

Open access • Journal Article • DOI:10.1089/TEN.TEA.2009.0629

Human embryonic mesodermal progenitors highly resemble human mesenchymal stem cells and display high potential for tissue engineering applications.

— Source link 🛽

Giuseppe Maria de Peppo, Sara Svensson, Maria Lennerås, Jane Synnergren ...+6 more authors

Institutions: University of Gothenburg, University of Skövde, Sahlgrenska University Hospital

Published on: 10 Mar 2010 - Tissue Engineering Part A (Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA)

Topics: Adult stem cell, Stem cell, Clinical uses of mesenchymal stem cells, Stem cell transplantation for articular cartilage repair and Progenitor cell

Related papers:

- Derivation of multipotent mesenchymal precursors from human embryonic stem cells.
- Human embryonic stem cell-derived mesenchymal progenitors-Potential in regenerative medicine.
- Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs.
- · Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells
- Osteogenic Potential of Human Mesenchymal Stem Cells and Human Embryonic Stem Cell-derived Mesodermal Progenitors : a Tissue Engineering Perspective

This is the published version of a paper published in *Tissue Engineering*. Part A.

Citation for the original published paper (version of record):

de Peppo, G., Svensson, S., Lennerås, M., Synnergren, J., Stenberg, J. et al. (2010) Human Embryonic Mesodermal Progenitors Highly Resemble Human Mesenchymal Stem Cells and Display High Potential for Tissue Engineering Applications. *Tissue Engineering. Part A*, 16(7): 2161-2182 http://dx.doi.org/10.1089/ten.TEA.2009.0629

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

This is a copy of an article published in Tissue engineering: Part A. \bigcirc 2010 Mary Ann Liebert, Inc.; Tissue engineering: Part A is available online at: http://online.liebertpub.com.

Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-4310

Human Embryonic Mesodermal Progenitors Highly Resemble Human Mesenchymal Stem Cells and Display High Potential for Tissue Engineering Applications

Giuseppe Maria de Peppo, M.Sc.,^{1,2} Sara Svensson, M.Sc.,^{1,2} Maria Lennerås, M.Sc.,^{2,3} Jane Synnergren, Ph.D.,^{4,5} Johan Stenberg, M.Sc.,⁵ Raimund Strehl, Ph.D.,^{2,6} Johan Hyllner, Ph.D.,^{2,6} Peter Thomsen, Ph.D.,^{1,2} and Camilla Karlsson, Ph.D.^{1,2}

Adult stem cells, such as human mesenchymal stem cells (hMSCs), show limited proliferative capacity and, after long-term culture, lose their differentiation capacity and are therefore not an optimal cell source for tissue engineering. Human embryonic stem cells (hESCs) constitute an important new resource in this field, but one major drawback is the risk of tumor formation in the recipients. One alternative is to use progenitor cells derived from hESCs that are more lineage restricted but do not form teratomas. We have recently derived a cell line from hESCs denoted hESC-derived mesodermal progenitors (hES-MPs), and here, using genome-wide microarray analysis, we report that the process of hES-MPs derivation results in a significantly altered expression of hESC characteristic genes to an expression level highly similar to that of hMSCs. However, hES-MPs displayed a significantly higher proliferative capacity and longer telomeres. The hES-MPs also displayed lower expression of HLA class II proteins before and after interferon- γ treatment, indicating that these cells may somewhat be immunoprivileged and potentially used for HLA-incompatible transplantation. The hES-MPs are thus an appealing alternative to hMSCs in tissue engineering applications and stem-cell-based therapies for mesodermal tissues.

Introduction

TISSUE ENGINEERING IS AN EMERGING field of research cells with a supporting substrate. Stem cells are suitable cell types for this application owing to their expansion potential and ability to differentiate into a variety of tissues. Several different embryonic stem cell lines and adult stem cell sources have been used for this purpose,^{1–4} underlining that some specific cell types may give better results in some particular applications. Among them, human embryonic stem cells (hESCs) constitute an important new resource in tissue engineering, mainly because of an extensive differentiation capacity and high proliferative potential. In fact, many adult organ-specific cells and stem cells show a limited proliferative capacity and, after long-term in vitro culture, lose their functional quality.⁵ On the other hand, a major disadvantage with hESCs is the risk of tumor formation in the recipients.⁶ hESC-derived mesodermal progenitors (hES- MPs) are derived from hESCs but are more lineage restricted and do not form teratomas *in vivo*. Similarly to hESCs, hES-MPs have a capacity for self-renewal and differentiation, but these properties are more limited.⁷

The derivation of hES-MPs from hESCs using different protocols has been described earlier.⁸⁻¹² None of these protocols address the important aspects of xeno-free derivation, robustness, and safety for the use in tissue engineering and cell therapies. We therefore recently developed an optimized protocol resulting in simple and reproducible derivation of hES-MPs from undifferentiated hESCs.⁷ Multiple hES-MP cell lines have been derived and characterized using this protocol, including a xeno-free hES-MP cell line from xeno-free parental hESCs, and their differentiation capacity toward tissues of the mesodermal lineage, including the osteogenic, chondrogenic, and adipogenic lineages has been demonstrated.⁷ The mesodermal commitment of the hES-MPs suggests that these cells are closely related to stem cells of the mesonchymal lineage and raises the urge for further

¹Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.

²BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden.

³TATAA Biocenter AB, Göteborg, Sweden.

⁴School of Life Sciences, University of Skövde, Skövde, Sweden.

⁵Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, University of Gothenburg, Göteborg, Sweden.

⁶Cellartis AB, Göteborg, Sweden.

characterization. Human mesenchymal stem cells (hMSCs) represent a source of pluripotent cells that are already in various phases of clinical application. However, the use of hMSCs in tissue engineering has been hampered largely due to their low proliferation, finite life span, and gradual loss of their stem cell properties during *ex vivo* expansion.⁵

Today, the transcriptional changes occurring during hES-MP derivation have not been studied and it is not either known how closely the hES-MPs resemble hMSCs. There is further a lack of knowledge concerning the immunological properties of these hES-MPs as well as their regulation of senescence and proliferative capacity. These questions are a prerequisite to investigate in order to replace hMSCs with hESC-derived progenitor cells in future tissue engineering applications, which prompted us to comprehensively study these issues.

Materials and Methods

Cell types and culture conditions

The undifferentiated hESC lines used in this study were the SA167, SA002.5, and SA461, derived and characterized at Cellartis AB, Gothenburg, Sweden. Detailed protocols are available at Cellartis (www.cellartis.com). The hES-MP cell lines were derived from the three undifferentiated hESC lines described above, as previously reported.⁷ hMSCs were isolated from bone marrow aspirates from the iliac crest of patients undergoing spinal fusion (age range 13–20 years) and expanded as described previously.¹³ The cells were harvested for RNA isolation in passage 3 when the cells reached 80% confluence. The donation of bone marrow was approved by the ethics committee at the Medical Faculty at Gothenburg University (Dnr. 532-04).

Flow cytometry analysis

Flow cytometry analysis was used to confirm isolation and enrichment of hMSCs, verify microarray results, and examine expression of immunological markers. To verify enrichment of hMSCs, cells were stained with CD34-PerCP, CD45-FITC, CD105-FITC, and CD166-PE (all from Ancell). To verify the microarray results, hMSCs, hES-MPs, and hESCs were stained with CD44-FITC (BD Biosciences), CD58-PE (BD Biosciences), CD47-FITC (BD Biosciences), and CD166-PE. Expression of immunological markers was studied in both hMSCs and hES-MPs at low and high passage (defined as 5 and 50 population doublings [PDs], respectively) as well as before and after a 5-day treatment with interferon- γ (IFN- γ) (100 U/mL; R&D Systems Europe). The cells were then stained with HLA-ABC-FITC, HLA-DR-FITC, CD80-FITC (all from BD Biosciences), and CD86-PerCP-Cv5 (Ancell). All samples were analyzed using the FACS Aria flow cytometer (Becton Dickinson) using FACS Diva software (Becton Dickinson).

RNA isolation

Total RNA was extracted using the RNeasy[®] Minikit (Qiagen GmbH) according to manufacturer's instructions. DNAse treatment was performed to eliminate any contamination from genomic DNA according to Qiagen RNase Free DNase Set (Qiagen GmbH) protocol.

Microarray analysis

RNA from hESCs, hES-MPs, and hMSCs was subjected to gene expression analysis using the oligonucleotide microarray HG-U133plus2.0 (Affymetrix) according to manufacturer's recommendations. Raw expression data were normalized and subsequently analyzed with GeneChip Operating Software 1.4 (GCOS; Affymetrix). Comparative and statistical analyses were performed with the BIORETIS Web tool (www.bioretisanalysis.de). Genes were selected for further analysis only if (1) the absolute call for the gene was present for at least one of the three cell types, (2) three out of three comparisons had to be considered increased or decreased according to Affymetrix algorithm, and (3) the average fold change (FC) should be at least twofold. Using these qualitative and quantitative filtering criteria, we performed two comparative analyses, one between hES-MPs and hESCs and the other between hES-MPs and hMSCs. Functional classification into five different categories-transcription factors, extracellular matrix components, growth factors, membrane receptors, and cell adhesion molecules-was performed using annotations from the Gene Ontology Annotation Database.¹⁴ Further, expression of 48 genes known to be overexpressed in hESCs compared with differentiated cell types, 40 genes specifically expressed in hESCs, and 30 selected genes underexpressed in hESCs compared with differentiated cell types was investigated.¹⁵ For these genes, the mean expression level from different probe sets of each gene was calculated and reported in Table 1A-C. The significance level was determined applying the Welch's ttest on log2-transformed signal values. Hierarchical cluster analysis was performed using log2-transformed signals of all the replicates using Genesis 1.7.3 software.¹⁶

To explore the similarity in global gene expression pattern across investigated samples, the correlation was calculated using standard function in R statistical software. Spearman was used as correlation coefficient, and genes with missing values were excluded from the calculation. The interpretation of this analysis is as follows: 1 means perfect correlation, -1 means negative correlation, and 0 means no correlation.

The percentage of genes with an FC \leq 3 between pairs of samples was calculated for all three comparisons (hES-MPs vs. hMSCs, hES-MPs vs. hESCs, and hMSCs vs. hESCs). This FC-threshold was defined based on the results from comparisons of the biological replicates. To define the background variation, the FCs between pair-wise replicates were calculated, and the results showed that 90% of all the genes have an FC \leq 3 between any two replicates of a sample.

To observe the similarity in global gene expression across the investigated cell samples, scatter plots were generated between average signals of pairs of samples using standard function in R.

