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Abstract The embryonic mouse lung is a widely used substitute for human lung development.
For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on
passing through progenitor states that have only been described in mouse. The tip epithelium of
the branching mouse lung is a multipotent progenitor pool that self-renews and produces
differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous
progenitor population and tested this by examining morphology, gene expression and in vitro self-
renewal and differentiation capacity of human tips. These experiments confirm that human and
mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-
renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-
human differences, including markers that define progenitor states and signalling requirements for
long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow
these human-specific features of lung development to be investigated.

DOI: 10.7554/eLife.26575.001

Introduction

During mouse lung development the distal tip epithelial cells are SOX9", ID2* and function as multi-
potent progenitors producing first bronchiolar, and then alveolar, descendants (Alanis et al., 2014;
Rawlins et al., 2009). Between ~E10-15 cells that exit the distal tip turn off SOX9, upregulate SOX2
and differentiate along bronchiolar lineages. Whereas, ~E16-18 cells exiting the tip turn off SOX9
and co-express markers of alveolar type 1 (AT1) and alveolar type 2 (AT2) fate. As morphogenesis
proceeds these bipotent cells line developing alveolar sacs and differentiate as mature AT1 or AT2
cells (Desai et al., 2014; Treutlein et al., 2014). Many factors controlling self-renewal and differenti-
ation in the developing mouse lung epithelium have been identified. By contrast, relatively little is
known about human lung development. This is largely due to practical considerations about tissue
availability and culture system limitations (Benlhabib et al., 2015; Haitchi et al., 2009,
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elLife digest Degenerative lung disease occurs when the structure of the lungs breaks down,
which makes it harder to get enough oxygen into the bloodstream. Most, but not all, cases occur in
smokers and ex-smokers or people who have been exposed to a lot of air pollution. Currently, there
is no way to reverse the damage, and even slowing the progress of the disease is extremely difficult.
Some researchers are looking for ways to treat patients with degenerative lung diseases by
regenerating the surface of their lungs. However, it is still not clear what the most effective route
towards this long-term goal will be.

One approach to lung regeneration is to use findings from developmental biology to understand
how embryos normally build the gas exchange surfaces in the lungs. This knowledge may allow
scientists to trigger a similar process in an adult lung to renew or replace any diseased tissue.
Alternatively, cells could be collected from patients, reprogrammed and then coaxed into becoming
a gas exchange surface in the laboratory. Such a “lung-in-a-dish” could be used to understand how
degenerative diseases develop, to discover and test new drugs, or even to treat the patient directly
via a transplant.

To date, the embryonic development of lungs has mostly been studied using mouse lungs as a
model system. However, it was not clear if human lungs actually develop in similar ways to mouse
lungs, and whether using mice is a valid research strategy.

Nikoli¢ et al. compared embryonic lungs from humans and mice and showed that they are indeed
very similar in terms of the cell types that they contain and how they mature. However, some key
differences were identified that can only be explored in human cells and tissue. Nikoli¢ et al. went
on to identify conditions that allowed them to grow cells from human embryonic lungs indefinitely in
a dish. These cells can now be used to investigate the aspects of lung development that are specific
to humans.

Together these findings provide a useful guide to allow scientists to coax human cells growing in
a laboratory to become lung cells. Further improvements to this process will make the lungs-in-a-
dish more true to the real organs, meaning that they could be used to better understand lung
disease and identify new medicines. In the longer term, Nikolic et al. hope to gain enough insight
from the human lung-in-a-dish model to eventually be able to regenerate the lungs of patients with
degenerative lung disease. However, this possibility is still many years away.

DOI: 10.7554/elife.26575.002

Rajatapiti et al., 2010). A small number of human studies show the detailed expression of specific
genes (Al Alam et al., 2015; Gonzalez et al., 1996, Khoor et al., 1993, Khoor et al., 1994,
Laresgoiti et al., 2016, Stahlman et al., 2007, Zhang et al., 2012). Whereas, transcriptomics has
provided a genome-wide view of human lung developmental transitions, but currently lacks cellular
resolution (Feng et al., 2014; Kho et al., 2010, 2016).

Improved in vitro models of human disease are needed to complement available mouse models.
One recent approach to disease modelling is to use self-renewing human organoids which recapitu-
late aspects of organ morphogenesis/physiology (Dekkers et al., 2013; Ettayebi et al., 2016;
Huch et al., 2015). Human organoids are typically derived from adult stem cells limiting their use for
studying paediatric disease and disease progression. An alternative is to derive the organ of interest
from pluripotent stem cells by directed differentiation (Dye et al., 2016; Merkle and Eggan, 2013).
The ability to in vitro self-renew and differentiate bona fide human lung tip progenitors could pro-
vide a genetic system for fundamental developmental biology and paediatric disease modelling.
Moreover, an improved understanding of human lung progenitor states and human fate specification
would facilitate strategies for directed differentiation of pluripotent cells.

We have extensively characterized human epithelial tip progenitors, and the early stages of fate
specification, revealing mouse-human differences in the expression of key marker genes including
SOX2 and pro-SFTPC. We developed methods to grow human tip epithelium as long-term self-
renewing, branching, organoids and therefore investigate tip signalling requirements and differentia-
tion capacity. Our human tip organoids can be directed to differentiate towards alveolar or bronchi-
olar fate in vitro and can engraft into the adult or developing mouse lung. These experiments
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confirm that human and mouse tips are analogous in function and validate our organoid conditions.
These conditions are sufficient to convert differentiating human embryonic lung epithelial stalks to
tip fate, illustrating the plasticity of the developing lung. However, they do not support the long-
term self-renewal of mouse tips, highlighting species-specific regulatory differences. Our organoid
system thus provides a genetically-tractable in vitro model to accelerate studies of human lung
development.

Results

Initiation of alveolar and bronchiolar differentiation in human
embryonic lungs

We characterized the evolution of marker gene expression in human embryonic lungs 6-21 pcw
(post-conception weeks; Figure 1—figure supplement 1). This period covers the pseudoglandular
stage (~5-16 pcw) when the bronchiolar tree is established and the early canalicular stage (~16-21
pcw) when alveolar sac formation begins (Burri, 1984; Rackley and Stripp, 2012). Throughout the
time-course, we observed SOX9 (SRY-box 9) localized to the distal epithelial tips (Figure 1A,B). In
the adult human lung, pro-SFTPC (Surfactant Protein C, or SPC) and a monoclonal antibody, HTII-
280, are markers of AT2 cells (Figure 1C) (Barkauskas et al., 2013; Gonzalez et al., 2010). We first
detected low levels of HTII-280 in SOX9™ epithelium at 11 pcw, adjacent to the distal tip (Figure 1A).
Similarly at 14 and 17 pcw (Figure 1—figure supplement 2A). At 20 pcw, HTII-280 was more het-
erogeneous in the alveolar sacs with cells having either high, or undetectable, levels (Figure 1B). We
confirmed that HTII-280 was not in the larger airways (Figure 1B, arrowhead), but it was ubiquitous
in the columnar epithelium of the terminal bronchioles (Figure 1B, arrow). By contrast, pro-SFTPC
was first detected at very low levels at 17 pcw, particularly in tip epithelium (Figure 1—figure sup-
plement 3D), and more robustly in distal squamous cells by 20 pcw (Figure 1D-F). At 20 pcw, pro-
SFTPC was mostly co-expressed with HTII-280 (Figure 1F’), although we also observed a small num-
ber of pro-SFTPC*, HTII-280 cells and many more pro-SFTPC", HTII-280" cells. This human embry-
onic pro-SFTPC staining differs from that observed in mouse development in which pro-SFTPC is
expressed throughout the epithelium from ~E10, increases in canalicular stage tips and is further up-
regulated in differentiating AT2 cells (Laresgoiti et al., 2016; Wuenschell et al., 1996). However,
our human data are consistent with previous reports of pro-SFTPC staining in human embryos
(Khoor et al., 1994). We previously used LPCAT1 (Lysophosphatidylcholine acyltransferase 1) as a
specific marker of alveolar/AT2 fate in mouse development (Laresgoiti et al., 2016). However, it
was expressed widely throughout the epithelium of the developing human lung from six pcw,
although specific to AT2 cells in the adult (Figure 1—figure supplement 2E,F). ABCA3 (ATP binding
cassette subfamily A member three) is present on the surface of lamellar bodies in mature AT2 cells,
but has not been detected in human embryonic lungs prior to 28 weeks gestation (Stahlman et al.,
2007). Consistent with this, we could not detect ABCA3 in any of the embryonic lungs we stained
(621 pcw), but reproducibly saw expression in adult AT2 cells (Figure 1—figure supplement 2F).
This suggests that mature lamellar body-containing AT2 cells are not present in human embryonic
lungs by 21 pcw consistent with previous analysis (Oulton et al., 1980).

In mouse development the AT1 marker HOPX (Hop Homeobox) is first detected ubiquitously in
cells that have exited the canalicular stage distal tip, subsequently becoming heterogeneous and
marking future AT1 cells (Jain et al., 2015; Laresgoiti et al., 2016). Similarly, we detected HOPX in
cells that had exited the distal tip at 11 pcw, although there was also co-expression of HOPX and
SOX2 (SRY-Box 2) in the smaller airways (Figure 1G). HOPX and HTII-280 were frequently co-
expressed between 11 and 17 pcw (Figure 1—figure supplement 2B). By 20 pcw, a mixture of sin-
gle and co-expressing distal epithelial cells were observed lining the developing alveolar sacs
(Figure 1H). Interestingly, at 20 pcw cells in the terminal bronchioles co-expressed SOX2, HTII-280
and HOPX (Figure 1H’ and Figure 1—figure supplement 2C). A monoclonal antibody, HTI-56, has
been reported as human AT1 cell specific (Dobbs et al., 1999; Gonzales et al., 2015). Consistent
with this, we observed the highest levels of expression in HOPX™ cells adjacent to the distal tip from
11 pew (Figure 1I). By 20 pcw HTI-56 was becoming heterogeneous, whilst HOPX remained ubiqui-
tous (Figure 1J,J°). However, we also observed a low level of HTI-56 expression throughout the
SOX2* airways, beyond the terminal bronchioles, making it less useful as an AT1 marker in vitro
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Figure 1. Evolution of alveolar and bronchiolar marker gene expression during human embryonic lung development. Sections of human embryonic and
adult lungs. (A, B) 11 and 20 pcw. Green: HTII-280; red: SOX9 (tips); white: ECAD (epithelial cells). Arrow = HTII-280 positive terminal airway. (C) Adult.
Green: HTII-280 (AT2 cells); red: pro-SFTPC (AT2 cells). Arrow = selected AT2 cells. (D-F) 11, 17 and 20 pcw. Green: HTII-280; red: pro-SFTPC. (G-H) 11
and 20 pcw. Green: HTII-280; red: HOPX; white: SOX2 (bronchiolar cells). Dotted bracket = terminal airway cells co-expressing SOX2 and HTII-280.

Figure 1 continued on next page
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Figure 1 continued

Arrowheads = differentiating AT1 cells. (I, J) 11 and 20 pcw. Green: HTI-56; red: HOPX. K. Adult. Red: HOPX (AT1 cells). Arrowheads = HOPX" nuclei.
(L) 7 pcw. Green: TP63; red: SOX2. Arrowheads = TP63/SOX2 dual-positive cells in the more proximal airway region. Boxed region is shown as an inset
in L' with channels separated. (M) Adult. Red: TP63 (basal cells). Arrowheads = TP63" cells in an intra-lobar bronchiole. (N) Adult. Green: FOXJ1 (ciliated
cells); red: SCGB1A1 (secretory cells). (O, P) 11 pcw proximal and distal airway from the same lung. Green: TP63; red: SOX2. Arrowheads = TP63/SOX2
dual-positive cells in the more distal airway. (Q-S) 16 pcw proximal and distal airway from the same individual. Green: KRT5; red: TP63. Arrows =
developing sub-mucosal glands. Arrowheads = KRT5", TP63" cells. Dashed lines = patches of KRT5", TP63" cells. (T) 16 pcw proximal airway. Green:
MUCS5AC. Arrows = developing sub-mucosal gland. Arrowheads = mucous cells. Blue: DAPI (nuclei). Bars = 100 um (A,B,D,E,F,G,H,I,J,Q.R); 50 um (B’,
C, F ,H H"J KLL MN,OOPP.ST), 25 um (insets in C,F’,I,L").

