall community at high altitudes.

Furthermore, the phylogenetic and functional structure patterns along the elevation
gradient were incongruent, an observation frequently discussed in past studies [24,62].
This pattern suggests that trait and phylogenetic weights may not be fixedly associated [58],
implying that relying solely on phylogenetic or functional dimensions to reveal community
structure is inefficient. Combining the functional and phylogenetic effects is crucial to
better understanding community assembly processes [24,59].

4.3. Drivers of Diversity Patterns

Our results support the idea that small mammal diversity along elevation gradients
is affected by multiple factors, with human disturbance and MDE being the most sig-
nificant factors in Qingliang Mountain. Both model selection and hierarchical partition
demonstrated strong associations between human disturbance and MDE and diversity
dimensions. The MDE emphasizes the role of geometric boundaries in constraining species
ranges, leading to a mid-elevation peak of species richness [63]. It has frequently been
supported as a key determiner of elevational patterns of species richness [51,60,64]. The
predictive power of MDE is strongly affected by the boundaries of the domain, which
requires studies to cover the “hard” boundaries for organisms [14]. The study area ranged
in elevation from 300 m (forest edge) to 1700 m (mountain peak). Both elevation limits
are potentially rigid boundaries for some small mammals, which might explain the high
explanatory power of MDE in our study and highlight the importance of studying the
whole elevation gradient when evaluating the fit of MDE.
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The MDE hypothesis was initially proposed to address taxonomic diversity pat-
terns [14]. However, because the geographic traits such as geographic range size or pheno-
typic characteristics are tied to particular species, the MDE might create gradients in other
biodiversity dimensions [65]. In our study, the hierarchical partitioning indicated that MDE
was the most important factor for species richness, taxonomic, functional, and phylogenetic
diversity, and MFD and MPD (Figure 6). The MDE was also retained in the best models of
functional diversity, MFD, and MPD, indicating it substantially influences the functional
and phylogenetic diversity of small mammals in Qingliang Mountain. Still, more research
is needed on how and to what extent MDE affects functional and phylogenetic biodiversity.

Studies have reiterated that human disturbance negatively affects multiple aspects of
biodiversity across regions and taxa [27,61,66,67]. Human activities often lead to habitat
fragmentation, degradation, and loss [68], resulting in widespread disruption of animal
movement, diel activity, reproduction, and survival [66]. Farms, villages, and roads are of-
ten widespread at low elevations, negatively impacting biodiversity by eliminating species
incapable of adapting to the disturbed environments [27]. In Qingliang Mountain, human
disturbance had a clear negative correlation with the taxonomic and phylogenetic diversity,
suggesting that the home ranges of some species gradually decreased as human distur-
bance increased [67,69]. This was indirectly supported by the NRI and NTI of phylogenetic
structure at lower elevations. Unexpectedly, human disturbance had a positive explanatory
influence on functional diversity and MFD, which is inconsistent with previous studies
where human disturbance negatively affected functional diversity [27,66,70]. Notably,
however, positive effects of human disturbance on birds’ functional diversity have been
recorded in the Himalayas [24,71], and on certain plants in the Yak Meadow Park, Mount
Jade Dragon National Geological Park of Yunnan, China [72]. The positive effects of human
disturbance on small mammal functional diversity in our study may have resulted from
human activities creating suitable habitats for some species with unique traits (e.g., big-size
species), such as Niviventer huang and Leopoldamys edwardsi.

4.4. Conservation Implications

For a long time, conservation strategies focused on species richness and ignored the
importance of phylogenetic and functional diversity in the ecosystem. Here, we observed
incongruences between taxonomic, functional, and phylogenetic diversity dimensions
along elevation gradients, providing complementary insights into community structure
and diversity. A multidimensional analysis of biodiversity is urgently needed to enhance
the efficacy of biodiversity conservation and ecosystem management. In the study area,
the nature reserves only cover the higher elevations (>1300 m). However, we found that
the taxonomic and phylogenetic diversity peaked at 1000 m, while the functional diversity
peaked at 600 m (Figure 3). Therefore, the current protected areas are insufficient for
conservation; conservation efforts should be increased in the middle and lower elevations.

Also, our study revealed that human disturbance is a major factor shaping small
mammal diversity. In Qingliang Mountain, many villages and farms are found below
1000 m, which also receives many tourists yearly. Human activity appears to strongly
impact local small mammal biodiversity by changing the community structure. Such
human influence on biodiversity patterns is likely common in other mountains in eastern
China. The protected areas should be expanded to control the negative impacts of human
activities in key biodiversity areas, such as Qingliang Mountain.

5. Conclusions

We studied the elevation pattern of small mammals in Qingliang Mountain for the
first time. We found that taxonomic, functional, and phylogenetic diversity portray a
hump-shaped pattern in general, but functional diversity peaked at a much lower elevation
than taxonomic and phylogenetic diversity. We also found spatial incongruence between
MPD, MFD, MNFD, and MNTD. The incongruences between diversity dimensions suggest
that multidimensionality is critical for understanding species diversity and community
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structure patterns. Furthermore, we found that human disturbance and MDE were the
primary drivers of small mammal diversity and community structure along the elevation
gradient in Qingliang Mountain. Overall, our results call for caution in using any single
diversity component as a surrogate for others and increased conservation efforts in the
middle and lower elevations of Qingliang Mountain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12151915/s1, Figure S1: Bayesian tree based on COI and cytb
genes of 14 small mammalsin Qingliang Mountain, eastern China.; Table S1: Phylogenetic signals of
thirteen functional traits; Table S2: List of thirteen functional traits associated with morphology; food
acquisition and exercise.
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