Analysis of protein interaction networks

To investigate possible interactions among proteins from differentially expressed genes (defined by having an FC of at least 10) between hES-MPs and hESCs or hES-MPs and hMSCs and to identify hub proteins, the search tool STRING (http://string.embl.de) was used to mine for recurring instances of neighboring genes. A gene of interest was classified as a hub if it had at least five interactions with other genes.¹⁴

MESODERMAL PROGENITOR CELLS FOR TISSUE ENGINEERING

TABLE 1A. MICROARRAY RESULTS OF 4	40 Genes Specifically	Expressed in Human	Embryonic Stem Cells
-----------------------------------	-----------------------	--------------------	-----------------------------

Gene name	Gene abbreviation	FC hES-MP vs. hESCs	р	FC hES-MP vs. hMSCs	р
Abhydrolase domain containing 9	ABHD9	-17.4	0.0000	1.5	0.3031
Barren homolog protein 1	BRRN1	-4.2	0.0087	22.6	0.0000
Chromosome 14 open reading frame 115	C14orf115	-14.3	0.0000	1.7	0.1378
Cell division cycle 25 homolog A	CDC25A	-10.7	0.0000	6.1	0.2463
CHK2 checkpoint homolog	CHEK2	-4.2	0.0000	-1.1	0.6316
Claudin 6	CLDN6	-213.7	0.0000	0.6	0.2859
Chromosome X open reading frame 15	CXorf15	-3.2	0.0000	1.1	0.5589
Cytochrome P450, family 26, subfamily A1	CYPŽ6A1	-81.9	0.0000	2.1	0.2116
Defective in sister chromatid cohesion protein 1	DCC1	-3.8	0.0081	1.3	0.3638
DNA (cytosine-5-)-methyltransferase 3 alpha	DNMT3A	-4.3	0.0021	0.7	0.2329
Deoxythymidylate kinase	DTYMK	1.1	0.4926	1.4	0.4324
EPH receptor A1	EPHA1	-21.3	0.0002	0.0	0.4250
Ets variant gene 4	ETV4	-3.5	0.0001	2.1	0.0209
LINE-1 type transposase domain containing 1	FLJ10884	-226.3	0.0000	0.3	0.4757
FLJ20105 protein	FLJ20105	-1.7	0.0047	17.7	0.0000
Apoptosis enhancing nuclease	FLJ12484	-1.7	0.0070	1.3	0.1510
Growth differentiation factor 3	GĎF3	-9.3	0.0000	1.1	0.5610
Gap junction protein, gamma 1	GIA7	0.6	0.4198	6.9	0.0033
G protein-coupled receptor 19	GPR19	-24.6	0.0000	2.3	0.0391
G protein-coupled receptor 23	GPR23	-4.3	0.0012	2.1	0.0069
Helicase	HELLS	-2.5	0.0933	19.5	0.0011
HESX homeobox 1	HESX1	-84.4	0.0000	-4.8	0.0007
KIAA0523 protein	KIAA0523	-2.7	0.0356	-3.4	0.0614
Lin-28 homolog	LIN28	-496.5	0.0000	2.7	0.0001
Minichromosome maintenance complex 10	MCM10	-4.3	0.0000	9.7	0.0097
Dysbindin	MGC3101	-2.3	0.0782	2.6	0.2980
V-myb myeloblastosis viral oncogene-like 2	MYBL2	-8.5	0.0000	3.0	0.0000
Nanog homeobox	NANOG	-1482.0	0.0000	-4.3	0.0001
Origin recognition complex, subunit 1-like	ORC1L	-16.1	0.0000	4.6	0.5496
Origin recognition complex, subunit 2-like	ORC2L	-2.6	0.0000	1.1	1.0000
POU class 5 homeobox 1	POU5F1	-445.7	0.0000	1.0	0.0558
PR domain containing 14	PRDM14	-10.1	0.0000	2.2	0.0007
Chromosome 2 open reading frame 56	PRO1853	-2.2	0.0045	0.5	0.2072
PWP2 periodic tryptophan protein homolog	PWP2H	-0.8	0.0915	1.2	0.4675
RNA binding motif protein 14	RBM14	-7.7	0.0000	2.4	0.0000
RNA, U3 small nucleolar interacting protein 2	RNU3IP2	-1.8	0.0127	1.5	0.0032
Solute carrier family 5 member 6	SLC5A6	-5.4	0.0000	1.7	0.0012
SLD5 homolog	SLD5	-2.5	0.0337	4.0	0.2560
Teratocarcinoma-derived growth factor 1	TDGF1	-315.2	0.0000	1.5	0.0145
Zic family member 3	ZIC3	-51.6	0.0000	-1.1	0.9404

Genes significantly regulated are in boldface.

FC, fold change; hESC, human embryonic stem cell; hES-MP, hESC-derived mesodermal progenitor; hMSC, human mesenchymal stem cell.

Quantitative real time-polymerase chain reaction

Microarray results were verified using real-time polymerase chain reaction (PCR), flow cytometry, and immunohistochemistry. For real-time PCR, reverse transcription was carried out using iScript cDNA Synthesis Kit (Bio-Rad) according to manufacturer's instructions. Design of primers for *TDGF*, *TGF*- β 2*R*, *RUNX2*, *COL1A1*, *LHX8*, and *BMP2R* was performed using the Primer3 Web-based software. Primer sequences and detailed protocols are available at TATAA Biocenter AB, Göteborg, Sweden (www.tataa.com). Statistical analysis for real-time PCR data was performed using the Mann–Whitney test. Differences were accepted to be statistically significant at $p \leq 0.05$ (*).

Immunohistochemistry

Monoclonal antibodies against the pluripotency markers OCT4 and NANOG were used to immunohistochemically verify the microarray results. The procedure used for the analysis has previously been described.¹⁷

Proliferative capacity

To compare the expansion ability of hMSCs and hES-MPs, cells were expanded as described above and passaged when one of them reached 80% confluence. At each passage, cells were counted in a hemocytometer and the number of cell doublings was calculated.

Telomerase activity

Telomerase activity was evaluated using the *TeloTAGGG* Telomerase PCR ELISA^{PLUS} kit (Roche Diagnostics Scandinavia AB). Both hMSCs and hES-MPs at low and high passage were analyzed according to manufacturer's recommendations. The PCR was performed using a Thermal Cycler 2720

Table 11	3. Microarray	RESULTS C	of 48 Genes	5 Known to	BE OVERE	XPRESSED
in Human	Embryonic St	em Cells (Compared	with Differ	ENTIATED	Cell Types

Gene name	Gene abbreviation	FC hES-MP vs. hESCs	р	FC hES-MP vs. hMSCs	р
Aminoadipate-semialdehyde synthase	AASS	-5.3	0.0000	-1.7	0.3257
Alkaline phosphatase, liver/bone/kidney	ALPL	-27.3	0.0000	-4.0	0.0546
Bone morphogenetic protein receptor, type 1A	BMPR1A	-3.0	0.0000	1.3	0.0003
BUB1 budding uninhibited by benzimidazoles 1	BUB1	-6.0	0.0212	4.0	0.2569
CCAAT/enhancer binding protein zeta	CEBPZ	-3.7	0.0000	1.1	0.1389
Collapsin response mediator protein 1	CRMP1	-4.1	0.0000	2.7	0.0000
Cytochrome P450, family 26, subfamily A 1	CYP26A1	-81.9	0.0000	2.1	0.2116
DNA (cytosine-5-)-methyltransferase 3 beta	DNMT3B	-79.4	0.0000	1.5	0.0003
Developmental pluripotency associated 4	DPPA4	-21.0	0.0000	7.9	0.1538
GABA A receptor, beta 3	GABRB3	-34.4	0.0004	-0.2	0.3643
Galanin prepropeptide	GAL	-16.3	0.0143	2.6	0.0543
Growth differentiation factor 3	GDF3	-9.3	0.0000	1.1	0.5610
Glypican 4	GPC4	-58.2	0.0000	-6.1	0.0017
Helicase	HELLS	-2.5	0.0933	19.5	0.0011
HRAS-like suppressor 3	HRASLS3	1.4	0.1165	-1.6	0.0071
Heat shock 70 kDa protein 4	HSPA4	-3.5	0.0000	1.6	0.0285
Indoleamine-pyrrole 2,3 dioxygenase	IDO1	-5.5	0.0021	1.1	0.5527
Integrin beta 1 binding protein 3	ITGB1BP3	-38.2	0.0000	-1.3	0.3081
KIAA0523 protein	KIAA0523	-2.7	0.0356	-3.4	0.0614
Leukocyte cell derived chemotaxin 1	LECT1	-20.2	0.0000	1.7	0.1637
Left-right determination factor 1	LEFTY1	-14.3	0.0014	-1.1	0.3309
Lin-28 homolog (C. elegans)	LIN28	-496.5	0.0000	2.7	0.0977
Mannose-6-phosphate receptor	M6PR	0.6	0.0056	1.8	0.0003
Minichromosome maintenance complex 5	MCM5	-9.5	0.0000	9.2	0.0002
Microsomal glutathione S-transferase 1	MGST I	-1.3	0.1750	-1.2	0.2586
Muts homolog 2	MSH2	-8.0	0.0000	-1.0	1.0000
Methylenetetrahydrofolate dehydrogenase	MIHFDI	1.3	0.0270	0.1	0.5060
Nanog nomeobox	NANOG	-1482.0	0.0000	-4.3	0.0000
Nuclear autoantigenic sperm protein	NASP	-4./	0.0745	1.6	0.0307
DID fin and anothin 17	DUE17	-10.1	0.0000	4.0	0.0001
PHD inger protein 1/		-4.0 4 F	0.0000	-2.0	0.0002
Phosplingso A2 group XVI	PIIVIZ DI A 2 C 1 6	-4.5	0.0000	-1.0 17 1	0.9369
POL class 5 homeobox 1	PLAZGIO DOLISE1	-33.1	0.0000	-17.1	1 0000
Phoenhorihosyl pyrophoenhate	PDUJFI PDAT	-445.7	0.0000	1.0	0.5055
amidotransferase	DCIDI	-1.7	0.0000	0.5	0.0000
PC4 and SFRS1 interacting protein 1	PSIP1	-3.7	0.0384	-0.7	0.4442
Sema domain 6A	SEMA6A	-37.3	0.1394	1.9	0.3944
Selenophosphate synthetase 1	SEPHSI	-7.5	0.0000	2.0	0.0130
Solute carrier family 16, member 1	SLCI6AI	-3.8	0.0000	1./	0.0024
polypeptide N	SNRPN	-2.1	0.2068	1.5	0.4131
SNRPN upstream reading frame	SNRPN	-4.2	0.0000	2.2	0.0037
SKY (sex determining region Y)-box 2	SOX2	-22.5	0.0001	3.6	0.3468
Ieratocarcinoma-derived growth factor 1	TDGF1	-315.2	0.0000	1.5	0.4168
Telomeric repeat binding factor 1	TERF1	-10.7	0.0000	0.1	0.4638
UDP-glucose pyrophosphorylase 2	UGP2	-2.6	0.0010	-0.1	0.4705
Uracii-DNA glycosylase	UNG	-3.4	0.0000	1.4	0.0213
Ubiquitin specific peptidase 9, X-linked	USP9X	-2.0	0.1573	-0.3	0.0534
Zic family member 3	ZIC3	-51.6	0.0000	-1.1	0.9250

Genes significantly regulated are in boldface.