DOI: 10.7554/elife.26575.003

The following figure supplements are available for figure 1:

Figure supplement 1. Representative morphology of human embryonic lung samples.

DOI: 10.7554/elLife.26575.004

Figure supplement 2. The evolution of alveolar marker gene expression in the human embryonic lung.

DOI: 10.7554/eLife.26575.005

Figure supplement 3. Epithelial PDPN expression is not specific to AT1 cells during human lung development.

DOI: 10.7554/eLife.26575.006

Figure supplement 4. Epithelial AQP5 expression is not specific to AT1 cells during human lung development.

DOI: 10.7554/eLife.26575.007

Figure supplement 5. NKX2-1 and FOXA2 are expressed in all human lung epithelial cells up to 20 pcw.

DOI: 10.7554/eLife.26575.008

(Figure 1—figure supplement 2C). In adult human alveoli a relatively small number of HOPX™ nuclei
can be observed whilst the entire alveolar surface is covered by HOPX" cell membranes extending
from the AT1 cells (Figure 1K). PDPN (Podoplanin, also known as T1a) protein is detected in mouse
lung epithelium from the time of alveolar specification at ~E16.5 and becomes restricted to differen-
tiating AT1 cells by E18.5 (Laresgoiti et al., 2016). It is also a marker of airway basal cells and lym-
phatic endothelium (Breiteneder-Geleff et al., 1999; Farr et al., 1992). We detected low levels of
apical PDPN expression in columnar (not basal) cells of the developing human bronchioles from 9
pcw (Figure 1—figure supplement 3A). At later stages expression is stronger in the more distal
regions where PDPN and HTII-280 are co-expressed ubiquitously on the developing alveolar surface
at 17 pcw, but PDPN is absent from the distal tips (Figure 1—figure supplement 3B-G). By 20 pcw
PDPN can be observed to be co-expressed with AQP5 (Aquaporin 5) in distinct, individual cells,
rather than running continuously through the alveolar duct (Figure 1—figure supplement 3H). It is
strongly expressed in adult AT1 cells as expected (Figure 1—figure supplement 3H). AQP5 has
been described in mouse as specifically detected in differentiating AT1 cells and not expressed in
the bipotent alveolar progenitors which co-express AT1 and 2 markers (Desai et al., 2014). It is
therefore a putative marker of differentiating AT1 cells. We first detect AQP5 in distal regions of the
lung from 11 pcw (Figure 1—figure supplement 4A-C). By 20 pcw it can be observed to be
expressed ubiquitously in the low columnar epithelium that lines the developing alveolar ducts and
extends to the distal tips. It is expressed at higher levels in elongating cells with very short mem-
brane extensions (Figure 1—figure supplement 4D,E; these are similar in appearance to the
HOPX* cells marked with arrowheads in Figure 1H" and are likely to be differentiating AT1 cells
that are beginning to extend their membranes). In the adult alveoli AQP5 is highly expressed in AT1
cells, but it can also be observed on the surface of non-ciliated cells in the lower airways (Figure 1—
figure supplement 4F,G).

NKX2-1 is ubiquitously expressed in lung epithelial cells from the time of lung specification in the
foregut (Lazzaro et al., 1991). NKX2-1 levels have been reported to be heterogeneous in mature
alveolar cells in the adult mouse and rat (Desai et al., 2014, Liebler et al., 2016). We observed that
NKX2-1 was co-expressed with FOXA2 in all human embryonic lung epithelial cells from 9 to 21 pcw,
albeit at higher levels in alveolar-fated than bronchiolar-fated cells (Figure 1—figure supplement
5A-C). NKX2-1",FOXA2" cells which apparently lined the more mature alveolar ducts were identified,
but closer inspection revealed that these were ECAD™ non-epithelial cells their presence at the alveo-

lar surface likely being an artefact due to the angle of sectioning (Figure 1—figure supplement 5D-
G).
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Our results show that the broad picture of mouse alveolar development (low-level co-expression
of AT1 and 2 markers in cells that exit the canalicular stage distal tip, followed by lineage-specific
expression as morphogenesis proceeds) is conserved in human. However, even in this limited analy-
sis there are striking mouse-human differences. The timing of alveolar marker gene onset in human
is ~11 pcw, preceding the canalicular stage by approximately five weeks. In addition, the relative
timing of expression of specific markers can differ (pro-SFTPC, LPCAT1, AQP5). Moreover, the
developing human terminal bronchioles are SOX2*, but co-express alveolar markers which to our
knowledge has never been observed in mouse (Laresgoiti et al., 2016).

The first signs of cellular heterogeneity/differentiation in the bronchioles were observed from 7
pcw where we saw that a sub-set of SOX2* cells co-expressed low levels of TP63 (Tumour Protein
P63) in the larger airways (Figure 1L, arrowheads). These are likely to be differentiating basal cells
which are TP63" in the adult (Figure 1M, arrowheads) (Rock et al., 2009). FOXJ1 and SCGB1A1
were also readily detected in adult airways (Figure TN). By 11 pcw, TP63 staining was much stronger
and localised to a sub-set of basally-located airway nuclei (Figure 10). TP63 was also stronger in
more proximal, versus distal, bronchioles within the same lungs (Figure 10,P). We first detected
KRT5 (Keratin 5) at 16 pcw in the larger airways, particularly in invaginating submucosal gland buds
(Figure 1Q-S). KRT5 was also seen in patches of TP63* airway cells, likely differentiating basal cells
(Figure 1—figure supplement 1S, dotted lines). KRT5", TP63" cells were also observed, frequently
in a non-basal position (Figure 1—figure supplement 1S, arrowheads). The first signs of columnar
cell differentiation were detected at 16 pcw when rare MUC5AC* (Mucin 5AC) cells were identified
in the proximal airways (Figure 1T). This is consistent with a proximal-distal pattern of airway differ-
entiation as in other species (Plopper et al., 1992; Toskala et al., 2005).

Characterization of human embryonic lung tip progenitors

In the pseudoglandular stage mouse lung, there is a clear demarcation between SOX9" tip and
SOX2* stalk (differentiating bronchiole) cells and multiple signalling mechanisms regulate the bound-
ary between the two populations (Hrycaj et al., 2015; Mahoney et al., 2014, Wang et al., 2013).
We observed a tip-stalk boundary in the pseudoglandular stage human lungs with SOX9 restricted
to the tip and SOX2 expressed highly in the stalk. Differentiating aSMA™ (a-Smooth Muscle Actin)
smooth muscle was observed around the SOX2" future airways and SOX9 was present throughout
the mesenchyme at low levels (Figure 2A). We noted that human tip epithelium was more prolifer-
ative than stalk (Figure 2B), consistent with mouse results (Okubo et al., 2005). However, in contrast
to the mouse, low levels of SOX2 were co-expressed with SOX9 in the distal tip epithelium through-
out the pseudoglandular stage (Figure 2B; Figure 2—figure supplement 1A-C). SOX2, SOX9 co-
expression at the tip was confirmed by gRT-PCR in microdissected tip and stalk cells (Figure 2—fig-
ure supplement 1D). Further examination of our time-course revealed that SOX2 gradually
decreased over time and disappeared from the tip epithelium at the transition to the canalicular
stage of development. This happened heterogeneously throughout the lung. For example, at 17
pcw we observed a mixture of SOX2" and SOX2 distal tips within individual lungs (Figure 2C,D; Fig-
ure 2—figure Supplement 2). However, by 20 pcw all distal tips were SOX2 (Figure 2E; Figure 2—
figure Supplement 2). Moreover, there was a SOX2", SOX9 zone adjacent to the 20 pcw distal tips
which corresponds to the developing saccules where markers of alveolar differentiation are
expressed (compare Figure 2E with Figure TH).

To compare tip-stalk gene expression globally we microdissected tip and stalk epithelium from
four individual 6-7 pcw lungs and performed RNAseq (Figure 2F). We detected a total of 15,599
transcripts, with the majority (86%) expressed in both tip and stalk (Figure 2G). This high level of
similarity was expected since the stalk cells are the immediate descendants of the tip population.
Using a two-fold difference in expression level cut-off, 2208 genes that were enriched in stalk or tip
were also identified. Non-hierarchical clustering of the samples based on these 2208 transcripts
revealed a clear separation into distinct tip and stalk populations (Figure 2H). Moreover, these
genes were expressed at similar levels in published whole human foetal lung RNAseq (Figure 2H)
(Bernstein et al., 2010). Gene Ontology (GO) analysis of the differentially expressed transcripts
included categories related to cell signalling, proliferation, adhesion, motility, transcription and
developmental processes expected for embryonic progenitors (Figure 2I). These GO categories
were also a major feature of genes that were co-expressed in both tip and stalk (Figure 2—figure
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J' ITip-enriched TFs: ARID3B (2), CEBPA (2), ELF5* (3), ETS2* (2), ETV1* (3), ETV4* (30), ETV5* (72), E2F1*(3),

E2F8 (4), GATA6* (6), HMGAT (2), HMGA2* (2), HNF1B* (2), ID1 (5), ID2* (3), ID3 (6), IRX1* (2), IRX5* (2), IRX6* (122),
KLF15* (3), LEF1* (2), MEIS2 (2), MSX2 (68), MYBL2* (2), MYCN* (2), NFE2* (9), NFE2L3 (2), NPAS2 (3), RFX6 (5),
SALL4 (2), SOX9* (8), SP5* (15), TCF7*(3), TGIF1* (3), ZNF98 (2), ZNF319 (3), ZNF492 (2).

K Istalk-enriched differentiation: Basal cells: MYC (8); NGFR (11); TP63 (10); SNAI2 (7). Club cells: SCGB3A2 (139).
Neuroendocrine cells: ASCL1 (152); INSM1 (400).

L [stalk-enriched mesenchymal TFs: CASZ1 (4), ETST (2), FHL1 (7), FHL2 (7), FOXF1 (2), FOXF2 (3), HEYL (2),
HOXA2 (5), HOXA3 (8), HOXA4 (4), HOXA5 (7), HOXB2 (2), HOXB4 (2), HOXB5 (3), HOXC4 (4), LHX6 (8), MEF2C (4),
MEIS1 (7), MEOX2 (28), MYOCD (8), NFIA (2), NFIB (8), NFIC (5), NFIX (9), NR3C1 (), PBX3 (3), PRDMG (5),

PROX1 (4), SDPR (8), TBX1 (66), TBX2 (3), TBX3 (3), TBX4 (2), TBX5 (4), TCF21 (5), ZEB2 (5), ZFPM2 (3)

Figure 2. The tip and stalk epithelial cell populations are clearly demarcated in branching human, pseudoglandular stage, lungs. (A-E) Sections of
human embryonic lungs. (A) 11 pcw. Green: SOX?9 (tip); red: SOX2 (stalk); white: a-SMA (smooth muscle). (B) 8 pcw. Green: SOX? (tip); red: SOX2 (stalk);
white: K167 (proliferating cells). (C, D) 17 pcw. (E) 20 pcw. Green: SOX9 (tip); red: SOX2 (stalk). Arrowheads = SOX9*, SOX2™ co-expressing tips. Arrows
= SOX9*, SOX2 tips. Blue: DAPI (nuclei). (F) Experimental schematic for tip versus stalk RNAseq. (G) Venn diagram showing common and differentially-
expressed transcripts based on a fold-change of at least 2. (H) Unsupervised hierarchical clustering of tip, stalk and published foetal lungs based on the
differentially-expressed genes. (I) Chart to show the percentage of the gene ontology classes represented in the differential expression data. (J) List of
transcription factors enriched at least two-fold in the tips. Number in brackets indicates fold-change over the stalk. * indicates reported mouse tip
expression, see Supplementary file 2. (K) List of differentiation markers enriched in the stalk. (L) List of transcription factors enriched in stalks that were
previously reported as expressed in the mesenchyme . Scale bars = 50 um (A, C, D); 100 um (B, E); 2 mm (F).