(Applied Biosystems), and the absorbance was read at 450 nm using the iEMS reader MF (Labsystems) microtiter plate reader and Ascent software. All samples were analyzed in triplicates, and heat-treated samples were used as negative control.

Telomere length

To investigate the length of the telomeres, DNA was isolated with Qiagen DNeasy Blood & Tissue Kit (Qiagen AB) according to the manufacturer's protocol from both hMSCs

MESODERMAL PROGENITOR CELLS FOR TISSUE ENGINEERING

Gene name	Gene abbreviation	FC hES-MP vs. hESCs	n	FC hES-MP vs. hMSCs	n
	neercennen	1120 00	P	1410 60	P
Actin, alpha 2, smooth muscle, aorta	ACTA2	3.8	0.0612	0.1	0.2604
Bone morphogenetic protein 1	BMP1	1.8	0.1805	-1.4	0.0968
Bone morphogenetic protein 4	BMP4	-5.1	0.0193	1.1	0.2625
CD47 molecule	CD47	6.7	0.0013	0.7	0.1303
Cyclin-dependent kinase inhibitor 1A	CDKN1A	9.7	0.4477	0.1	0.0305
Collagen, type XI, alpha 1	COLIIA1	10.4	0.0000	-0.5	0.4890
Collagen, type I, alpha 1	COLIA1	18.0	0.0620	-0.8	0.4615
Collagen, type I, alpha 2	COLIA2	21.8	0.0000	-1.7	0.0443
Collagen, type II alpha 1	COL2A1	-4.6	0.1311	-0.6	0.0324
Collagen, type III, alpha 1	COL3A1	21.2	0.0004	-7.6	0.0001
Collagen, type V alpha 1	COL5A1	17.0	0.0000	-2.8	0.0177
Collagen, type V alpha 2	COL5A2	18.3	0.0000	-1.9	0.0116
Collagen, type VI, alpha 3	COL6A3	67.5	0.0000	-3.7	0.0075
Cystatin C	CST3	-1.2	0.6826	-9.8	0.0000
Chemokine (C-X-C motif) ligand 14	CXCL14	-2.1	0.0049	1.6	0.1708
Decorin	DCN	5.7	0.0302	-51.8	0.0114
Heart and neural crest derivatives 1	HAND1	-1.5	0.2841	1.0	0.9200
Insulin-like growth factor 2	IGF2	3.5	0.1890	-4.8	0.0366
Insulin-like growth factor binding protein 3	IGFBP3	7.1	0.0000	-1.8	0.2155
Insulin-like growth factor binding protein 7	IGFBP7	282.2	0.0000	-1.0	0.9241
Interleukin 6 signal transducer	IL6ST	7.2	0.0009	-1.2	0.2669
Keratin 18	KRT18	-1.4	0.2668	15.0	0.0000
Keratin 19	KRT19	2.2	0.1547	1.6	0.3836
Keratin 7	KRT7	0.2	0.2820	-1.5	0.1050
Keratin 8	KRT8	-2.5	0.0403	4.3	0.0004
Lumican	LUM	5.0	0.1418	-17.4	0.0000
N-mye downstream regulated gene 1	NDRG1	4.5	0.0000	-2.5	0.0008
Procollagen-proline	P4HA2	12.1	0.0000	-2.5	0.0000
Rho-related BTB domain containing 3	RHOBTB3	4.1	0.0009	-1.9	0.0425
Osteonectin	SPARC	5.8	0.0000	-1.3	0.1162

TABLE 1C. MICROARRAY RESULTS OF 30 SELECTED GENES UNDEREXPRESSED IN HUMAN EMBRYONIC STEM CELLS COMPARED WITH DIFFERENTIATED CELL TYPE

Genes significantly regulated are in boldface.

and hES-MPs at low and high passage. After isolation of DNA, the length of the telomeres was measured using the *TeloTAGGG* Telomere Length Assay kit (Roche Diagnostics Scandinavia AB) according to the protocol provided by the manufacturer.

Results

Flow cytometry analysis of hMSCs

Flow cytometry analysis was used to evaluate the enrichment of a homogenous population of hMSCs, demonstrating that $96\% \pm 2\%$ of the cells were CD166 + /CD45 - and $94\% \pm 1\%$ of the cells were CD105+/CD34-.

Cell morphology

While hESCs (Fig. 1A) exhibited their typical morphology and characteristic growth in colonies, the hES-MPs (Fig. 1B) displayed a fibroblast-like morphology characteristic of hMSCs (Fig. 1C).

Global gene expression comparison

Scatter plot analysis of the microarray data for each pairwise comparison showed that hES-MPs and hMSCs display a more narrow spatial distribution of gene expression, with 90% of the genes displaying an FC \leq 3 (Fig. 2A, D). Results from the other two comparisons (hESCs vs. hES-MPs and hESCs vs. hMSCs) showed larger transcriptional differences with 25% or more of the genes with an FC \geq 3 (Fig. 2B–D). The Spearman correlation coefficients demonstrated a higher correlation between hES-MPs and hMSCs (0.92) than between hESCs vs. hES-MPs (0.83) and hESCs vs. hMSCs (0.79) (Fig. 2D). Hierarchial clustering of 447 genes with an FC \geq 20 resulted in three main groups—hESCs, hES-MPs, and hMSCs (Fig. 2E). This analysis further demonstrates that the hES-MPs and the hMSCs display a more similar expression pattern than hES-MP compared with hESCs.

In Table 1A, the expression levels of 40 genes known to be specifically expressed in hESCs is shown. Out of these genes, 27 genes were significantly downregulated during hES-MP derivation and most of the genes (32 out of 40) displayed a transcription level similar to hMSCs. Among these genes, several genes involved in the maintenance of pluripotency (*POU5F1*, *NANOG*, *ZIC3*, *TDGF1*, and *LIN28*) significantly decreased in expression at least 50 times during hES-MP derivation; with the exception of *NANOG*, no significant differences in expression of these genes were detected between hES-MPs and hMSCs. None of the markers for hESCs increased in expression during hES-MP derivation. Three genes (*BRRN1*, *FLJ20105*, and *HELLS*) displayed an at least

FIG. 1. Light micrographs showing human embryonic stem cells (hESCs) (**A**) growing on a mouse embryonic fibroblast feeder layer (scale bar = $100 \,\mu$ m), and hESC-derived meso-dermal progenitors (hES-MPs) (**B**) and human mesenchymal stem cells (hMSCs) (**C**) expanded on tissue culture plastic (scale bar = $10 \,\mu$ m).

10-fold higher expression in hES-MPs compared with hMSCs, whereas *MCM10*, *CDC25A*, and *ORC1L* showed a 9.7-fold, 6.1-fold, and 4.6-fold higher expression in hES-MPs compared with hMSCs.

Analyzing expression of 48 genes known to be overexpressed in hESCs compared with differentiated cell types demonstrated that 39 genes decreased in transcription during hES-MP formation (Table 1B). Within this group of genes, some additional genes of importance for pluripotency were detected as significantly downregulated during hES-MP derivation, including *LEFTY1* and *SOX2*. None of the 48 genes known to be overexpressed in hESCs compared with differentiated cell types displayed higher expression in hES-MPs compared with hESCs. Genes differentially expressed between hES-MPs and hMSCs include *MCM5*, which had 9.2fold higher expression in hES-MPs compared with hMSCs, and *PLA2G16*, displaying a higher expression in hMSCs.

Of the 30 selected genes known to be underexpressed in hESCs compared with differentiated cell types, 15 genes were induced during hES-MP derivation (Table 1C). Some of these genes include genes encoding mesodermal extracellular matrix components (*COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL11A1,* and *COL6A3*) (Table 1C). The majority of these genes were induced to the same level as seen in hMSCs. On the other hand, genes encoding markers for ectodemal tissues, such as keratins (*KRT18, KRT19, KRT7,* and *KRT8*) were not induced during the process of hES-MP formation.

In Table 2 (A, B), the 15 most up- and down-regulated genes per each of the 5 categories described above are listed, if existing. Several genes encoding transcription factors displayed a decreased transcription during hES-MP derivation (SIX1, PPRX1, NR2F2, BNC1, RUNX2, and BCOR). The hMSCs displayed the highest expression level of the HOX genes (HOXA9, HOXA10, HOXC6, and HOXC10), their downstream mediator EMX2 and IRX3, as well as FOS genes (FOS and FOSB). Studying genes encoding extracellular matrix components induced during hES-MP derivation, we added the following genes to the results described above: COL1A2, COL6A2, COL6A, BGN, MFAP5, FN1, and FBN1. Several genes encoding matrix proteins were thus induced during hES-MP formation; in fact, the only gene in this category that was found to have higher expression in hESCs than in hES-MPs and hMSCs was LAMA1.

For the membrane receptor category, essential receptors for mesodermal differentiation, such as *TGFRB2* and *BMPR2*, are shown to be expressed to a greater extent in hES-MPs and hMSCs compared with hESCs. Finally, genes encoding cell adhesion molecules, including the hMSCs markers *CD44*, *CD58*, *CD47*, and *CD166* (*ALCAM*), were significantly induced during hES-MP derivation to a level similar to hMSCs.

In total, 9 hubs were identified among the genes induced by hES-MP derivation (*PLAU*, *THBS1*, *FN1*, *COL1A1*, *COL1A2*, *MFS2*, *CD44*, *CDKN2A*, and *CAV1*) (Fig. 3A). Only one hub, *EWSR1*, was identified among the genes repressed during this process (Fig. 3B). Hub genes with higher expression in hES-MPs compared with hMSCs include several genes composing the spindle assembly checkpoint (*CDC20*, *AURKA*, *AURKB*, *BUB1B*, *NDC20*, *MAD2*, *ERCC6L*, *NUF2*, *CENPA*, *AP14*, *SPC24*, *D40*, *SPC25*, *CENPM*, *MLF1IP*, *ZWINT*, *CENPF*, *CDCA8*, *NEK2*, and

FIG. 2. Scatter plots (A–C), where genes within the lines indicate a fold change (FC) of less than ± 3 . Summary of the scatter plots and Spearman correlation analysis (D). Hierarchical clustering of genes with an FC ≥ 20 (E). Color images available online at www.liebertonline.com/ten.