DOI: 10.7554/elife.26575.009

The following figure supplements are available for figure 2:

Figure 2 continued on next page
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Figure supplement 1. Pseudoglandular stage human lung tips co-express SOX? and SOX2.

DOI: 10.7554/elife.26575.010

Figure supplement 2. Human lung tips down-regulate SOX2 during the canalicular stage.

DOI: 10.7554/elife.26575.011

Figure supplement 3. Transcriptional differences and similarities between human pseudoglandular stage tip and stalk populations.

DOI: 10.7554/eLife.26575.012

Figure supplement 4. Specific transcription factors are enriched at the protein level in human distal epithelial lung tips.

DOI: 10.7554/elife.26575.013

Figure supplement 5. Tip gene expression is highly conserved between mouse and human.

DOI: 10.7554/elLife.26575.014

supplement 3A). NKX2.1 and FOXA2, which we detect as ubiquitous throughout the developing
human lung epithelium (Figure 2—figure supplement 3B), were not enriched in tip or stalk.

The human tip-enriched data set contained 37 genes annotated as transcription factors of which
54% (20/37) had previously been characterized as expressed in mouse tips (Figure 2J,
Supplementary files 1 and 2). These included GATA6, HMGA2, MYCN and SOX9 which have docu-
mented tip-specific functions in mouse (Chang et al., 2013; Rockich et al., 2013; Singh et al.,
2014; Zhang et al., 2008). Moreover, we were able to confirm human tip-enrichment of ETV5,
HMGA1, HMGA2, HNF1B and ID2 at the protein level (Figure 2—figure supplement 4). Among the
tip transcription factors, we identified only one gene, MEIS2, which is likely to be mesenchymally
expressed (Diez-Roux et al., 2011; Herriges et al., 2012), suggesting a very low level of mesenchy-
mal contamination. A comparison of our human tip RNAseq with a previously published mouse tip
microarray (Laresgoiti et al., 2016) found that 96% of orthologous genes that were expressed in
human tips were also present in mouse (Figure 2—figure supplement 5A). There was also a good
correlation between levels of mouse-human orthologous gene expression (Figure 2—figure supple-
ment 5B).

We detect the first signs of cellular heterogeneity in the stalk by 7 pcw (Figure 1L). Consequently,
we were able to identify stalk-specific transcripts that are characterized as expressed in differentiat-
ing airway cells (Figure 2K). These included, basal, neuroendocrine and club cell markers
(Guha et al., 2012; Ito et al., 2000; Jia et al., 2015; Lan and Breslin, 2009; Rock et al., 2009).
Consistent with this, we observed neuroendocrine cells in pseudoglandular stage airways (Figure 2—
figure supplement 3C,D). When we examined the stalk transcripts annotated as transcription factors
in more detail, we noticed that 52% (67/128) had published mouse airway expression patterns. How-
ever, 55% of these (37/67) were expressed in mouse mesenchyme, rather than epithelium
(Figure 2L), suggesting a high level of mesenchymal contamination in the stalk samples.

Within the RNAseq data, we identified components of the EGF, FGF, Hedgehog, IGF, Notch, Ret-
inoic Acid, TGF-B super-family and WNT signalling pathways (Supplementary file 1). We noted that
while core downstream signalling components were transcribed in both tip and stalk; ligands, recep-
tors and inhibitors were more likely to be tip or stalk specific. FGF Receptor signalling is central to
mouse lung branching morphogenesis (Volckaert and De Langhe, 2015) and protein expression of
several FGF pathway components was confirmed by antibody staining (Figure 2—figure supple-
ment 3E-G). There were various subtle differences in tip signalling pathways between mouse and
human. For example, BMP2 and BMP7 were highly enriched in human tips compared with Bmp4 in
the mouse (Bellusci et al., 1996) and IHH in human where mouse has Shh (Bellusci et al., 1997).

This analysis suggests that the human tip epithelium is analogous to the mouse population with a
highly conserved transcriptome and similar signalling pathway activity. However, we also observe dif-
ferences that are likely to be functionally significant.

Establishment of in vitro self-renewing culture conditions for human
epithelial tips

The mouse distal tip population is a long-lived progenitor that self-renews extensively throughout
normal lung development. Moreover, our recent heterochronic grafting experiments demonstrated
that its behaviour is largely controlled by extrinsic signals (Laresgoiti et al., 2016). We therefore rea-
soned that we should be able to capture tip self-renewing behaviour in vitro by supplying the correct
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combination of factors. This would be analogous to the long-term self-renewal of blastocyst inner
cell mass as ES (Embryonic Stem) cells. We microdissected human epithelial tips from 5 to 9 pcw
lungs (as in Figure 2F) and plated them in Matrigel in the presence of 7 factors: EGF, FGF7, FGF10,
NOG (Noggin), RSPO1 (R-spondin 1), a GSK38 inhibitor CHIR99021 and a TGFB inhibitor SB431542.
Factor choice was based on the conditions used to grow adult foregut derivatives as organoids, the
extensive literature on mouse lung development and our RNAseq analysis (Huch et al., 2013a,
2013b; Sato et al., 2009; Swarr and Morrisey, 2015; Yin et al., 2014). In these conditions human
lung epithelial tips formed organoids with 100% colony forming efficiency (n = 303 tips from 13 indi-
viduals). Tips formed spheres within 12 hr, expanded spherically for 6-8 days and then branched; by
culture day 14 the organoids resembled a mass of tips (Figure 3A; Video 1). We passaged the orga-
noids every 2 weeks by mechanically breaking into smaller pieces and re-plating. Growth continued
in a similar fashion in later passages, although the morphological appearance of the cultures became
more heterogeneous depending on the extent of breakage during passaging (Figure 3A). Tip orga-
noids retained SOX2 and SOX9 expression over multiple passages (Figure 3B). Moreover, they
expressed the lung-specific transcription factor NKX2-1 and the tip-specific marker proteins that we
have validated (Figure 3—figure supplement 1). Organoids possessed a lumen and were composed
of a single epithelial layer (Video 2) similar to the in vivo morphology of the tip epithelium (Fig-
ure 2—figure supplement 1B,C). Every tip organoid line we isolated continued to grow in the same
way for at least 9 passages over 4 months (n = 11 organoid lines were maintained for >9 passages
without apparent change in morphology, or SOX2 and SOX9 expression; some cultures have been
maintained for up to 9 months). Organoid karyotypes were also normal (Figure 3—figure supple-
ment 2). We concluded that activation of EGF, FGF and WNT signalling, and inhibition of BMP and
TGFB, are sufficient to grow human epithelial tips as long-term, self-renewing organoids with an ini-
tial colony forming efficiency of 100%.

We have recently shown that differentiating mouse bronchiolar cells can produce alveolar
descendants (Laresgoiti et al., 2016). We therefore tested if human stalk cells, which are undergo-
ing the first signs of bronchiolar differentiation (Figure 1L; 2K), could be induced to grow as tip-like
organoids using our tip culture conditions. The human stalks formed organoids with a 100% colony
forming efficiency (n = 17 stalks from five individuals). These grew spherically, branched with a simi-
lar morphology to tip organoids and could be passaged over many months (Figure 3C). Consistent
with their branching behaviour, by the end of PO the SOX2* stalks had become SOX2*, SOX9" orga-
noids and they retained expression of both proteins over multiple passages (Figure 3D). Similarly,
we asked if the SOX9*, SOX2 tip cells from 19 pcw lungs (Figure 2E) could be cultured as self-
renewing organoids in the same conditions. The 19 pcw tips also grew as branching organoids for
multiple passages with a 100% colony forming efficiency (organoids from three individuals main-
tained for at least six passages). The 19 pcw tips also became SOX2*, SOX9* organoids in vitro (Fig-
ure 3—figure supplement 3). Thus the tip organoid self-renewal conditions are sufficient to convert
SOX2", SOX9" stalks and SOX2", SOX9* tips into long-term self-renewing SOX2", SOX9™ organoids.

As a first test of our in vitro self-renewing organoid system, we compared the transcriptome of
organoids to that of freshly-isolated tips and stalks. When the whole transcriptome is compared
freshly isolated tips and stalks can be separated into two distinct clusters on a multi-dimensional
scaling plot (Figure 3E), although it should be remembered that they are very similar cell types
(Figure 2G). The organoid transcriptomes lie between the freshly isolated tips and stalks, showing
that they retain many transcriptional features of the cells from which they are derived (Figure 3E).
Analysis of markers that we have characterized as tip or stalk enriched supports this conclusion
(Figure 3F, Figure 3—figure supplement 4). Thus the organoids are transcriptionally very similar to
the starting progenitor population, with a tendency to also express stalk markers. We could detect
no signs of organoid differentiation into mature lung cell lineages, or towards non-lung cell types.

We next asked if our human tip organoid growth conditions were sufficient to support the growth
of mouse tips as long-term self-renewing organoids. We plated E12.5 mouse tips in identical growth
conditions, and also without SB431542. In both media conditions mouse tips formed branching orga-
noids with 100% efficiency (Figure 3—figure supplement 5). Mouse organoids grew at a faster rate
than the human organoids and were initially SOX9*, SOX2", reflecting the in vivo mouse situation.
However, by passage six the mouse tip organoids had decreased SOX9 and started to express
SOX2 (Figure 3—figure supplement 5B,D). We concluded that the human growth conditions are
not sufficient to support the long-term self-renewal of undifferentiated mouse tip cells, consistent
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Figure 3. Long-term, self-renewing organoid culture of human lung epithelial tip cells with a initial colony forming
efficiency of 100%. (A) Frames from Video 1 showing bright field images of a single microdissected tip taken every
24 hr for 12 days. Representative bright field images of tip organoid cultures from PO, P6 and P15. A typical
organoid after matrigel removal is shown and after further microdissection of branched structures (inset). (B)
Confocal images of tip organoids at PO, P6 and P15. Green: SOX9; red: SOX2; white: ECAD. (C) Bright field
images of stalk organoids cultured in self-renewing medium at PO, P1, P5. (D) Confocal images of stalk organoids
at P3. Green: SOX9; red: SOX2; white: ECAD. (E) Multidimensional scaling plot showing the distribution of fresh
Figure 3 continued on next page
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Figure 3 continued

tip and stalk transcriptomes and cultured organoids. (F) Heat map of selected tip, stalk and differentiation
markers. Bars = 1 mm (A, C); 50 um (B, D).

DOI: 10.7554/elife.26575.015

The following figure supplements are available for figure 3:

Figure supplement 1. Organoids passaged in self-renewing medium retain tip-specific transcription factor
proteins.

DOI: 10.7554/elLife.26575.016

Figure supplement 2. Organoids passaged in self-renewing medium retain a normal karyotype.

DOI: 10.7554/eLife.26575.017

Figure supplement 3. SOX2", SOX9" canalicular stage human embryonic tips can be grown as SOX2*, SOX9"self-
renewing organoids.

DOI: 10.7554/elife.26575.018

Figure supplement 4. Box plots of selected tip and stalk specific genes showing transcript levels in fresh tissue
and cultured organoids.

DOI: 10.7554/elLife.26575.019

Figure supplement 5. E12.5 mouse tips do not long-term self-renew in the growth medium developed for human
tips.

DOI: 10.7554/elife.26575.020

with our data that there are differences in signalling gene expression between mouse and human tip
epithelium.

Efficient organoid establishment required all seven factors contained
within the growth medium
During organoid establishment diffuse mesenchymal cells were always visible in the cultures and
more prevalent in the stalk-derived organoids. We estimated the proportion of mesenchymal cells in
freshly microdissected tips and stalks (Figure 4A,B). There was 0.04 + 0.07% mesenchyme in the tip
dissections and 3.8 = 0.47% in the stalk (n = 4 samples; mean + standard deviation). This estimate is
in agreement with the observation that mesenchymal genes were present in the RNAseq of micro-
dissected stalk (Figure 2J,L). We therefore cannot exclude that the presence of the mesenchyme
plays a role in the establishment of organoid cultures. However, when we looked for mesenchyme in
our passaged human tip organoids, we were
able to observe ECAD cells at PO, P1 and,
rarely, at P2, but never in higher passage num-
ber organoids (Figure 4C). Thus, mesenchymal
cells are not required for organoid maintenance.
We focussed on human tip epithelium to
determine whether all seven factors (EGF, FGF7,
FGF10, NOG, RSPO1, CHIR99021 and
SB431542) were required for organoid establish-
ment. We plated tips from the same lung in our
self-renewing conditions, or in eight other media
combinations in which specific factors were
removed. To our surprise, SOX2",SOX9" orga-
noids grew in all conditions tested (Figure 4D;
n = 4 experiments with different individual
lungs). However, compared to our self-renewing
condition, all other media produced smaller
organoids. These organoids could mostly be
passaged (except in the absence of CHIR99021

where organoids disintegrated at passaging), Video 1. Human lung epithelial tip growing into an

but they remained extremely small at P1 and organoid over 11 days. Imaged every 12 hr in bright-
subsequent passaging was not attempted field on a Nikon Biostation.

(Figure 4E). Interestingly, in the absence of DOI: 10.7554/elife.26575.021
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NOG the mesenchymal cells present in the cul-
tures expanded much more than in self-renewing
medium. These mesenchymal cells were initially
SOX9", as in vivo, but lost SOX9 expression by
P1. Whereas, in the absence of FGF10 we noted
that by P1 the organoids had distinct SOX2¥,
SOX9* and SOX2', SOX9* domains (Figure 4E),
suggesting that regionalization was occurring
spontaneously. We repeated organoid derivation
in self-renewal medium, versus self-renewal
medium without SB431542, and quantified the
effects on organoid-forming efficiency and size.
In the presence of SB431542 organoid-forming
efficiency was 100% and organoids were larger
(Figure 4F). It has recently been noted that
growth of human organoids usually requires
TGFp inhibition, whereas mouse organoids usu-
ally do not (Huch and Koo, 2015).

Video 2. Organoid structure is a single layer
epithelium with a hollow lumen. Confocal z-stack of P

tip organoid. Nuclei (DAPI, blue) and epithelial cells FGFR and WN.I: SIQ.na""‘g are .
(ECAD, white) illustrating typical organoid morphology. I‘eqUIred to maintain SOX9 dunng
DOI: 10.7554/eLife.26575.022 organoid self-renewal

We grew established organoid lines for three
days in media in which one or more of the fac-
tors was altered to test the effects on SOX2 and
SOX?9 levels by qRT-PCR (Figure 4G; n = 3 experiments on three different tip organoid lines). None
of the conditions resulted in any effect on organoid morphology over the 3 days. Growth in basal
medium caused a significant reduction in SOX9 and a less-reproducible increase in SOX2; consistent
with a major function of the factor combination to promote tip, and inhibit bronchiolar, fate.
Removal of SB431542, or FGF7 and FGF10, or CHIR99021 caused a significant reduction in SOX9
levels. Moreover, removal of FGF7 and FGF10, or CHIR99021, increased SOX2. Removal of FGF7, or
10, alone had no significant effects. These data suggest that FGF and WNT signalling are both
required to promote tip self-renewal at the expense of differentiation, consistent with known func-
tions in mouse (Volckaert et al., 2013).

Differentiation of human tip organoids in the presence of mouse
embryonic or adult lung cells

To functionally test if the tip organoids retained their lung identity after long-term culture, we tested
if they were capable of integrating into adult mouse lungs in vivo. We injured immune-compromised
NOD-scid-IL2rg”" (NSG) mice with a low dose of bleomycin and intra-tracheally transplanted 6 x 10°
single cells isolated from self-renewing organoids (Figure 5—figure supplement 1A,B). At day two
post-transplant small groups of cells were visible in 100% (4/4) of transplanted mice and these had
grown into much larger patches by day 8 (Figure 5—figure supplement 1C-E). Grafts were usually
observed in the region spanning the bronchioles and alveoli. Human cells retained SOX2 and SOX9
co-expression (Figure 5—figure supplement 1G). However, they frequently turned off NKX2-1 but
retained FOXA2 (Figure 5—figure supplement 1F). They showed the first signs of airway differenti-
ation with sub-sets of graft cells expressing KRT5, TRP63 and MUCS5AC (Figure 5—figure supple-
ment 1TH,l). These data strongly suggest that lung identity is retained within the organoids.
However, it is not known if embryonic human cells engrafted into adult mouse lungs can receive
appropriate differentiation cues. We therefore performed a similar set of experiments using the kid-
ney capsule environment for chimeric human-mouse embryonic grafts.

E13.5 mouse lungs were dissociated, mixed with dissociated human tip organoids, formed into a
cell pellet and transplanted under the kidney capsule of NSG mice (Figure 5A). All kidneys har-
vested contained mouse/human chimeric lung grafts (9/9) in which the mouse and human cells
tended to segregate (Figure 5B). The mouse parts of every graft contained either squamous
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Figure 4. All factors added to the medium are required for culture establishment. (A) Whole-mount staining for DAPI and ECAD was performed to
estimate the fraction of mesenchyme in a microdissected tip (dotted area) and stalk (dashed box). (B) Quantitation of percentage of mesenchyme in
four microdissected tips and stalks. (C) Presence of mesenchyme was assessed in six organoid lines over multiple passages by staining for ECAD
(arrowhead = mesenchymal cells). (D) Bright field and confocal images of PO Day 13 organoids cultured in self-renewing medium, or without the
indicated factors. Green: SOX9; red: SOX2; white: ECAD. (E). Bright field and confocal images of organoids at P1 Day 6 cultured in self-renewing
medium, or without FGF10, or Noggin. Green: SOX9; red: SOX2; white: ECAD. Boxed area is magnified in inset. (F) Quantitation of organoid forming
efficiency and size with, or without, TGFB inhibition. Bars = SEM. Three biological replicates were analysed; 61 tip cultures without TGFB inhibition, 38
tip cultures with TGFB inhibition. (G) Established organoid lines were grown for 3 days in self-renewing, or indicated test medium, and levels of SOX2
and SOX9 assessed by gRT-PCR (values normalized to one for self-renewing controls). Three independent tip organoid lines at P9, 15 and 21 were
used. Bars = SEM. * = p-value<0.05. Bars = 50 um (A, C; D, E confocal images); 1 mm (D, E bright field).

DOI: 10.7554/elife.26575.023

The following source data is available for figure 4:

Source data 1. Individual data points for Figure 4B.
Figure 4 continued on next page
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Source data 2. Individual data points for Figure 4F.

DOI: 10.7554/elife.26575.025

Source data 3. Raw gRT-PCR data for Figure 4G.

DOI: 10.7554/elife.26575.026

epithelium with differentiated alveolar cells (Figure 5B; Supplement 2A,B), or columnar epithelium
with differentiated bronchiolar cells (Figure 5—figure supplement 2C-E). By contrast, human cells
were always assembled into columnar epithelial airway-like structures surrounded by mouse mesen-
chyme. Rare human pro-SFTPC* cells were found in all samples (Figure 5C; Figure 5—figure sup-
plement 2F). Human cells were clearly SOX9*, SOX2* at 3 weeks, although patches of cells down-
regulating SOX9 were visible (Figure 5D). By 7 and 12 weeks SOX9 was expressed at very low levels
in only some human cells. Rare patches of differentiated human airway were identified from 2/3
organoid lines in kidneys harvested at 12 weeks. These were lined with basal, goblet and ciliated
cells similar to the in vivo human airways (Figure 5E,F). The remaining human airway-like structures
contained goblet cells only and were found in every graft.

These grafting experiments show that the organoids retain the ability to assemble into lung struc-
tures and robustly generate differentiated airway cells, but alveolar differentiation is either prema-
ture or ineffective. However, one limitation of these experiments is that the human cells may be
unable to respond efficiently to the mouse differentiation signals; possibly because they require dif-
ferent signalling inputs. We therefore asked if it is possible to differentiate the human tip organoid
lines to bronchiolar and alveolar fate in vitro.

In vitro differentiation of tip organoids

To test the ability of our tip organoids to differentiate into bronchiolar structures we grew them for
2-4 weeks in an established human airway differentiation medium, PneumaCult. In high passage
number organoids this mostly resulted in differentiation into SOX2*, MUC5AC" goblet cells,
although a smaller number of organoids also contained KRT5" basal cells (Figure 6—figure supple-
ment 1; n = 3 organoid lines). In low passage number organoids, in which a small amount of mesen-
chyme was still present, growth in PneumaCult™ resulted in expansion of the mesenchyme and
differentiation of TP63™ basal cells, MUC5AC* goblet cells and rare ACT" ciliated cells in the epithe-
lium (Figure 6A-C; n = 3, P2 organoid lines). SOX2, SOX9 co-expression was observed in the latter
experiments, suggesting that airway differentiation was not complete.

There is no established culture medium for growing human alveolar epithelium. We therefore
tested media conditions for their ability of turn off SOX2 and SOX9 and activate pro-SFTPC and/or
HTII-280, compared to our self-renewing condition, over two weeks (Figure 6—figure supplement
2). SOX9 was lost in all conditions tested, possibly due to prolonged exposure to Dexamethasone
which turns off Sox9 in mouse lungs (Figure 6—figure supplement 2C-E) (Alanis et al., 2014). In
general, we obtained somewhat patchy differentiation with regions where SOX2 was retained and
regions where pro-SFTPC (or more rarely HTII-280) was expressed (Figure 6—figure supplement
2F-N). We next cultured organoids for 3 weeks in the most efficient alveolar medium (CHIR99021,
FGF7, FGF10, Dexamethosone, cAMP, IBMX, T3, DAPT). This resulted in uniformly SOX2", SOX9",
pro-SFTPC* organoids (Figure 6E,F; n = 2 organoid lines). These expressed low levels of pro-SFTPC
and retained a columnar epithelial appearance, suggesting alveolar-fate rather than differentiation.
HTII-280 expression was not detected.

We reasoned that addition of human canalicular stage mesenchyme would provide additional
cues and promote improved alveolar differentiation. We isolated mesenchyme from 19 pcw human
lungs by dispase digestion and micro-dissection, mixed it directly with human tip organoids and cul-
tured in alveolar differentiation medium for three weeks. This resulted in heterogeneous organoids
with patches of SOX2* cells and patches of pro-SFTPC* cells (Figure 6G,H; Figure 6—figure sup-
plement 3A-C; n = 1 line for this preliminary experiment). Importantly, pro-SFTPC expression was
stronger than without mesenchyme and the pro-SFTPC* cells had a more squamous appearance,
similar to endogenous differentiating AT2 cells. However, there were many regions of the cultures
where mesenchymal cells were not observed. To increase the proportion of mesenchyme in the co-
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Figure 5. Disscoiated self-renewing organoids are competent to differentiate under the kidney capsule in the presence of embryonic mouse lung cells.
(A) Experimental schematic. Dissociated organoids were mixed with dissociated E13.5 mouse lungs (either MF1 outbred strain for grafts harvested at 3
and 7 weeks, or Rosa26R-mT-mG strain for grafts harvested at 12 weeks.) Animals culled at 12 weeks received 3x dexamethasone injections 1 week
before culling. The 7 and 12 week grafts looked identical and thus no effects on the grafts were observed from the dexamethasone injections. Three
independent organoid lines were used and three mice (one per organoid line) culled at each time point. Grafts were clearly visible growing beneath the
kidney capsule in all nine kidneys harvested. (B) Chimeric mouse/human lung structures were found in all kidneys. Green: ECAD (epithelium); red: HuNu
(human nuclei). (B') It can clearly be seen that mouse and human cells tend to segregate within the grafts, possibly due to their differing size or surface
properties. Wide-spread regions of mouse pro-SFTPC™ cells were always visible. Green: ECAD; red: HuNu; white: pro-SFTPC. (C) Rare human pro-
SFTPC* cells (arrow) were identified in all samples. Green: ECAD; red: HuNu; white: pro-SFTPC. (D) Human cells arranged into airway-like structures
were strongly SOX9", SOX2" at 3 weeks, although patches of cells which were down-regulating SOX9 were visible (bracket). By 7 and 12 weeks SOX9
was expressed at very low levels in some human cells. Green: SOX9; red: HuNu; white: SOX2. (E, F) Rare patches of differentiated human airway cells
were identified in 2/3 organoid lines in kidneys harvested at 12 weeks. These were lined with basal, goblet and ciliated cells similar to the in vivo human
airways. The remaining human airway-like structures contained goblet cells only and were found in every graft harvested (e.g. arrows in E and F). (E)
Green: KRT5 (basal cells); red: Td-Tomato (mouse cells); white: MUC5AC (goblet cells). (F) Green: KRTS (basal cells); red: Td-Tomato (mouse cells);
white: ACT (cilia). Bars = 50 um (C, D, E’, F'); 2 mm (A); 0.5 mm (B); 200 um (B’); 100 um (E, F); 20 um (E"*, F"").