CCNB1) (Fig. 3C). Only one hub gene, *JUN*, was identified among the genes with higher expression in hMSCs than hES-MPs (Fig. 3D).

Real-time PCR

Microarray results for *TDGF*, *TGF*- β 2*R*, *RUNX2*, *COL1A1*, *LHX8*, and *BMP2R* were verified using real-time PCR, which corroborated the microarray results in all cases except for *BMP2R*, in which no significant differences could be

detected between the three different cell types studied (Fig. 4A–F).

Flow cytometry

The flow cytometry analysis confirmed the microarray results for adhesion proteins characteristic for hMSCs (CD44, CD58, CD166, and CD47), demonstrating that the undifferentiated hESCs displayed significantly lower expression of these four markers compared with the hMSCs and hES-MPs,

AN	d Human Embryonic	STEM CELL-DERIVE	d Mesodermal Progenito	RS		
Gene name	Gene abbreviation	Probe ID	FC hES-MPs vs. hESC	Р	FC hES-MPs vs. hMSCs	д
Transcription factors						
SIX homeobox 1	SIXI	228347_at	364.8	0	0.1	0.0002
Paired related homeobox 1	PRRX1	226695 at	317.6	0	1.9	0.0513
Nuclear receptor subfamily 2, group F, member 2	NR2F2	215073 s at	197.0	0	6.9	0
Basunuclan 1	BNC1	1552487 a at	151.6	0	-1.2	0.4694
Distal-less homeobox 1	DLX1	242138 at	104.8	0	15.3	0
LIM homeobox 8	LHX8	1569469 a at	81.9	0	95.5	0.0040
Forkhead box D1	FOXD1	206307 s at	69.7	0	1.9	0.0469
Zinc finger E-box binding homeobox 1	ZEB1	212764 at	68.6	0	1.3	0.1708
Distal-less homeobox 2	DLX2	207147 at	56.6	0	17.3	0
Twist homolog 1	TWIST1	213943_at	42.2	0	-2.1	0.0987
Neuronal PAS domain protein 2	NPAS2	39549_at	40.9	0	1.2	0.1158
Runt related transcription factor 2	RUNX2	232231_at	38.8	0	-2.1	0.1482
Nuclear factor I/X	NFIX	237400_at	31.3	0	-2.3	0
Teashirt zinc finger homeobox 1	TSH21	223282_at	26.0	0	-1.3	0.0224
Homeobox A3	HOXA3	235521_at	25.8	0	-1.7	0.0052
Hary and enhancer of split 6	HES6	226446_at	-21.6	0	-1.1	0.1590
BCL6 co-repressor	BCOR	223916_s_at	-34.3	0	-2.1	0.2558
Zinc finger protein 165	ZNF165	206683_at	-37.0	0	-3.6	0.0691
Nuclear receptor subfamily 6, group A. member 1	NR6A1	227494_at	-41.9	0	-1.0	0.3698
SRY (sex determining region Y) box 2	SOX2	228038_at	-52.8	0	10.7	0.0052
SRY (sex determining region Y) box 4	SOX4	213668_s_at	-55.3	0	-3.4	0.1217
Forkhead box O1	FOX01	202724_s_at	-58.4	0	-5.2	0.0715
Forkhead box H1	FOXH1	231407_s_at	-62.5	0	1.5	0.2629
HESX homeobox 1	HESX1	211207_at	-84.4	0	-4.8	0.0512
POU class 5 homeobox 1 pseudogene 3	POUSF1	208286_x_at	-445.7	0	1.0	1.0000
Zinc finger and SCAN domain containing 10	ZSCAN10	1553874_a_at	-702.1	0	1.1	0.5828
OTX2	OTX2	242138_at	-877.3	0	1.2	0.7673
POU class 5 homeobox 1 pseudogene 3	POUSF1P3	210265_x_at	-1064.2	0	-2.2	0.0005
POU class 5 homeobox 1 pseudogene 4	POUSF1P4	210905_x_at	-1140.6	0	-1.1	0.5877
Nanog	NANOG	220184_at	-1482	0	-4.3	0.0001
Membrane receptors						
Discoidin domain receptor tyrosine kinase 2	DDR2	225442_at	57.0	0	-2.4	0
Transforming growth factor receptor beta 2	TGFBR2	208944_at	25.8	0	1.0	0.9020
I hrombomodulin AVT montor transing binasis		20388/_s_at	18.4 17 E	0.0023	4.0 1.2	0.1380
AAL receptor tyrosine kinase Ductoin transing absorbation accorded to D	ААL ПТПВР	202000_5_dt	C:/T	0 0012	7.1	0.4700
Tutent tyrosme priospiratase, receptor type, p Tumor necrosis factor recentor superfamily.	TNFRSF10D	227345 at	15.3	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0180
member 10d)	2	
Interleukin 1 receptor 1	IL1R1	202948_at	14.5	0	-3.2	0.0010
Platelet-derived growth factor receptor,	PDGFRA	203131_at	13.7	0.0002	-1.5	0.2510
aipna polypepuαe Bone morphogenetic protein receptor, type 2	BMPR2	231873 at	10.2	0	1.6	0.0190

$\begin{array}{c} 0.0060\\ 0.1500\\ 0.0030\\ 0\\ 0.0010\\ 0.0780\\ 0.0780\\ 0.0760\\ 0.0760\\ 0.0760\\ 0.0760\\ 0.0760\\ 0.0760\\ 0.0760\\ 0.0760\\ 0.0020\\ 0.0210\\ 0.0210\\ 0.0210\\ 0.0210\\ 0.0210\\ 0.0210\\ 0.0210\\ 0.0210\\ 0.020\\ 0.020\\ 0.020\\ 0.0210\\ 0.020\\ 0.000\\ 0.0$	0 0.0068 0.0076	$\begin{array}{c} 0.0435\\ 0\\ 0\\ 0.11238\\ 0.4192\\ 0.5798\end{array}$	$\begin{array}{c} 0\\ 0.0043\\ 0.0070\\ 0.9130\\ 0\\ 0\\ 0\\ 0\\ 0.0037\\ 0.0037\\ 0.0037\\ 0.0037\\ 0.0014\\ 0.00269\\ 0.0014\\ 0.0002\\ 0\end{array}$	(continued)
-1.7 -1.1 -1.6 -1.5 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.1 -1.6 -1.1 -1.6 -1.1 -1.6 -1.1 -1.6 -1.1	133.0 5.7 -4.7	-2.4 5.7 -17.7 5.7 -1.1 -1.1	$\begin{array}{c} +4.\\ -1.3, -2.3, -1.4, $	
$\begin{array}{c} 0.0003\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	000	0.0068 0.0025 0.0006 0.0006 0.0006	$\begin{array}{c} 0\\ 0.0014\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	
10.1 7.9 4.8 4.1 -3.1 -1.5.6 -1.13.9 -1.13.9 -1.13.9 -1.13.9 -1.13.9 -1.13.9 -1.13.9 -1.13.9 -1.13.9	197.0 182.4 25.6	11.9 7.2 6.6 3.4 -14.3 -315.2	$\begin{array}{c} 161.3\\ 74.1\\ 74.1\\ 50.4\\ 132.2\\ 21.4\\ 8.8\\ 8.8\\ 3.3\\ 4.6\\ 6.6\\ 3.3\end{array}$	
228234_at 215719at 201983_s_at 209894_at 155559_s_at 208433_s_at 208433_s_at 204832_s_at 204832_s_at 201483_s_at 203628_at 203628_at 20353_s_at 203953_s_at 203953_s_at 205977_s_at 204469_at 204469_at	210310_s_at 205767_at 223690_at	201185_at 221577_x_at 203821_at 204686_at 206268_at 206286_s_at	213905_x_at 213764_s_at 202202_s_at 202311_s_at 202311_s_at 211161_s_at 211161_s_at 21489_at 21489_at 21489_at 21489_at 21489_at 229271_x_at 229156_s_at 200176_at 200771_at 227048_at	
TICAM2 FAS EGFR EGFR LEPR PTPRM LEPROT LEPROT LEPROT LEPROT CFS2 PTPRD ACVR2B ROR1 CLDN3 EPHA1 PTPRZ1 PTPRZ1	FGF5 EREG LTBP2	HTRA1 GDF15 HBEGF IRS1 LEFTY1 TDGF1	BGN MFAP5 LAMA4 COLIA1 FBN1 FBN1 COL3A1 COL3A1 COL3A1 FN1 COL5A2 COL6A1 COL6A1 COL6A1 LAMA1 LAMA1	
 Coll-like receptor adaptor molecule 2 fas (TNF receptor superfamily, member 6) fapidermal growth factor receptor fapidermal growth factor receptor factor receptor forein tyrosine phosphatase, receptor type, M eptin receptor overlapping transcript ow density lipoprotein receptor related protein 8 Sone morphogenetic protein receptor, type 1A fYRO3 protein tyrosine kinase nsulin-like growth factor 1 receptor for type, D Activim A receptor, type IIB Receptor tyrosine kinase-like orphan receptor 1 Claudin 3 filt receptor A1 lexin B1 foroin tyrosine phosphatase, receptor-type, foroin tyrosine phosphatase, receptor type, D 	Growth factors Tibroblast growth factor 5 Spiregulin Latent transforming growth factor beta binding	protent z HrA serine peptidase 1 Growth and differentiation factor 5 Heparin-binding EGF like growth factor nsulin receptor substrate 1 ceft-right determination factor 1 cratin carcinoma derived growth factor 1	Extracellular matrix components Biglycan Microfibrillar associated protein 5 aminin, alpha 4 Collagen, type 1, alpha 1 Tibrillin 1 Collagen, type II, alpha 2 Collagen, type V, alpha 1 Tibronectin 1 Collagen, type V, alpha 1 Tibronectin 1 Collagen, type VI, alpha 2 Collagen, type VI, alpha 1 Collagen, type VI, alpha 1 Colla	

Gene name	Gene abbreviation	Probe ID	FC hES-MPs vs. hESC	d	FC hES-MPs vs. hMSCs	d
Cell adhesion						
CD44	CD44	212063_at	74.7	0	1.1	0.4800
Cadherin 13, H-cadherin	CDH13	204726_at	70.2	0	1.7	0.3800
Discoidim domain receptor tyrosine kinase 2	DDR2	225442_at	57.0	0	-2.4	0
CD58	CD58	216322_at	50.4	0	-1.3	0.0850
ADAM metallopeptidase domain 12	ADAM12	226777_at	31.8	0.0026	-1.1	0.8770
Integrin, alpha 2 (ĈD49B	ITGA2	227314_at	30.3	0	5.1	0.0060
Neurotrimin	HNT	227566_at	15.9	0	-1.2	0.5830
CD477 Check	CD47	226016_at	14.5	0	1.7	0.0110
Neural cell adhesion molecule 2	NCAM2	205669_at	11.8	0.0002	1.3	0.4500
CD99	CD99	201028_s_at	11.7	0	-1.4	0.0170
Activated leukocyte cell adhesion molecule 166	ALCAM	201951_at	9.8	0	-1.1	0.4700
Claudin 1	CLDN 1	222549_at	8.4	0.0035	2.9	0.0170
RGM domain faculty, member B	RGMB	227340_s_at	7.9	0.0006	4.4	0
Integrin, alpha 3 (antigen CD49C	ITGA3	201474_s_at	6.9	0	1.4	0.0120
CD151	CD151	204306_s_at	6.3	0	-1.0	0.9080
Trophinin	TRO	211700_s_at	-3.1	0.0255	1.3	0.3020
Claudin 10	CLDN10	205328_at	-8.4	0	1.4	0.1290
Protocadherin 7	PCDH7	205535_s_at	-9.1	0.0190	-1.6	0.5430
Claudin 3	CLDN3	203953_s_at	-37.3	0	1.1	0.4970
Protocadheria 8	PCDH8	206935_at	-127.0	0	1.4	0.6360
Claudin 6	CLDN6	237810_at	-364.8	0.0001	2.4	0.0150
FC, fold change; hESC, human embryonic stem cell; hES	3-MP, hESC-derived meso	dermal progenitor; hl	MSC, human mesenchymal stem	cell.		