DOI: 10.7554/elife.26575.027

The following figure supplements are available for figure 5:

Figure supplement 1. Cells isolated from self-renewing organoids are competent to engraft into adult mouse lungs.

Figure 5 continued on next page
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Figure supplement 2. Mouse regions of chimeric human-mouse kidney capsule grafts differentiate efficiently.

DOI: 10.7554/eLife.26575.029

cultures, we expanded fibroblasts from 19 or 20 pcw lungs and cultured with tip organoids. This
resulted in more highly branched organoids with squamous epithelium surrounded by mesenchymal
cells, reminiscent of the canalicular stage lung (Figure 6l,J). These organoids were SOX2", SOX9
and pro-SFTPC*, HOPX"; rare HTII-280" cells were also observed (Figure 6—figure supplement
4B-D; n = 3 organoid lines), consistent with alveolar fate; most likely bipotential alveolar progeni-
tors. When tip organoids derived from 19 pcw lungs were used there were extensive regions of pro-
SFTPC, HTII-280, HOPX and PDPN co-expression and NKX2-1 was retained. This again indicates
that we have successfully differentiated to the bipotent progenitor stage and also suggests that the
organoids derived from the canalicular stage lungs are intrinsically easier to differentiate towards
alveolar fate (Figure 6H-K; Figure 6—figure supplemental 4 E-I E-I; n = 2, 19 pcw organoid lines).
Antibody staining showed that the expanded fibroblasts used in these experiments were PDGFRB™,
but an otherwise heterogeneous mixture of cells expressing markers consistent with the mesen-
chyme observed in 20 pcw lung sections (Figure 6—figure supplement 5).

Discussion

It is routinely assumed that the pseudoglandular stage human embryonic lung distal tip epithelium is
a multipotent progenitor population. We now provide several lines of evidence that this hypothesis
is correct. Firstly, we show that typical differentiation markers are detectable at a protein level only
after cells exit the tip. Secondly, that 96% of human tip genes with mouse orthologues are also
expressed in mouse tips. Thirdly, we demonstrate that the human tips have the ability to long-term
self-renew and differentiate into bronchiolar and alveolar epithelium in vitro. Moreover, we have
established conditions to grow human embryonic lung epithelial tips as long-term self-renewing
organoids. These organoids retain many transcriptional similarities to tip cells and show no signs of
spontaneous differentiation. They can also integrate into adult and embryonic lungs and be induced
to differentiate towards bronchiolar or alveolar lineages in vitro. The organoid culture conditions
that we have established provide a new tool for in vitro genetic studies of human lung development.

Although we find an extremely high level of transcriptome conservation between human and
mouse tips we also report multiple differences, including in genes used as definitive cell-type specific
markers. The most striking difference is in SOX2. Mouse tip progenitors are SOX2", SOX9* through-
out development. By contrast, human pseudoglandular tips, which are producing bronchiolar
descendants, are SOX2", SOX9" and tips become SOX2", SOX9" during the canalicular stage. The
functional significance of tip SOX2 expression is currently unknown, although it may reflect lineage-
priming. However, this observation is highly relevant to attempts to establish human pluripotent
stem cell (PSC) differentiation protocols for lung epithelium. Based on mouse data, such human
studies typically focus on the derivation of multipotent lung tip progenitors as NKX2-1", SOXZ2,
SOX9", ID2" cells. These are likely to be human canalicular tip progenitors. Differentiation marker
expression in human PSC differentiation experiments is also based on mouse data. More robust, effi-
cient protocols for human PSC differentiation are likely to be developed if human lung development
is taken into account.

We have observed that mouse tip progenitors are unable to long-term self-renew in human cul-
ture conditions, even though mouse-specific versions of the factors were provided. Hence, the tip
transcriptome is highly conserved between mouse and human, but the differences are of functional
significance. There is therefore a strong imperative to study human lung development alongside
more traditional mouse studies. We have used organoid culture to show that differentiating human
lung stalks can be reprogrammed to tip fate analogous to classical rodent studies (Alescio and Cas-
sini, 1962); FGF and WNT are required to maintain human tip SOX2 and SOX9, and activation of
EGF, FGF and WNT, with inhibition of BMP and TGFg, signalling is sufficient to maintain human tip
self-renewal. Moreover, our long-term self-renewing organoids are competent to differentiate,
although in vitro differentiation requires further optimisation. We have also introduced plasmids to
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Figure 6. In vitro differentiation of self-renewing organoids towards bronchiolar and alveolar lineages. (A) Experimental schematic for 3 weeks organoid
differentiation in Pneumacult-ALI medium. (B) In low passage number organoids, mesenchyme expanded (arrows), basally-located TP63"* basal cells
differentiated and rare ACT" ciliated cells were seen. Dashed arrow = ciliated cell. Arrow heads = basal cells. Arrow = mesenchyme. Green: ACT (cilia);
red: TP63 (basal cells); white: SOX2. (C) Differentiated organoids were predominantly composed of MUC5AC™ goblet cells, although low levels of

Figure 6 continued on next page
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Figure 6 continued

SCGB1A1 were observed in some cells. Cells retained SOX9 suggesting that differentiation was not complete. Green: MUC5AC (mucous); red: SOX9;
white: SCGB1A1. (D) Experimental schematic for 3 week alveolar differentiation experiment. (E) All organoid cells retained a columnar appearance and
expressed relatively low levels of apical pro-SFTPC. Red: pro-SFTPC; white: ECAD. (F) Experimental schematic for 3 week alveolar differentiation in the
presence of freshly-isolated 19 pcw human mesenchyme. (G) Mesenchymal cells were observed in the cultures (arrowheads), moreover cells expressing
higher levels of pro-SFTPC with a more squamous appearance were also obtained. Red: pro-SFTPC; white: ECAD. (H) Experimental schematic for 3
week alveolar differentiation of 19 pcw organoid in the presence of expanded human 20 pcw mesenchymal cells. DCI = dexamethasone, cAMP, IBMX.
(I) Organoid epithelium took on a more squamous appearance and was surrounded by mesenchymal cells (arrowheads). White: ECAD. (J) AT2 markers
were expressed robustly. Green: HTII-280; red: pro-SFTPC. (K) AT1 and AT2 markers were co-expressed. Green: HOPX; red: pro-SFTPC. Blue: DAPI.
Bars = 1 mm (A, H); 100 um (B, C); 20 um (B’, E’); 10 um (C’, G"); 50 um (E, G, |, J, K).

DOI: 10.7554/elife.26575.030

The following figure supplements are available for figure 6:

Figure supplement 1. Exposure of self-renewing organoids to Pneumacult™ medium leads to efficient goblet cell differentiation with rare patches of
KRT5" basal cells.

DOI: 10.7554/elife.26575.031

Figure supplement 2. Testing media conditions for ability to promote human organoid alveolar differentiation.

DOI: 10.7554/elife.26575.032

Figure supplement 3. A combination of canalicular stage lung embryonic mesenchyme and alveolar differentiation medium together promote the
most efficient organoid alveolar differentiation.

DOI: 10.7554/elife.26575.033

Figure supplement 4. Expanded canalicular stage mesenchyme and alveolar medium can promote organoid alveolar differentiation.

DOI: 10.7554/¢elife.26575.034

Figure supplement 5. Expanded fibroblasts used for organoid co-cultures are a heterogeneous population expressing various lung embryonic
fibroblast markers.

DOI: 10.7554/eLife.26575.035

the self-renewing organoids by electroporation (Fujii et al., 2015) and been able to freeze-thaw
organoids for longer-term storage. Therefore, a genetic system for the study of human lung devel-
opment is now available. We propose that this will also be useful for disease modelling and inform-
ing the differentiation of human PSCs.

Materials and methods

Human embryonic and foetal lung tissue

Human embryonic and foetal lungs were obtained from terminations of pregnancy from Cambridge
University Hospitals NHS Foundation Trust under permission from NHS Research Ethical Committee
(96/085) and the Joint MRC/Wellcome Trust Human Developmental Biology Resource (London and
Newecastle, grant 099175/Z/12/Z, www.hdbr.org). Their age ranged from 5 to 20 weeks developmen-
tal age, also known as post-conception weeks, pcw (this corresponds to 7-22 weeks gestational
age). Samples were staged according to their external physical appearance and measurements, and
not to the estimated last menstrual period. Detailed guidelines for embryonic samples (<8 pcw):
http://hdbr.org/downloads/embryo_staging_guidelines.doc; and for foetal samples: http://hdbr.org/
downloads/fetal_staging_guidlines.doc. Samples used had no known genetic abnormalities.

Human adult lung tissue

Fresh healthy adult lung tissue (background tissue from lobectomies for lung cancer) was obtained
from Papworth Hospital NHS Foundation Trust (Research Tissue Bank Generic REC approval, Tissue
Bank Project number T01939) and processed for both cryo- and paraffin sectioning.

Animals

All experiments were approved by local ethical review committees and conducted according to
Home Office project licenses PPL 70/8012 (Emma Rawlins, University of Cambridge) and 70/7607
(Adam Giangreco, UCL). Mouse strains (Rosa26R-mT/mG, formally known as Gt(ROSA)26Sor™*
(ACTB-tdTomato, EGFP)Luoy j. RRID:IMSR_JAX:026862) (Muzumdar et al., 2007) and NOD-scid-IL2rg”"
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(NSG; RRID:IMSR_JAX:005557) (Ishikawa et al., 2005; Shultz et al., 2005) have been described.
Wild-type mice were outbred MF1 strain.

Dissection of human and mouse embryonic lungs and set-up of
organoid culture

Lung lobes were incubated for 2 min in Dispase (ThermoFisher Scientific, Gibco, UK, 8 U/ml) at room
temperature. Mesenchyme was dissected away using tungsten needles and tips and stalks were iso-
lated by cutting the very end of a branching tip, or alternatively a stalk area more proximally. Five
tips, or 2 pieces of stalk tissue, were transferred into 30 ul Matrigel (Corning, UK, 356231). A dissect-
ing microscope was used to guide aspiration of 25 ul Matrigel containing the tissue pieces, which
was transferred into a well of a 48 well low-attachment plate (Greiner, UK). The plate was incubated
for 5 min at 37°C to solidify the Matrigel, following which at least 250 pl of self-renewing was added
(Table 1, or Table 2). Plates were incubated under standard tissue culture conditions (37°C, 5%
CO,).