TABLE 2A. (CONTINUED)

Table 2B. Microarray Results for 1 and Hun	the Most Differenti 1an Embryonic Stem	ally Regulated G Cell-Derived Mi	GENES COMPARING HUMAN	Mesenchyn	ial Stem Cells	
Gene name	Gene abbreviation	Probe ID	FC hES-MPs vs. hMSC	р	FC hEs-MPs vs. hESCs	d
Transcription factors						
LIM homeobox 8	LHX8	1569469_a_at	95.5	0	81.9	0.0050
Transcription factor AP-2 alpha	TFAP2A	204653_at	21.1	0	10.8	0.0005
Sal-like 1	SALL1	229273_at	18.1	0.0105	-2.3	0.0432
Distal-less homeobox 2	DLX2	207147_at	17.3	0 0	56.6	0
Msh homeobox 1	MSX1	205932_s_at	17.0	0 0	17.3	0.0073
Forkhead box F1	FOXFI	205935_at	15.5	0	18.5	0
Distal-less homeobox 1	DLX1	242138_at	15.3	0	104.8	0
Leucine zipper, putative tumor suppressor 1	LZ1S1	47550_at	14.0	0.0154	1.5	0.2533
Paired box 3	PAX3	231666_at	10.3	0.0083	0.7 0 c 7	0.1352
rientatuputentany expressed nonneovox CIV homodox 1	CIV1 CIV1	210900_5_dt	0.9 V X		0.01 FA A	
Zinc finger protein 367	ZNF367	229551 x at	1.6 7.6			0.1852
Nuclear factor (ervthroid-derived 2)-like 3	NFE2L3	204702 s at	4.4	0.0109	-1.6	0.0696
Mvelin expression factor 2	MYEF2	222772 at	4.3	0.0008	1.1	0.6430
Transducin-like enhancer of split 1	TLE1	228284_at	4.3	0	-2.7	0.0037
Runt-related transcription factor 2	RUNX2	236859_at	-10.2	0.0001	2.5	0.3904
Activating transcription factor 3	ATF3	202672_s_at	-11.1	0	-9.8	0.0008
Kruppel-like factor 15	KLF15	231015_at	-15.5	0	-11.8	0.0006
Zinc finger protein 37A	ZNF37A	228711_at	-15.5	0.0012	-1.4	0.7851
Growth and differentiation factor 15	GDF15	221577_x_at	-17.7	0	7.2	0.0025
Kruppel-like factor 9	KLF9	203543_s_at	-18.7	0	3.9	0.0022
Empty spiracles homeobox 2	EMX2	221950_at	-21.8	0	-1.1	0.9197
Homeobox CIU	HOXCIO	218959_at	-28.3	0 0	-1.0	0.8273
Nuclear receptor subtamily 1, group D , member 1	NKIDI	204/60_s_at	-29.4	0	/.7-	0.0069
V-fos Fb) murine osteosarcoma viral oncogene homolog	FUS	209189_at	-34.0 36 E		-30.2 2.87	0.0015
гр) шилие оsteosarconia vи ai ortcogene nontorog р Гродноје homeohov 3	IRX3	2027.00_at	0.00-		20.2 1 1	0.8405
Homeophox C6	HOXCE	22/000_al	7.04		7.1 7 4	0.0450
Homeohox A10	HOXAID	213150 at	-82.5		2.3	0.3328
Homeobox A9	HOXA9	209905_at	-147.0	0	-2.0	0.0031
Membrane receptors						
Protein tyrosine phosphatase, receptor type, F	PTPRF	200636_s_at	5.0	0	-1.1	0.8129
Tumor necrosis factor receptor superfamily, member 10d	TNFRSF10	210654_at	5.0	0.0103	2.7	0.0002
LULN Tumor necrosis factor recentor superfamily member 25	TNFR SF75	202000_5_dt 219423_x_at	ית היו ר	0.0013	יור 1 ה	7/ 1 /2/0
Factor for the superfamily, member 6)	FAS	204780 s at	-2.1	0.0008	7.1	0.0001
Activin A receptor, type 1	ACVR1	203935_at	-2.3	0	2.0	0
Protein tyrosine phosphatase, receptor type, M	PTPRM	1555579_s_at	-2.3	0.0007	4.1	0.0001
Protein tyrosine phosphatase, receptor type, G	PT PKG	204944_at	-2.6	0 0005	-2.0	0.0435
bet routing mount ince extracement matrix protent z Interleukin 1 receptor 1	LI LIVII 2 ILIRI	202948 at	-2.0	0.0014	14.5	0
Natnuretic peptide receptor Biguanylate cyclase B	NPR1	204310_s_at	-3.4	0	1.9	0.0058
Discoidin domain receptor tyrosine kinase 2	DDR2	205168_at	-4.3	0.0001	7.4	0.0003
					00)	ontinued)

	TABLE 2	2B. (Continued)				
Gene name	Gene abbreviation	Probe ID	FC hES-MPs vs. hMSC	Р	FC hEs-MPs vs. hESCs	р
Insulin receptor Docking protein 5 Leptin receptor Receptor tyrosine kinase-like orphan receptor 1 Toll-like receptor 3 Lymphotoxin beta receptor (TNFR superfamily, member 3) EPH receptor A1	INSR DOK5 LEPR ROR1 TLR3 LTBR EPHA3	226216_at 214844_s_at 209894_at 232060_at 206271_at 203005_at 206070_s_at	-4.8 -4.9 -5.3 -8.4 -12.0 -21.4	0.0001 0.0041 0.0003 0.0007 0 0 0	-2.3 -3.2 -19.5 -19.5 -3.9	$\begin{array}{c} 0.2379\\ 0.0086\\ 0\\ 0.0100\\ 0.1322\\ 0.3881\\ 0.2093\end{array}$
Growth factors Fibroblast growth factor 5 Epiregulin Heparin-binding EGF-like growth factor Activin A receptor, type 1 Latent transforming growth factor beta binding protein 2 Growth and differentiation factor 5	FGF5 EREG HBEGF ACVR1 LTBP2 CDF15	210310_s_at 205767_at 203821_at 203935_at 204682_at 221577_x_at	133.05.75.7-2.3-6.1-17.7	0 0 0 0 0 0 0	197.0 182.4 6.6 2.0 7.2	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0003 \\ 0.0025 \end{array}$
Extracellular matrix components Microfibrillar associated protein 5 Collagen, type IV, alpha 6 Laminin, gamma 1 Fibrillin 1 Collagen, type V, alpha 1 Collagen, type V, alpha 2 Biglycan Matrilin 2 Laminin, alpha 1 Collagen, type III, alpha 1 Fibronectin 1 Collagen, type XIV, alpha 1 Collagen, type XV, alpha 1 Collagen, type XV, alpha 1 Collagen, type XV, alpha 1 Lumican Collagen, type XV, alpha 1 Collagen, type XV, alpha 1	MFAP5 COL4A6 LAMC1 FBN1 FBN1 COL6A1 COL6A1 COL6A1 COL6A2 BGN MATN2 LAMA1 COL5A1 COL3A1 FN1 COL3A1 FN1 COL3A1 COL14A1 LUM COL15A1 COL15A1 COL15A1 COL15A1	213764_s_at 213992_at 200770_s_at 2002765_s_at 212091_s_at 203325_s_at 20156_s_at 20156_s_at 20156_s_at 20156_s_at 201744_s_at 212865_s_at 203377_at 203377_at 203377_at	7.0 7.0 -3.1 -3.1 -3.1 -3.1 -3.1 -3.3 -4.4 -13.6 -13.7 -115.6 -115.6 -115.6	$\begin{array}{c} 0.0015\\ 0.0007\\ 0.00029\\ 0.0002\\ 0.0002\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 132\\ -2.7\\ 50.4\\ 50.4\\ -2.6\\ 8.8\\ 8.8\\ 8.8\\ -1.9\\ -1.9\\ -1.9\\ -1.9\end{array}$	$\begin{array}{c} 0.0014\\ 0.0098\\ 0\\ 0\\ 0\\ 0\\ 0.0028\\ 0.0004\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
Protocadherin alpha 1 Protocadherin alpha 1 Protocadherin beta 2 Cadherin 6, type 2, K-cadherin Integrin alpha 2 (CD49B Protein tyrosine phosphatase, receptor type, F Pinin, dexosome associated protein CD9 Melanoma cell adhesion molecule Catenin (cadherin-associated protein), beta 1 Discoidin domain receptor Tyrosine kinase 2 Neuronal cell adhesion molecule Vascular cell adhesion molecule 1 CD97	PCDHA1 PCDHB2 CDH6 CDH6 PTPRF PNN PNN CD9 NCAM VCAM1 VCAM1 CD97	223435_s_at 231725_at 214803_at 227314_at 220356_s_at 210055_at 210055_at 211005_at 211005_at 211045_at 201105_s_at 2038685_s_at 202910_s_at	$\begin{array}{c} 20.2\\ 11.3.1\\ 5.1\\ -1.5\\ -2.3\\ 5.5\\ -1.1\\ -1.2\\ 5.5\\ -1.1\\ -2.3\\ $	$\begin{array}{c} 0.0056\\ 0\\ 0.0007\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	-1.7 -1.7 -1.3 -2.5 -1.5 -2.5	$\begin{array}{c} 0.1871\\ 0.5476\\ 0.0041\\ 0\\ 0\\ 0\\ 0.8129\\ 0.1037\\ 0.0005\\ 0.1037\\ 0.0003\\ 0.2742\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.0045\end{array}$

FIG. 3. Hub protein network of genes induced (**A**) and repressed (**B**) during hES-MPs derivation, as well as genes with an increased (**C**) and decreased (**D**) expression in hES-MPs compared with hMSCs with at least a 10-FC in expression. Proteins are identified as hubs if they have at least five experimentally determined protein interactions among the products of the upregulated genes. Color images available online at www.liebertonline.com/ten.

FIG. 3. (Continued).

which showed a comparable expression for all of the markers studied (Fig. 4G–J).

Proliferation ability

Immunohistochemistry

Immunohistochemistry demonstrated that only hESCs were positively stained for OCT4 and NANOG as shown in Figure 4 (K, N), whereas hES-MP cells (L, O) and hMSCs (M, P) were negative for both markers.

Throughout the proliferative assay, the hES-MPs displayed a significantly higher number of cell doublings per time period compared with the hMSCs (Fig. 5A). Around passages 8–10, an initial decline in the proliferative potential of hMSCs was detected. This was followed by a more or less ceased proliferation after passage 20. The hES-MPs, on the other hand, retained their high proliferative

FIG. 4. Verification of microarray results using quantitative RT-polymerase chain reaction analysis for *TDGF1* (**A**), *TGF*-β2*R* (**B**), *RUNX2* (**C**), *COL1A1* (**D**), *LHX8* (**E**), and *BMP2R* (**F**) (differences were accepted to be statistically significant at $p \le 0.05$ (*)). Flow cytometry analysis of CD44 (**G**), CD58 (**H**), CD166 (**I**), and CD47 (**J**) for hESCs (white), hES-MPs (black), and hMSCs (gray). Expression of OCT4 (**K**-**M**: scale bar = 250 µm) and NANOG (**N**-**P**: scale bar = 250 µm) in hESCs (**K**, **N**), hES-MPs (**L**, **O**), and hMSCs (**M**, **P**). Color images available online at www.liebertonline.com/ten.

FIG. 5. Cell doublings of hMSCs and hES-MPs (**A**). Light micrographs of hMSCs (**B**–**D**) and hES-MPs (**E**–**G**) at passage 5 (**B**, **E**: scale bar = $100 \,\mu$ m), 10 (**C**, **F**: scale bar = $200 \,\mu$ m), and 20 (**D**, **G**: scale bar = $200 \,\mu$ m). Telomere length (**H**) and telomerase activity (**I**) of both cell types at population doubling 5 and 50 (PD5 and PD50).

capacity for the whole duration of the test (up to passage 30).

Telomerase activity and telomere length

Both hES-MPs and hMSCs at PD 5 and 50 showed a similar level of telomerase activity (Fig. 51). In contrast, the telomeric repeat fragments were longer for hES-MPs compared with hMSCs at both passages investigated (Fig. 5H).

HLA expression

Flow cytometry analysis for immunological markers demonstrated that both hMSCs and hES-MPs were found to be negative for CD80 (Fig. 6A, I) and CD86 (Fig. 6B, J). Expression of these two markers was further not affected by IFN- γ treatment in either hMSCs (Fig. 6E, F) or hES-MPs (Fig. 6M, N). On the other hand, all hMSCs were positive for HLA-ABC (Fig. 6C) and about half of the hMSC population was also positive for HLA-DR (Fig. 6D). Expression of these two markers further increased after IFN- γ treatment (Fig. 6G, H). In contrast, the hES-MPs displayed somewhat lower expression of HLA-ABC compared with the hMSCs (Fig. 6K) and were negative for HLA-DR (Fig. 6L). Expression of HLA-ABC after IFN- γ treatment of hES-MPs (Fig. 6O) was similar to that of IFN- γ -treated hMSCs. A small population of hES-MPs became positive for HLA-DR after IFN- γ treatment (Fig. 6P), but the expression level is significantly lower compared with that of the hMSCs. The same results were detected for cells in high passage (data not shown).

FIG. 6. Flow cytometry analysis of CD80 (**A**, **E**, **I**, **M**), CD86 (**B**, **F**, **J**, **N**), HLA-ABC (**C**, **G**, **K**, **O**), and HLA-DR (**D**, **H**, **L**, **P**) for hMSCs (**A**–**D**) and hES-MPs (**I**–**L**). Analyses of the same markers after interferon-γ (IFN-γ) treatment for hMSCs (**E**–**H**) and hES-MPs (**M**–**P**).

Discussion

The main questions addressed in this study were how the transcriptome is affected by the process of hES-MP derivation, and how distinct or equivalent cell types the hESCs and the hESC-derived hES-MPs are. Our results from hierarchical cluster analysis, scatter plot analysis, and Spearman correlation analysis all demonstrated that our straightforward protocol for derivation of hES-MPs results in a cell line highly similar to hMSCs, which is in accordance with earlier results from our laboratory.⁷ These transcriptional alterations occurring during hES-MP derivation result in a significantly decreased transcription of genes known to be specifically expressed in hESCs. For instance, the OCT family of genes (POU5F1, POU5F1P3, and POU5F1P4) as well as NANOG are essential transcription factors involved in the maintenance of pluripotency with exclusive expression in ES cells.¹⁸⁻²¹ In accordance, SOX2, which has been found to form a complex with OCT4 and bind to the NANOG promoter in hESCs,²² was shown to be highly expressed in hESCs and down-regulated during hES-MP derivation to a level similar that in hMSCs. A similar expression pattern was observed for other genes important for pluripotency, including TDGF1, LIN28, GDF3, ALPL, GAL, DPPA4, GABRB3, and ZIC3.^{15,23–28} Repression of these genes detected during hES-MP derivation thus provides the molecular evidence for the lineage commitment detected in hES-MPs compared with hESCs.⁷

Pluripotency is strongly associated with teratoma formation, and one of the most well-known genes to induce these processes is *TDGF1*.^{29,30} The same expression pattern was detected for EPHA1, which is overexpressed in many tumors, and DNMT3B, which is known to inhibit tumor suppressor genes.^{31,32} Another important gene for tumor development is *p53*, whose inactivation is a common feature in many tumors and whose transcription is induced by binding of NR2F2 to the p53 promoter.³³ Significantly increased expression of NRF2F during hES-MP formation, as well as altered expression of the *p53*-associated genes *LTBP2* and TFAP2A, is thus yet another way for the hES-MP cells to decrease their tumorigenicity.34,35 Identified hub genes induced by hES-MP derivation include THBS1, known to inhibit angiogenesis, as well as the tumor suppressor *CDKN2A* (*p16*) and *CAV1*.^{36,37} The tumor-associated gene *EWSR1* was identified as the only hub for genes with a reduced expression pattern during the process of hES-MP derivation. This study thus provides the molecular clues for the lack of teratoma formation detected in the hES-MPs, which is a prerequisite for possible future clinical applications.

With regard to genes associated with proliferation, a panel of such genes (HELLS, CDC25A, MCM5, FGF5, BUB1, and ORC1L) was significantly downregulated during hES-MP derivation, but hES-MPs still had significantly higher expression of these genes compared with hMSCs. HELLS is ubiquitously expressed in rapidly dividing cells,38,39 and targeted disruption of HELLS leads to increased replicative senescence along with altered gene expression pattern, particularly the senescence-related genes such as CDKN2A and BMI1.40 Moreover, CDKN2A is one of the hub genes identified in the process of hES-MP derivation as discussed above. The hES-MPs further displayed significantly higher expression of MCM10, MCM5, and ORC1L required for DNA replication, the mitogen FGF5, and CDC25A known to accelerate S-phase entry.^{41–44} Another pathway inducing proliferation activated during hES-MP derivation was signaling via EGF, and increased expression of HBEGF, the receptor EGFR, and its ligand EREG was detected.⁴⁵ Other signaling pathways seem to regulate hMSC proliferation, including the FOS family of transcription factors inducing quiescent cells to reenter the cell cycle.⁴⁶ This protein together with JUN, which was identified as a hub gene with increased expression in hMSCs, forms the AP-1 complex.⁴⁷ The expression pattern of genes in hES-MPs resulting in increased proliferative potential is in line with the high proliferative capacity of these cells (shorter PD time and retained proliferative potential over extended time) compared with hMSCs demonstrated in this study. Decreased proliferative potential of hMSCs during long-term in vitro culture has earlier been demonstrated and has to some extent been explained by the decreasing telomere length.⁴⁸ The high proliferative potential of the hES-MPs is further in accordance with the presence of longer telomeres compared with the hMSCs, while no differences in telomerase activity was detected. The differences in telomere length observed between hES-MPs and hMSCs may be associated with the intrinsic different source of the two cell types. Isolation from adult donors implies that hMSCs have undergone a higher number of cell divisions, resulting in the shortening of their telomeric sequences. hMSCs displayed increased telomeric length at PD50, suggesting that other mechanisms, known as alternative lengthening of telomeres, which are recognized to be involved in oncogenic transformation,⁴⁹ may become activated in hMSCs after protracted expansion. From a different standpoint, these data can be interpreted as results of natural selections, where cells carrying an advantageous ability to keep their telomeric sequences take over the culture and eventually represent the only population of cells able to proliferate for long time. The higher proliferative potential of the hES-MPs provides these cells with a great advantage over hMSCs for bulk production of cells for therapy and tissue engineering applications.

During each cell division cycle, the newly duplicated chromosomes must be distributed evenly into the new cells so that each cell receives exactly one copy of each chromosome. Errors in this process result in aneuploidy that is manifested in genetic disorders and tumors. Accurate sister chromatid segregation relies on the attachment and alignment of chromosomes to the mitotic spindle. This process is controlled by the spindle assembly checkpoint, which restrains cells from entering anaphase until all replicated chromatids have formed proper attachments to a functional bipolar spindle. Several genes encoding proteins constituting this complex, such as *CDC20*, *MAD2*, *BUB1B*, *NDC80*, *NUF2*, *CENPA*, *ERCC6L*, *SPC24*, *MLF1IP*, *AURKB*, *D40*, *SPC25*, *CENPM*, *ZWINT*, and *CDCA8*, were identified as hub genes with significantly increased expression in hES-MPs compared with hMSCs (for review, see Bharadwaj and Yu⁵⁰). Inactivation of certain checkpoint genes results in early embryonic lethality, high levels of chromosome mis-segregation, and apoptosis.⁵¹ The identification of these hub genes overexpressed in hES-MPs demonstrates a strong control function of mitosis important to reduce the risk of tumor formation.