Growing human foetal lung mesenchyme

92 mm plates were coated with type | collagen (Sigma, UK, C3867-1VL) mixed with 0.02 N acetic
acid (1:72.5) using a total volume of 6 ml, then left to evaporate in a tissue culture hood for about 4
hr. Fresh human foetal lung was cut into small pieces and incubated at 37°C, 30 min in 24 U/ml Dis-
pase (Gibco), 10 ug/ml DNase in PBS. DMEM/F12 with 10% (v/v) FBS (ThermoFisher Scientific, Life
Technologies) was added and lung pieces spun 200 g, 5 min. The supernatant was aspirated and the
pellet was resuspended in DMEM/F12 with 10% (v/v) FBS and 1:100 Penicillin/Streptomycin
(ThermoFisher Scientific, Life Technologies). The lung pieces and culture medium were transferred
evenly onto the collagen coated plate. The plate was incubated for 5 days without medium change.
On day 5, the lung pieces were removed and fresh medium added. Medium change was twice a
week until confluence. Cells were split using 0.1% (w/v) trypsin for 2 min at 37°C, inactivated with

Table 1. Self-renewal (Human)

Reagent

Final

Company Cat no concentration

Advanced DMEM

ThermoFisher Scientific, Invitrogen 12634-010 Base medium

Penicillin/Streptomycin ThermoFisher Scientific, Invitrogen 15140-122 100 U/ml (Pen)
100 pg/ml (Strep)
Hepes ThermoFisher Scientific, Invitrogen 15630-056 10 mM
Glutamax ThermoFisher Scientific, Invitrogen 35050-038 2mM
N2 ThermoFisher Scientific, Invitrogen 17502-048 1:100
B27 (-Vit A) ThermoFisher Scientific, Invitrogen 12587-010 1:50
N-acetylcysteine Sigma-Aldrich A9165 1.25 mM
Matrigel (growth factor reduced; specific lots of matrigel with at Corning 356231 undiluted
least 8 mg/ml protein concentration were used)
R-spondin1 conditioned medium Stem Cell Intitute, University of From 293T-HA-Rspo-Fc cell 5% v/v
Cambridge line made by Calvin Kuo,
Stanford
EGF Peprotech, UK AF-100-15 50 ng/ml
Noggin R and D Systems 6057 NG-100 100 ng/ml
FGF10 R and D Systems 345-FG-025 100 ng/ml
FGF7 Peprotech 100-19 100 ng/ml
CHIR 99021 Stem Cell Institute, University of n/a 3uM
Cambridge
SB 431542 Tocris 1614 10 uM
48 well plates (Greiner Cellstar) Sigma-Aldrich M9437 n/a
DOI: 10.7554/elife.26575.036
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Final
Reagent Company Cat no concentration
Advanced DMEM ThermokFisher Scientific, Invitrogen 12634-010 n/a
Penicillin/Streptomycin ThermoFisher Scientific, Invitrogen 15140-122 100 U/ml (Pen)

100 pug/ml (Strep)
Hepes ThermoFisher Scientific, Invitrogen 15630-056 10 mM
Glutamax ThermoFisher Scientific, Invitrogen 35050-038 2mM
N2 ThermoFisher Scientific, Invitrogen 17502-048 1:100
B27 (-Vit A) ThermoFisher Scientific, Invitrogen 12587-010 1:50
N-acetylcysteine Sigma-Aldrich A9165 1.25 mM
Matrigel Corning 356231 Undiluted
R-spondin conditioned Stem Cell Institute, University of From 293T-HA-Rspo1-Fc cell line made by Calvin Kuo, 5% v/v
medium Cambridge Stanford
mEGF R and D Systems 2028-EG-200 50 ng/ml
Noggin R and D Systems 6057 NG-100 100 ng/ml
FGF10 R and D Systems 345-FG-025 100 ng/ml
mFGF7 R and D Systems 5028 KG_025 100 ng/ml
CHIR 99021 Stem Cell Institute, University of n/a 3uM

Cambridge

SB 431542 Tocris 1614 10 uM

DOI: 10.7554/elife.26575.037

DMEM/F12 with 10% (v/v) FBS, centrifuged and then plated on 92 mm plates. For antibody staining
fibroblasts were passaged onto collagen-coated coverslips. (Consumable details, Table 3)

Maintenance of 3D human and mouse embryonic lung organoid culture

Organoids were cultured in Matrigel (Corning, 356231) in 48-well plates with self-renewing medium
(Advanced DMEM/F12 supplemented with 1x GlutaMax, 1 mM Hepes and Penicillin/ Streptomycin
(P/S), 1:50 B27 supplement (without Vitamin A), 1:100 N2 supplement, 1.25 mM n-Acetylcysteine,
5% (v/v) R-spondin1 conditioned medium, 50 ng/ml recombinant human EGF, 100 ng/ml recombi-
nant human Noggin, 100 ng/ml recombinant human FGF10, 100 ng/ml recombinant human FGF7, 3
UM CHIR99021 and 10 uM SB431542 (Table 1). For mouse cultures, mouse specific EGF and FGF7
were used (Table 2). Medium was changed twice a week, and organoids were passaged every 10-14
days depending on cell confluence and Matrigel stability. Plates were incubated under standard

Table 3. Human foetal lung mesenchyme

Reagent Company Cat no Final concentration

Dish Nunc T/C 92 mm ThermoFisher Scientific 10508921 n/a

Type | collagen Sigma-Aldrich C3867-1VL 55 ng/ml

Acetic acid ThermoFisher Scientific 10304980 0.02 N

DMEM/F12 with L-glutamine ThermoFisher Scientific, Invitrogen 11320-074 n/a

Dispase ThermoFisher Scientific, Invitrogen 17105041 24 U/ml

FBS Sigma-Aldrich F9665 10%

Penicillin/Streptomycin ThermoFisher Scientific, Invitrogen 15140-122 100 U/ml (Pen)
100 pg/ml (Strep)

DNase | Qiagen, UK 79254 10 ug/ml

Trypsin (from porcine pancreas) Sigma-Aldrich T4799 0.1%

DOI: 10.7554/elife.26575.038
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tissue culture conditions (37°C, 5% CO5). Unless otherwise stated organoid lines were used between
passage 4 and passage 16 for experiments.

Passaging of organoids
Organoids were usually split 1:4 to 1:6 after 10-14 days of culture. The medium was aspirated and
fresh cold base medium: Advanced DMEM with Glutamax, P/S and Hepes (AdvDMEM+++) added
to each well. The Matrigel in each well was sucked into a P1000 pipette tip and transferred into a 15
ml tube. Cold AdvDMEM+++ was added up to 10 ml and then the sample was centrifuged at 100 g
at 4°C for 5 min. 8.5 ml of medium was then aspirated, and the remaining organoids triturated using
a flame polished glass pipette. Cold AdvDMEM+++ was added up to 10 ml and the sample was
again centrifuged at 220 g at 4°C. The pellet was resuspended in undiluted Matrigel (in a volume
depending on the splitting ratio) and 25 ul of Matrigel containing the split organoids was plated
onto a well of a 48 well low attachment plate. The plate was incubated for 5 min at 37°C to allow the
Matrigel to solidify, upon which at least 250 pl culture medium was added per well (Table 1 or
Table 2). For bronchiolar or alveolar differentiation different media were used as outlined in the fig-
ures (Table 4, Table 5). Organoids, and other primary cells, were tested regularly for mycoplasma.

Organoid lines could be frozen and thawed without apparent change in behaviour. For freezing,
organoids were removed from matrigel and triturated with a flame polished glass pipette as for pas-
saging. They were then pelleted and resuspended in cold freezing medium (Invitrogen, 12648010) at
500 pl per well in a cryovial which was transferred into a pre-cooled Mr. Frosty Freezing Container
(ThermoFisher Scientific, Invitrogen, 5100-0001) at —80 C overnight followed by longer-term storage
in liquid nitrogen. Cryovials were thawed for 2 min in a 37°C waterbath and organoids plated in
matrigel in self-renewing medium supplemented with 10 ul Rho kinase inhibitor (Y27632, Sigma-
Aldrich, YO503-1MG).

When fresh, or expanded, human mesenchyme was added to the cultures, 250, 000 mesenchymal
cells per well were mixed with the organoids immediately prior to the final spin and resuspension in
Matrigel. All differentiation experiments were performed in at least three technical replicates.

Recovering organoids from matrigel for immunostaining or RNA
extraction

Prior to fixation, or lysis, organoids were removed from Matrigel using Corning Matrigel Cell Recov-
ery Solution (Corning, 354253). First, organoids were harvested into a 15 ml tube using a wide Pas-
teur pipette and washed with 10 ml of cold washing medium (Advanced DMEM/F12, 1X GlutaMax,
1 mM Hepes and Penicillin/Streptomycin). The 15 ml tube was inverted every 2 min for 10 min, fol-
lowed by 5 min incubation on ice before organoids were spun 200 g at 4°C. This was repeated once
and then Corning Cell Recovery Solution (Corning, 354253) was used to further remove the Matrigel
(incubation on ice for 30 min with inversion once after 15 min). Organoids were washed with cold
PBS, spun down at 200 g 4°C.

Whole mount immunostaining of organoids and embryonic lungs

For 5-9 pcw lungs fixation was overnight hour at 4°C in 4% PFA. Organoids were recovered from
the Matrigel using Corning Cell Recovery Solution (Corning, 354253) as above and fixed 4% (w/v)
paraformaldehyde (PFA) for 30 min at 4°C. After washing in PBS organoids were transferred to a
round-bottom 96 well plate using wide Pasteur pipettes. Permeabilisation in 0.5% (v/v) Triton-X in
PBS for 30 min was followed by washing in 0.5% (w/v) Bovine Serum Albumin (BSA), 0.2% Triton-X in
PBS (washing solution). Blocking was for at least 1 hr at room temperature in 1% BSA, 5% NDS (nor-
mal donkey serum), 0.2% Triton-X in PBS. Primary antibodies (Table 6) in blocking solution used at

Table 4. Human Bronchiolar differentiation

Reagent Company Cat no Final concentration
PneumaCult™-ALI medium Stem Cell Technologies 05001 n/a
Matrigel Corning/SLS 356231 undiluted

DOI: 10.7554/elife.26575.039
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Table 5. Human Alveolar differentiation

Reagent Company Cat no Final concentration
Advanced DMEM ThermoFisher Scientific, Invitrogen 12634-010 n/a
Penicillin/Streptomycin ThermoFisher Scientific, Invitrogen 15140-122 100 U/ml (Pen) 100 pug/ml (Strep)
Hepes ThermoFisher Scientific, Invitrogen 15630-056 10 mM

Glutamax ThermoFisher Scientific, Invitrogen 35050-038 2 mM

N2 ThermoFisher Scientific, Invitrogen 17502-048 1:100

B27 (-Vit A) ThermoFisher Scientific, Invitrogen 12587-010 1:50
N-acetylcysteine Sigma-Aldrich A9165 1.25 mM

Matrigel Corning/SLS 356231 Undiluted

CHIR 99021 Stem Cell Institute, University of Cambridge n/a 1 uM or 3 uM
FGF10 R and D 345-FG-025 100 ng/ml

FGF7 Peprotech 100-19 100 ng/ml
Dexamethasone Sigma-Aldrich D4902-25MG 50 nM

cAMP Sigma-Aldrich B5386-5MG 0.1 mM

IBMX Sigma-Aldrich 15879-100MG 0.1 mM

DAPT Sigma-Aldrich D5942-25MG 50 uM
Tri-iodothyronine (T3) Sigma-Aldrich T6397-100MG 6.7 ng/ml

Human IGF-1 R and D Systems 291-G1-200 1 pg/ml
Interleukin-6 R and D Systems 206-1L-010 1 pg/ml

DOI: 10.7554/eLife.26575.040

4°C overnight. The following day washes were performed at 4°C and secondary antibodies (1:2000
dilution; Table 7) in 5% NDS, 0.2% Triton-X in PBS incubated overnight at 4°C. The following day
washes were performed at 4°C and DAPI (Sigma) added to the washing solution for 30 min at 4°C.
Samples were processed to 2'—2’'-thio-diethanol (TDE, Sigma, 166782) for clearing/mounting: 10%
(v/v) TDE in 1x PBS; 25%; 50% 1 hr, 97% TDE overnight at 4°C on a rocker. The following day, orga-
noids were transferred onto a slide with an imaging spacer (diameter 20 mm; thickness 0.12 mm;
Sigma GBL654006) containing 65 pl 97% (v/v) TDE and coverslipped.

Immunohistochemistry (cryosections)
Mouse embryonic lungs were fixed at 4°C in 4% PFA for 1 hr. Fixation was at 4°C in 4% PFA over-
night for mouse kidneys and human embryonic, foetal and adult lungs; after nine pcw the lungs
were divided into pieces prior to fixation, preferably intact lung lobes, in order to fit in 15x15 x 5
mm moulds. Post-fixation PBS washes and sucrose protection (15%, 20%, 30% w/v sucrose in PBS 1
hr each) were at room temperature. Samples were incubated 1:1 in 30% sucrose: optimal cutting
temperature compound (OCT) overnight at 4°C, 1 hr room temperature 100% OCT wash for small
tissue fragments only, then embedded in OCT. 7 um sections were cut and stored at —80°C. Tissue
was permeabilised using 0.3% Triton-X in PBS. Antigen retrieval was by heating slides in 10 mM Na
Citrate buffer at pH6 in a full power microwave for 5 min. Blocking at least 1 hr, room temperature
in 5% NDS, 1% BSA, 0.1% Triton-X in PBS. Primary antibodies (Table 6) were diluted in block and
incubated overnight 4°C. After PBS washes, secondary antibodies (1:2000; Table 7) were added in
5% NDS, 0.1% Triton-X in PBS and incubated 2-3 hr at room temperature. When biotin-coupled
secondaries were used, sections were incubated in 1.8 pug/ml Streptavidin-594 in 1% BSA for 30 min
at room temperature. DAPI (Sigma) was added for 20 min, followed by PBS washes and mounting in
Fluoromount (Sigma). Images were collected on a Zeiss Axiophot microscope, or Leica SP8 confocal
where stated.

For sections of human lungs, for each antibody at least 3 different 5-8 pcw lungs; 2 different 11
pcw lungs; 2 different 14-15 pcw lungs; 2 different 16-17 pcw lungs; one 19 pcw lung and 2
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Host Final

Antigen retrieval

Antigen retrieval

Research
Resource

Antibody Company Cat no species dilution (Cryo) (Paraffin) Identifier (RRID)
ABCA3 Seven WRAB- Rabbit  1:500 No Yes RRID:AB_577286
Hills Bioreagents, Cincinnati, OH ABCA3
Acetylated  Sigma T7451, clone  Mouse 1:3000 No No RRID:AB_6098%4
tubulin 6-11B-1
(ACT)
AQP5 Santa Cruz Biotechnology, Dallas, Sc9890, clone Goat 1:100 Yes Yes RRID:AB_2059877
Texas G19
B3-TUBULIN Biolegend (Covance), UK PRB-435P Rabbit 1:1000 No N/A RRID:AB_291637
CD90 Novus Biologicals, UK NBP2-37330 Mouse 1:200 No N/A RRID:AB_2665376
(clone
7E1B11)
E- ThermoFisher Scientific Invitrogen 13-1900 Rat 1:3000 No N/A RRID:AB_2533005
CADHERIN
E- BD Biosciences, UK 610182 Mouse 1:500 No Yes (citrate) RRID:AB_397581
CADHERIN
ETV5 Santa Cruz Biotechnology Sc-22807 Rabbit 1:200  Yes N/A RRID:AB_2101008
FGFR2 Santa Cruz Biotechnology SC-122 Rabbit 1:200  No N/A RRID:AB_631509
FOXA2 Santa Cruz Biotechnology SC-6554 Goat  1:200  No N/A RRID:AB_2262810
FOXJ1 Thermo Fisher Scientific 14-9965-82 Mouse 1:200 Yes Yes (citrate); needs RRID:AB_1548835
streptavidin-biotin
amplification
HMGA1B R and D Systems, UK AF5956 Sheep 1:50 Yes N/A RRID:AB_1964602
HMGA2 Proteintech, UK 20795-1-AP Rabbit  1:100 No N/A RRID:AB_2665377
HNF1B Proteintech 12533-1-AP Rabbit  1:100 Yes N/A RRID:AB_2116758
HOPX Santa Cruz Biotechnology SC-30216 Rabbit  1:50 No Yes (citrate) RRID:AB_2120833
HTI-56 Gift from Leland Dobbs n/a Mouse 1:100 No N/A RRID:AB_2665380
HTII-280 Gift from Leland Dobbs n/a Mouse 1:100 No No RRID:AB_2665381
IgM
Human Merck, UK MAB1281 Mouse 1:3000 No (needs N/A RRID:AB_
Nuclei streptavidin-biotin 11212527
(HuNu) amplification)
ID2 Abcam, UK Ab52093 Rabbit  1:200 Yes N/A RRID:AB_880731
KRT5 Covance PRB-160P-100 Rabbit 1:500 No Yes (citrate) RRID:AB_291581
Kl67 BD Transduction Laboratories, UK 550609, clone Mouse 1:100 No Yes (citrate) RRID:AB_393778
B56
LPCAT1 Proteintech 16112-1-AP  Rabbit 1:500 No Yes (citrate) RRID:AB_2135554
MUCS5AC ThermoFisher Scientific MS-145P Mouse 1:500 No Yes (citrate) RRID:AB_62731
NKX2-1 Abcam Ab76013 Rabbit  1:500 Yes Yes (citrate) RRID: AB_1310784
PDGFRA Cell Signalling 3174 (clone Rabbit  1:1000 No N/A RRID:AB_2162345
D1E1E)
PDGFRB Cell Signalling 3169 (clone Rabbit  1:100 No N/A RRID:AB_2162497
28E1)
PDPN Proteintech 11629-1-AP Rabbit  1:200 No Yes RRID:AB_2162067
PDPN R and D Systems AF3670 Sheep  1:200 No Yes RRID:AB_2162070
PECAM Abcam Ab9498 Mouse 1:200 No N/A RRID:AB_307284
(CD31)
SCGB1A Santa Cruz Biotechnology SC-25555 Rabbit  1:200  No Yes (citrate or trypsin) RRID:AB_2269914
pro-SFTPC  Millipore, UK Ab3786 Rabbit  1:500 No Yes (citrate) RRID:AB_91588

Table 6 continued on next page

Nikoli¢ et al. eLife 2017;6:€26575. DOI: 10.7554/eLife.26575

23 of 33


https://scicrunch.org/resolver/AB_577286
https://scicrunch.org/resolver/AB_609894
https://scicrunch.org/resolver/AB_2059877
https://scicrunch.org/resolver/AB_291637
https://scicrunch.org/resolver/AB_2665376
https://scicrunch.org/resolver/AB_2533005
https://scicrunch.org/resolver/AB_397581
https://scicrunch.org/resolver/AB_2101008
https://scicrunch.org/resolver/AB_631509
https://scicrunch.org/resolver/AB_2262810
https://scicrunch.org/resolver/AB_1548835
https://scicrunch.org/resolver/AB_1964602
https://scicrunch.org/resolver/AB_2665377
https://scicrunch.org/resolver/AB_2116758
https://scicrunch.org/resolver/AB_2120833
https://scicrunch.org/resolver/AB_2665380
https://scicrunch.org/resolver/AB_2665381
https://scicrunch.org/resolver/AB_11212527
https://scicrunch.org/resolver/AB_11212527
https://scicrunch.org/resolver/AB_880731
https://scicrunch.org/resolver/AB_291581
https://scicrunch.org/resolver/AB_393778
https://scicrunch.org/resolver/AB_2135554
https://scicrunch.org/resolver/AB_62731
https://scicrunch.org/resolver/AB_1310784
https://scicrunch.org/resolver/AB_2162345
https://scicrunch.org/resolver/AB_2162497
https://scicrunch.org/resolver/AB_2162067
https://scicrunch.org/resolver/AB_2162070
https://scicrunch.org/resolver/AB_307284
https://scicrunch.org/resolver/AB_2269914
https://scicrunch.org/resolver/AB_91588
http://dx.doi.org/10.7554/eLife.26575

LI FE Research article

Table 6 continued

Developmental Biology and Stem Cells | Human Biology and Medicine

Research
Host  Final Antigen retrieval Antigen retrieval Resource
Antibody Company Cat no species dilution (Cryo) (Paraffin) Identifier (RRID)
SMA Sigma A5228, clone Mouse 1:500 No N/A RRID:AB_262054
1A4
SOX2 Santa Cruz Biotechnology SC-17320 Goat  1:250  No/Yes Yes (citrate) RRID:AB_2286684
SOX9 Santa Cruz Biotechnology SC-20095 Rabbit 1:200  No Yes (citrate) RRID:AB_661282
SOX9 Abcam ab196450 Rabbit 1:200 No N/A RRID:AB_2665383
SPRY2 Abcam ab50317 Rabbit  1:200 Yes N/A RRID:AB_882688
TP63 Cell Signaling 13109 Rabbit  1:200 Yes Yes (citrate); needs RRID:AB_2637091
streptavidin-biotin
amplification
VECAD R and D Systems AF938 Goat 1:400 No N/A RRID:AB_355726

DOI: 10.7554/elife.26575.041

different 20 pcw lungs were stained. At least two technical replicates were performed for each
immunostaining.

Immunohistochemistry (paraffin)

Human embryonic and adult lungs were cut to fit 15x15 x 5 mm moulds and fixed at 4°C in 4% (w/v)
PFA overnight. Organoids were removed from the Matrigel following the Corning Cell Recovery
Solution protocol (above) and fixed for 30 min at 4°C. Following PBS washes, small tissue (e.g. orga-
noids) was embedded in 3% (w/v) Low Melting Point Agarose (Sigma, A2790). All samples were
dehydrated to 100% ethanol and then processed to paraffin wax for embedding. Paraffin blocks
were sectioned at 5 um and slides dried at 50°C for at least 30 min. Deparaffinisation was performed
by 2x xylene washes, followed by rehydration to distilled water then PBS rinse. Antigen retrieval was
heating in 10 mM Na Citrate buffer at pH6, or 0.05% (w/v) trypsin in PBS as appropriate. Blocking at
least 1 hr, room temperature in 5% NDS, 1% BSA, 0.1% Triton-X in PBS. Primary antibodies (Table 6)
were diluted in block and incubated overnight 4°C. After PBS washes, secondary antibodies (1:2000;
Table 7) were added in 5% NDS, 0.1% Triton-X in PBS and incubated 2-3 hr at room temperature.
When biotin-coupled secondaries were used, sections were incubated in 1.8 pg/ml Streptavidin-594
in 1% BSA for 30 min at room temperature. DAPI (Sigma) was added for 20 min, followed by PBS

Table 7. Secondary antibodies

Antibody Company Cat no Final dilution Research Resource Identifier (RRID)
Donkey a-mouse 488 Thermo Fisher Scientific A21202 1:2000 RRID:AB_141607
Donkey o-rabbit 488 Thermo Fisher Scientific A21206 1:2000 RRID:AB_2535792
Donkey o-rat 488 Thermo Fisher Scientific A21208 1:2000 RRID:AB_2535794
Donkey a-mouse 546 Thermo Fisher Scientific A10036 1:2000 RRID:AB_2534012
Donkey o-rabbit 546 Thermo Fisher Scientific A10040 1:2000 RRID:AB_2534016
Donkey a-goat 555 Thermo Fisher Scientific A21432 1:2000 RRID:AB_2535853
Donkey o-rat 594 Thermo Fisher Scientific A21209 1:2000 RRID:AB_2535795
Donkey a-sheep 594 Jackson Immunoresearch, West Grove, PA 713-585-147 1:2000 RRID:AB_2340748
Donkey a-mouse 647 Thermo Fisher Scientific A31571 1:2000 RRID:AB_162542
Donkey a-rabbit 647 Thermo Fisher Scientific A31573 1:2000 RRID:AB_2536183
Goat o-rat 647 Thermo Fisher Scientific A21247 1:2000 RRID:AB_141778

Streptavidin 594

Jackson Immunoresearch

016-580-084 1.8 pg/ml

RRID:AB_2337250

Biotin-SP-conjugated Donkey a-mouse Jackson Immunoresearch

715-065-150

1:500

RRID:AB_2307438

DOI: 10.7554/elife.26575.042
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washes and mounting in Fluoromount (Sigma). Images were collected on a Zeiss Axiophot micro-
scope, or Leica SP8 confocal where stated. Haematoxylin and Eosin staining followed standard
protocols.

RNA extraction, cDNA synthesis and qRT-PCR analysis

Organoids were removed from the Matrigel following the Corning Cell Recovery Solution protocol
(above) and lysed using 500 pl RLT buffer. Freshly isolated tips and stalks were lysed using 350 ul
RLT buffer. RNA extraction was performed according to the RNeasy Mini Kit protocol (Qiagen, UK).
RNA concentrations were measured using Nanodrop (ThermoFisher Scientific). First Strand cDNA
synthesis was performed using 1 ug RNA and the Superscript Ill RT system (ThermoFisher Scientific).
cDNA was diluted 1:10 and 2-4 ul was used for one gPCR reaction with Tagman assays (Thermo-
Fisher Scientific; Table 8). Relative gene expression was calculated using the AACT method relative
to GAPDH control. P-values were obtained using an unpaired two-tailed student’s t-test with
unequal variance.

RNA-seq sample preparation

Four age-matched biological replicates (67 pcw) were selected based on size and hand/foot mor-
phology. Fresh tips and stalks were microdissected and cleaned of mesenchyme using tungsten nee-
dles following 2 min in Dispase (Gibco, 16 U/ml final concentration) at room temperature.
Microdissected tips (~8) and stalks (~8) were transferred by mouth pipette into 50 pl extraction
buffer using the PicoPure RNA Isolation Kit (ThermoFisher Scientific) in DNA LoBind tubes (Eppen-
dorf). Organoids were removed from the Matrigel following the Corning Cell Recovery Solution pro-
tocol (above) and transferred into 50 pul extraction buffer. RNA extraction was performed according
to the PicoPure RNA Isolation Kit protocol. Total RNA concentration and quality using RIN score was
assessed using RNA 6000 Pico Kit (Agilent). Only biological replicates with RIN score >8 were used.
Reverse transcription and cDNA amplification was performed according to Ovation RNA-Seq Sys-
tems V2 protocol (NUGEN). For each sample a minimum total input RNA amount of 500 pg was
used. Quality check was performed using the Agilent DNA 1000 kit and RNA-Seq library preparation
was performed according to the NuGEN Ovation Rapid DR Multiplex System 1-8 protocol. Sequenc-
ing was performed at the Gurdon Institute on a HiSeq 1500 in rapid run mode (lllumina, San Diego,
CA,; single read 50 nucleotides). All RNAseq data deposited in GEO: https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?token=chyfeyegvxurngn&acc=GSE?5860.

Bioinformatics analysis
For comparing freshly isolated tips to freshly isolated stalks (Figure 2), Fastq files were filtered for
low quality reads (<Q20) and low quality bases were trimmed from the ends of the reads (<Q20)
using Sickle. The resulting reads were mapped to the human reference genome (UCSC GRCh37/
hg19) using TopHat 2.0.6 (Kim et al., 2013) guided by RefSeq gene models (UCSC). Raw counts per
transcripts were obtained using featureCounts and differentially expressed genes (>2 fold differ-
ence) identified using edgeR 2.6.12 (Robinson et al., 2010). Hierarchical unsupervised clustering
was performed using published foetal lung RNAseq data as a comparison (Table 9). Gene Ontology
and Panther Pathway analysis was performed in DAVID (Huang et al., 2009a, 2009b).

To compare the human and mouse embryonic tip transcriptome, we compared our human tip
RNA seq with previously published mouse E11.5 tip microarrays (GEO accession numbers:
GSM1968996, GSM1968997, GSM1968998, GSM1968999, GSM1969000). We first assessed whether

Table 8. RT-PCR primers

TagMan primer Company Cat no Id no

GAPDH Thermo Fisher Scientific # 4326317E n/a

SOX2 Thermo Fisher Scientific # 4331182 Hs01053049_s1
SOX9 Thermo Fisher Scientific # 4331182 Hs01001343_g1
TBX4 Thermo Fisher Scientific # 4331182 Hs00218515_m!1

DOI: 10.7554/elife.26575.043
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Table 9. Published whole foetal lung RNAseq (Bernstein et al., 2010).
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Sample label Description Source Donor ID Accession #
Lung_A_6 Foetal day 105 GEO Datasets H-24005 GSM1101693
Lung_F_2 Foetal day 105 GEO Datasets H-24111 GSM1101708
Lung_F_3 Foetal day 108 GEO Datasets H-23887 GSM1101684
Lung_F_4 Foetal day 91 GEO Datasets H-23914 GSM1101685
Lung_ F 5 Foetal day 96 GEO Datasets H-24089 GSM1101699
Lung_F_6 Foetal day 98 GEO Datasets H-23964 GSM1101687

DOI: 10.7554/elife.26575.044

transcripts of orthologous mouse/human genes (defined by the HomoloGene database) were pres-
ent in each data-set (Figure 2—figure supplement 3A). Genes were excluded which had RPKM val-
ues < 1 (RNAseq) and expression values of <5 (microarray). To estimate the relative levels of these
transcripts between the mouse microarray and human RNAseq data, we reasoned that the microar-
ray signal saturates and therefore generated a scatter plot of mean microarray signal, versus mean
log-transformed RPKM for each orthologous gene identified in mouse and human (Figure 2—figure
supplement 3B).

RNAseq for the cultured organoids was performed on an independent sequencing run. To com-
pare freshly isolated human tip and stalk samples with the cultured organoids, the RUVSeq R pack-
age (ruvg using housekeeping genes) was used to control for the batch effect in the data
(Risso et al., 2014) using hidden factor k = 1. Multi-dimensional scaling plot, heat map and box
plots (Figure 3 and Figure 3—figure supplement 3) were produced in R using the batch-corrected
data.

Karyotyping of organoids

Three days after splitting, colcemid was added to each well in self-renewing (SN) medium at 0.1 pg/
ml for 48 hr. Organoids were then incubated in TrypLE™ Express Enzyme (ThermoFisher Scientific,
12604013) 37°C for 2 min and Advanced DMEM with 5% (v/v) foetal bovine serum (FBS) added.
After centrifugation at 4°C, 300 g for 5 min, the cell pellet was resuspended in Advanced DMEM
with 5% FBS and cells were triturated with a flame polished glass pipette. After further centrifuga-
tion at 1200 rpm for 7 min, 5 ml of 0.055 M KCI hypotonic solution was added to each tube which
was gently inverted twice to mix. Tubes were centrifuged at 1200 rpm for 7 min. 500 ul of 3:1 100%
methanol:glacial acetic acid fixative was added to each cell pellet dropwise down the side of the
tube, then 1.5 ml was added in one go. Tubes were centrifuged at 1200 rpm for 7 min. The pellet
was resuspended in fixative and stored at —20°C. All fixed cells were delivered to the Cytogenetics
Laboratory at Cambridge University Hospitals NHS Foundation Trust for karyotyping.

Xenotransplantation (Mouse kidney capsule)

E13.5 whole mouse lungs were microdissected from Rosa26R-mT/mG heterozygous embryos (10
lungs) and from MF1 embryos (24 lungs) and cut into small pieces. Lungs were incubated in Try-
PLE™ Express Enzyme (ThermoFisher Scientific, 12604013) at 37°C for 2 min then 20 ml of
Advanced DMEM with 5% FBS added. After centrifugation at 4°C, 300 g for 5 min and aspiration,
the cell pellet was resuspended in Advanced DMEM supplemented with 0.5% (v/v) BSA and cells
were triturated with a flame polished glass pipette (no cell strainer was used). Cells were counted
manually. Three biological replicates of human embryonic lung organoids were selected (~120 wells
in total) and processed as the whole mouse lungs. Human and mouse cells were then combined at a
ratio of 1:4 (human to mouse) with 2 million cells in total per kidney capsule graft. For each of the
three biological replicates, three human cell samples were mixed with MF1 lungs and one with
Rosa26R-mT/mG/+ lungs. In order to facilitate kidney capsule transplantation, the human/mouse cell
mixture was prepared into a cell aggregate (Sheridan et al., 2009). Cells were spun at 300 g for 5
min and 100 pl of the cell suspension was aspirated with a sterile non-filtered P200 tip, the end part
of which was shortened slightly. The end of the tip was then pushed into folded parafilm and
secured by combining all folds upwards (to prevent the cell suspension from leaking) and then the
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whole tip was centrifuged in a 15 ml tube at 300 g for 5 min. A cell pellet became visible on the end
part of the pipette nearest to the parafilm seal. The pipette tip was held horizontally to remove the
parafilm and then the cell pellet was transferred directly onto a polycarbonate filter (Millipore) float-
ing in a well of a 24 well plate. Overnight culture in self-renewing medium supplemented with 5%
FBS was performed. The next morning, cell aggregates were transferred to Advanced DMEM. NSG
male mice were anaesthetised and each cell transplanted into the left kidney capsule. Kidneys were
harvested at 3, 7 and 12 weeks post-transplant and fixed overnight 4% PFA at 4°C. Chimeric human-
mouse MF1 grafts were harvested at 3 and 7 weeks and the human cells distinguished using HuNu
antibody staining. Human—-mouse Rosa26R-mT/mG grafts were harvested at 12 weeks and the
human cells distinguished by the absence of red membranes. The 12 week hosts received three daily
intraperitoneal injections of 0.5 mg/Kg body weight dexamethasone 1 week before culling.

Xenotransplantation (injured mouse lungs)

NSG male mice were used. Mice were anaesthetised using 2% (v/v) isoflurane and then exposed to
bleomycin oropharyngeally through controlled aspiration on day —2. Bleomycin (clinical grade pur-
chased from UCL pharmacy) was prepared as a 1 mg/ml stock using sterile 0.9% (w/v) normal saline
and administered as 1 pl/g body weight to each mouse. Human embryonic lung organoids were
expanded as described above. On the day of transplantation organoids were harvested in 15 ml
tubes using cold washing medium, centrifuged at 4°C, 300 g for 5 min and incubated in TrypLE™
Express Enzyme (ThermoFisher Scientific, 12604013) at 37°C for 2 min then 20 ml of Advanced
DMEM with 5% (v/v) FBS added. After centrifugation at 4°C, 300 g for 5 min and aspiration, the cell
pellet was resuspended in DMEM/F12 supplemented with 0.5% (v/v) BSA and cells were triturated
with a flame polished glass pipette. Viable cells were counted manually and single cell morphology
confirmed. 600,000 cells (in 25 pl of DMEM/F12 supplemented with 0.5% (v/v) BSA) were adminis-
tered intratracheally to each mouse under isoflurane anaesthesia on day 0. Lungs were harvested by
culling the animals through intraperitoneal injection of sodium thiopental. Lungs were insufflated
with 4% (w/v) PFA intratracheally, upon which the most proximal part of the trachea was tied with
dental floss. The whole lung was then immersed in 4% (w/v) PFA and incubated overnight at 4°C. Tis-
sue was then processed for cryo-sectioning.

Microscopy

The following microscopes were used: Compound microscope: Zeiss Axiophot. Confocal micro-
scope: 1) Leica SP8, 2) Olympus FV1000 Inverted. Confocal z stacks were acquired at an optical reso-
lution of 1024 x 1024 with an optical z slice every 1 um for 40x images and every 2.3 um for 20x
images. Movies of growing organoids were captured by culturing in a Nikon Biostation and captur-
ing bright-field images every 12 hr for up to 11 days.

Image scoring

For estimating the proportion of mesenchyme after microdissection of the epithelium for RNAseq
and organoid culture, a macro for Fiji was written by Richard Butler, Gurdon Institute Imaging Facility
(Mesenchyme_Macro.ijm is available as a supplemental file). The macro estimates the number of
mesenchymal cells inside the 3D projection of a selected 2D region of interest by subtracting an
E-Cadherin signal mask from a DAPI signal mask and dividing the remaining volume by a user-
defined predicted nucleus volume.

Quantitation of number of human grafts seen in bleomycin-injured mouse lungs was performed
manually by counting the number of grafts, and number of cells per graft, seen per 20 consecutive
20x fields in 1 section of 1 random slide for each of the four mouse lungs in each of the four experi-
mental groups. Quantitation of the number of human cells per graft was also manual.

Quantitation of organoid forming efficiency with, or without, TGFg inhibition was done based on
the definition of an organoid as structures which had at least doubled in size compared to a fresh tip
and had also branched. Quantitation of organoid size (diameter at the widest point) with, or without,
TGFR inhibition was expressed as a percentage increase comparing Day 11 to Day 1.
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