Analyzing expression of 48 genes overexpressed in hESCs compared with differentiated cells demonstrated that hES-MPs derivation results in a more differentiated cellular phenotype consistent with its lineage commitment discussed above and increased expression of markers downregulated in hESCs compared with differentiated cell types. hES-MP derivation did not result in altered expression of genes encoding keratins (KRT18, KRT19, KRT7, and KRT8) demonstrating lack of differentiation into the ectodermal lineage. Decreased expression of several claudins (CLDN3, CLDN6, CLDN8, CLDN10, and CYP26A1) known to be important for retinoic acid metabolism during endodermal differentiation and the early neural marker CRMP1 demonstrates lack of differentiation into the endodermal lineage during hES-MP derivation.^{52,53} The above results are in accordance with the findings previously observed, where hES-MPs were found to be negative for markers typical of the ectodermal and endodermal lineage.⁷ In contrast, a panel of genes encoding collagen and other genes characteristic for mesodermal tissues (COL1A1, COL1A2, COL3A1, COL5A1, COL11A1, COL6A1, COL6A2, DDR2, BGN, FN1, FBN1, and MFAP5) and proteins important for cell-to-cell contact or attaching cells to the extracellular matrix (CD44, CD58, CD47, and CD166) were induced by hES-MP derivation to a level similar that in hMSCs.54

Other signs of lineage commitment into the mesodermal lineage include increased expression of genes encoding membrane receptors responsive to growth factors inducing mesodermal differentiation (*TGFBR2* and *BMPR2*),⁵⁵ and overexpression of *RUNX2*⁵⁶ and *TFAP2A*,⁵⁷ known to be expressed during osteogenic differentiation. This differentiation into the mesodermal lineage detected might be due to significantly decreased expression of LEFTY1 detected during hES-MP derivation. Lefty 1 is known to block Nodal signaling by binding Nodal and its coreceptors such as TDGF1. This binding prevents the assembly of an active Nodal/Activin receptor complex, resulting in inhibited mesodermal development.^{58,59} The only gene coding for an extracellular matrix component that displayed higher expression in hES cells than in hES-MPs was LAMA1. This gene is involved in embryonic patterning and is one of the few essential extracellular matrix proteins in early embryogenesis.⁶⁰ It is further significantly downregulated upon development and ES cell differentiation, which is consistent with its decreased expression during hES-MP formation.⁶¹ Induction of these mesodermal markers by hES-MP derivation to the same extent as seen in hMSCs demonstrates the potential of the hES-MP cells in tissue engineering of mesodermal tissues.⁶² These data further corroborate previous results demonstrating the in vitro and

in vivo differentiation of hES-MPs into tissues of the mesodermal lineage.⁷

The most overexpressed transcription factors detected in hMSCs compared with hES-MPs were HOXA9, HOXA10, and their downstream effector IRX3, whose expression pattern indicates a suppression of erythroid differentiation in hMSCs, reflecting the origin of these cells and the need for this system to maintain the cells undifferentiated.⁶³ On the other hand, the most highly upregulated transcription factor in hES-MPs compared with hMSCs was LHX8, which is essential for tissue patterning and differentiation during embryogenesis.64 Other transcription factors upregulated in hES-MPs compared with hMSCs were SALL1, PAX3, MSX1, DLX1, DLX2, and LZTS1. SALL1 is known to play a function in limb cartilage morphogenesis,⁶⁵ while PAX3 promotes myogenic differentiation during vertebrate development.⁶⁶ High expression of DLX1, DLX2, and MSX1, supporting craniofacial development and osteogenesis, 67,68 underscores the potential of hES-MPs for mesodermal tissue engineering.

Increased expression of the tumor suppressor gene *LZTS1* in hES-MPs compared with hMSCs may represent an ideal characteristic for clinical applications of these cells.^{69–71}

Most of the extracellular matrix components retrieved when comparing hES-MPs and hMSCs displayed a significant upregulation in hMSCs, indicating a more adult phenotype of the hMSCs. In relation to this assumption, the majority of these genes were further downregulated in hESCs compared with hES-MPs, suggesting that hES-MPs may represent an intermediate differentiation state between embryonic and adult stem cells.

The immunological profile of the hES-MPs is highly important for their possible future use in tissue engineering and cell therapy. hES-MPs displayed somewhat lower expression of HLA-ABC compared with hMSCs and significantly lower expression of HLA-DR. Transplantation of an allograft elicits a cascade of host responses *in vivo*, including secretion of IFN- γ , one of the most potent inflammatory cytokines, which further is known to stimulate expression of HLA molecules.⁷² The significantly lower induction of HLA-DR in hES-MPs, as opposed to the response in hMSCs, demonstrates that hES-MPs are more immuno-privileged than the hMSCs, and therefore represent a suitable alternative for *in vivo* applications.

Conclusion

As far as we know, this is the first comprehensive study reporting the profound transcriptional changes occurring during hES-MP derivation, resulting in a gene expression profile highly similar to that of hMSCs. These results, in combination with the immunological properties of the hES-MPs reported in this study and the significantly increased proliferative potential of these cells compared with hMSCs, demonstrate that hES-MPs represent a valuable alternative to hMSCs in tissue engineering applications. This data set will also be a valuable resource to the research community to distinguish hES-MPs from hESCs.

Acknowledgment

We sincerely thank Helena Brisby for providing bone marrow samples, and Gunilla Caisander and Annelie Wigander for excellent technical assistance with the immunohistochemical analysis. We acknowledge BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Region Västra Götland, Swedish Research Council (K2009-52X-09495-22-3 and 2005-7544) and JOIN(ed)T Marie Curie Action for the financial support of the study.

Disclosure Statement

No competing financial interests exist.z

References

- 1. Tapp, H., Hanley, E.N., Jr., Patt, J.C., and Gruber, H.E. Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp Biol Med (Maywood) **234**, 1, 2009.
- Matsumoto, T., Kuroda, R., Mifune, Y., Kawamoto, A., Shoji, T., Miwa, M., Asahara, T., and Kurosaka, M. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone 43, 434, 2008.
- Granero-Molto, F., Weis, J.A., Longobardi, L., and Spagnoli, A. Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin Biol Ther 8, 255, 2008.
- Jukes, J.M., Both, S.K., Leusink, A., Sterk, L.M., van Blitterswijk, C.A., and de Boer, J. Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci USA 105, 6840, 2008.
- Ringe, J., Kaps, C., Burmester, G.R., and Sittinger, M. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89, 338, 2002.
- Heins, N., Englund, M.C., Sjöblom, C., Dahl, U., Tonning, A., Bergh, C., Lindahl, A., Hanson, C., and Semb, H. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22, 367, 2004.
- Karlsson, C., Emanuelsson, K., Wessberg, F., Kalic, K., Axell, M.Z., Eriksson, P.S., Lindahl, A., Hyllner, J., and Strehl, R. Human embryonic stem cell-derived mesenchymal progenitors-potential in regenerative medicine. Stem Cell Res 3, 39, 2009.
- Xu, C., Jiang, J., Sottile, V., McWhir, J., Lebkowski, J., and Carpenter, M.K. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells 22, 972, 2004.
- Barberi, T., Willis, L.M., Socci, N.D., and Studer, L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med 2, e161, 2005.
- Lian, Q., Lye, E., Suan Yeo, K., Khia Way Tan, E., Salto-Tellez, M., Liu, T.M., Palanisamy, N., El Oakley, R.M., Lee, E.H., Lim, B., and Lim S.K. Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells 25, 425, 2007.
- 11. Olivier, E.N., Rybicki, A.C., and Bouhassira, E.E. Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells 24, 1914, 2006.
- Stojkovic, P., Lako, M., Stewart, R., Przyborski, S., Armstrong, L., Evans, J., Murdoch, A., Strachan, T., and Stojkovic, M. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23, 306, 2005.
- Karlsson, C., Brantsing, C., Svensson, T., Brisby, H., Asp, J., Tallheden, T., and Lindahl, A. Differentiation of human mesenchymal stem cells and articular chondrocytes:

analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res **25**, 152, 2007.

- 14. Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns, D., Harte, N., Lopez, R., and Apweller, R. The gene ontology annotation (GOA) database: sharing knowledge in Uniprot with gene ontology. Nucleic Acids Res 32, D262, 2004.
- Assou, S., Le Carrour, T., Tondeur, S., Ström, S., Gabelle, A., Marty, S., Nadal, L., Pantesco, V., Réme, T., Hugnot, J.P., Gasca, S., Hovatta, O., Hamamah, S., Klein, B., and De Vos, J. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 25, 961, 2007.
- Sturn, A., Quackenbush, J., and Trajanoski, Z. Genesis: cluster analysis of microarray data. Bioinformatics 18, 207, 2002.
- Heins, N., Lindahl, A., Karlsson, U., Rehnström, M., Calsander, G., Emanuelsson, K., Hanson, C., Semb, H., Björquist, P., Sartipy, P., and Hyllner, J. Clonal derivation and characterization of human embryonic stem cell lines. J Biotechnol 122, 511, 2006.
- Bhattacharya, B., Miura, T., Brandenberger, R., Mejido, J., Luo, Y., Yang, A.X., Joshi, B.H., Ginis, I., Thies, R.S., Amit, M., Lyons, I., Condie, B.G., Itskovitz-Eldor, J., Rao, M.S., and Purl, R.K. Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103, 2956, 2004.
- Pan, G., and Thomson, J.A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res 17, 42, 2007.
- 20. Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., Amit, M., Andrews, P.W., Beighton, G., Bello, P.A., Benvenisty, N., Berry, L.S., Bevan, S., Blum, B., Brooking, J., Chen, K.G., Choo, A.B., Churchill, G.A., Corbel, M., Damjanov, I., Draper, J.S., Dvorak, P., Emanuelsson, K., Fleck, R.A., Ford, A., Gertow, K., Gertsenstein, M., Gokhale, P.J., Hamilton, R.S., Hampl, A., Healy, L.E., Hovatta, O., Hyllner, J., Imreh, M.P., Itskovitz-Eldor, J., Jackson, J., Johnson, J.L., Jones, M., Kee, K., King, B.L., Knowles, B.B., Lako, M., Lebrin, F., Mallon, B.S., Manning, D., Mayshar, Y., McKay, R.D., Michalska, A.E., Mikkola, M., Milelkovsky, M., Minger, S.L., Moore, H.D., Mummery, C.L., Nagy, A., Nakatsujl, N., O'Brien, C.M., Oh, S.K., Olsson, C., Otonkoski, T., Park, K.Y., Passier, R., Patel, H., Patel, M., Pedersen, R., Pera, M.F., Piekarczyk, M.S., Pera, R.A., Reubinoff, B.E., Robins, A.J., Rossant, J., Rugg-Gunn, P., Schulz, T.C., Semb, H., Sherrer, E.S., Siemen, H., Stacey, G.N., Stojkovic, M., Suemori, H., Szatkiewicz, J., Turetsky, T., Tuuri, T., van den Brink, S., Vintersten, K., Vuoristo, S., Ward, D., Weaver, T.A., Young, L.A., and Zhang, W. Characterization of human embryonic stem cell lines by the International stem cell initiative. Nat Biotechnol 25, 803, 2007.
- Hyslop, L., Stojkovic, M., Armstrong, L., Walter, T., Stojkovic, P., Przyborski, S., Herbert, M., Murdoch, A., Strachan, T., and Lako, M. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembry-onic lineages. Stem Cells 23, 1035, 2005.
- Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H., and Robson, P. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280, 24731, 2005.
- Lim, L.S., Loh, Y.H., Zhang, W., Li, Y., Chen, X., Wang, Y., Bakre, M., Ng, H.H., and Stanton, L.W. Zic3 is required for

maintenance of pluripotency in embryonic stem cells. Mol Biol Cell **18**, 1348, 2007.

- Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., and Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917, 2007.
- Babaie, Y., Herwig, R., Greber, B., Brink, T.C., Wruck, W., Groth, D., Lehrach, H., Burdon, T., and Adjaye, J. Analysis of Oct4-dependent transcriptional networks regulating selfrenewal and pluripotency in human embryonic stem cells. Stem Cells 25, 500, 2007.
- Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R., and Young, R.A. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell **122**, 947, 2005.
- 27. Maldonado-Saldivia, J., van den Bergen, J., Krouskos, M., Gilchrist, M., Lee, C., Li, R., Sinclair, A.H., Surani, M.A., and Western, P.S. Dppa2 and Dppa4 are closely linked SAP motif genes restricted to pluripotent cells and the germ line. Stem Cells 25, 19, 2007.
- Inamdar, M.S., Venu, P., Srinivas, M.S., Rao, K., and VijayRaghavan, K. Derivation and characterization of two sibling human embryonic stem cell lines from discarded grade III embryos. Stem Cells Dev 18, 423, 2009.
- Ciccodicola, A., Dono, R., Obici, S., Simeone, A., Zollo, M., and Persico, M.G. Molecular characterization of a gene of the EGF family expressed in undifferentiated human NTERA2 teratocarcinoma cells. EMBO J 8, 1987, 1989.
- Strizzi, L., Bianco, C., Normanno, N., and Salomon, D. Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene 24, 5731, 2005.
- Pasquale, E.B. The Eph family of receptors. Curr Opin Cell Biol 9, 608, 1997.
- 32. Rhee, I., Bachman, K.E., Park, B.H., Jair, K.W., Yen, R.W., Schuebel, K.E., Cui, H., Feinberg, A.P., Lengauer, C., Kinzier, K.W., Baylin, S.B., and Vogelstein, B. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552, 2002.
- Huang, Q., Raya, A., DeJesus, P., Chao, S.H., Quon, K.C., Caldwell, J.S., Chanda, S.K., Izpisua-Belmonte, J.C., and Schultz, P.G. Identification of p53 regulators by genomewide functional analysis. Proc Natl Acad Sci USA 101, 3456, 2004.
- Yang, H., Filipovic, Z., Brown, D., Breit, S.N., and Vassilev, L.T. Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther 2, 1023, 2003.
- McPherson, L.A., Loktev, A.V., and Weigel, R.J. Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. J Biol Chem 277, 45028, 2002.
- 36. Li, J., Hassan, G.S., Williams, T.M., Minetti, C., Pestell, R.G., Tanowitz, H.B., Frank, P.G., Sotgia, F., and Lisanti, M.P. Loss of caveolin-1 causes the hyper-proliferation of intestinal crypt stem cells, with increased sensitivity to whole body gamma-radiation. Cell Cycle 4, 1817, 2005.
- Rubio, D., Garcia, S., Paz, M.F., De la Cueva, T., Lopez-Fernandez, L.A., Lloyd, A.C., Garcia-Castro, J., and Bernad, A. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS ONE 3, e1398, 2008.
- Raabe, E.H., Abdurrahman, L., Behbehani, G., and Arceci, R.J. An SNF2 factor involved in mammalian development and cellular proliferation. Dev Dyn 221, 92, 2001.

- Geiman, T.M., and Muegge, K. Lsh, an SNF2/helicase family member, is required for proliferation of mature T lymphocytes. Proc Natl Acad Sci USA 97, 4772, 2000.
- 40. Sun, L.Q., Lee, D.W., Zhang, Q., Xiao, W., Raabe, E.H., Meeker, A., Miao, D., Huso, D.L., and Arceci, R.J. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes Dev 18, 1035, 2004.
- 41. Izumi, M., Yatagai, F., and Hanaoka, F. Cell cycle-dependent proteolysis and phosphorylation of human Mcm10. J Biol Chem **276**, 48526, 2001.
- Clase, K.L., Mitchell, P.J., Ward, P.J., Dorman, C.M., Johnson, S.E., and Hannon, K. FGF5 stimulates expansion of connective tissue fibroblasts and inhibits skeletal muscle development in the limb. Dev Dyn 219, 368, 2000.
- Zhang, X., Neganova, I., Przyborski, S., Yang, C., Cooke, M., Atkinson, S.P., Anyfantis, G., Fenyk, S., Keith, W.N., Hoare, S.F., Hughes, O., Strachan, T., Stojkovic, M., Hinds, P.W., Armstrong, L., and Lako, M. A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. J Cell Biol 184, 67, 2009.
- 44. Ryu, S., Holzschuh, J., Erhardt, S., Ettl, A.K., and Driever, W. Depletion of minichromosome maintenance protein 5 in the zebrafish retina causes cell-cycle defect and apoptosis. Proc Natl Acad Sci USA 102, 18467, 2005.
- 45. Komurasaki, T., Toyoda, H., Uchida, D., and Morimoto, S. Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene 15, 2841, 1997.
- 46. Brown, J.R., Nigh, E., Lee, R.J., Ye, H., Thompson, M.A., Saudou, F., Pestell, R.G., and Greenberg, M.E. Fos family members induce cell cycle entry by activating cyclin D1. Mol Cell Biol 18, 5609, 1998.
- 47. Fujiki, K., Duerr, E.M., Kikuchi, H., Ng, A., Xavier, R.J., Mizukami, Y., Imamura, T., Kuike, M.H., and Chung, D.C. Hoxc6 is overexpressed in gastrointestinal carcinoids and interacts with JunD to regulate tumor growth. Gastroenterology 135, 907, 16 e1–2, 2008.
- Kim, J., Kang, J.W., Park, J.H., Choi, Y., Choi, K.S., Park, K.D., Baek, D.H., Seong, S.K., Min, H.K., and Kim, H.S. Biological characterization of long-term cultured human mesenchymal stem cells. Arch Pharm Res 32, 117, 2009.
- Henson, J.D., Neumann, A.A., Yeager, T.R., and Reddel, R.R. Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598, 2002.
- Bharadwaj, R., and Yu, H. The spindle checkpoint, aneuploidy, and cancer. Oncogene 23, 2016, 2004.
- Dobles, M., Liberal, V., Scott, M.L., Benezra, R., and Sorger, P.K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell **101**, 635, 2000.
- Langton, S., and Gudas, L.J. CYP26A1 knockout embryonic stem cells exhibit reduced differentiation and growth arrest in response to retinoic acid. Dev Biol **315**, 331, 2008.
- Yocum, A.K., Gratsch, T.E., Leff, N., Strahler, J.R., Hunter, C.L., Walker, A.K., Michallidis, G., Omenn, G.S., O'Shea, K.S., and Andrews, P.C. Coupled global and targeted proteomics of human embryonic stem cells during induced differentiation. Mol Cell Proteomics 7, 750, 2008.
- Finnis, M.L., and Gibson, M.A. Microfibril-associated glycoprotein-1 (MAGP-1) binds to the pepsin-resistant domain of the alpha3 (VI) chain of type VI collagen. J Biol Chem 272, 22817, 1997.

- 55. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D.A., and Benvenisty, N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA **97**, 11307, 2000.
- 56. Komori, T. Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem **87**, 1, 2002.
- Fan, Z., Yamaza, T., Lee, J.S., Yu, J., Wang, S., Fan, G., Shi, S., and Wang, C.Y. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol **11**, 1002, 2009.
- 58. Sakuma, R., Ohnishi, Yi, Y., Meno, C., Fujii, H., Juan, H., Takeuchi, J., Ogura, T., Li, E., Miyazono, K., and Hamada, H. Inhibition of Nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7, 401, 2002.
- 59. Conlon, F.L., Lyons, K.M., Takaesu, N., Barth, K.S., Kispert, A., Herrmann, B., and Robertson, E.J. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development **120**, 1919, 1994.
- Li, X., Chen, Y., Schéele, S., Arman, E., Haffner-Krausz, R., Ekblom, P., and Lonai, P. Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. J Cell Biol 153, 811, 2001.
- Hailesellasse Sene, K., Porter, C.J., Palidwor, G., Perez-Iratxeta, C., Muro, E.M., Campbell, P.A., Rudnicki, M.A., and Andrade-Navarro, M.A. Gene function in early mouse embryonic stem cell differentiation. BMC Genomics 8, 85, 2007.
- Ivkovic, S., Yoon, B.S., Popoff, S.N., Safadi, F.F., Libuda, D.E., Stephenson, R.C., Daluiski, A., and Lyons, K.M. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130, 2779, 2003.
- 63. Ferrell, C.M., Dorsam, S.T., Ohta, H., Humphries, R.K., Dervnck, M.K., Hagg, C., Largman, C., and Lawrence, H.J. Activation of stem-cell specific genes by HOXA9 and HOXA10 homeodomain proteins in CD34+ human cord blood cells. Stem Cells 23, 644, 2005.
- 64. Hobert, O., and Westphal, H. Functions of LIM-homeobox genes. Trends Genet **2**, 75, 2000
- 65. Kawakami, Y., Uchiyama, Y., Rodriguez Esteban, C., Inenaga, T., Koyano-Nakagawa, N., Kawakami, H., Marti, M., Kmita, M., Monaghan-Nichols, P., Nishinakamura, R., and Izpisua Belmonte, J.C. Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities. Development 4, 585, 2009.
- 66. Gang, E.J., Bosnakovski, D., Simsek, T., To, K., and Perlingeiro, R.C. Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Exp Cell Res 8, 1721, 2008.
- Merlo, G.R., Zerega, B., Paleari, L., Trombino, S., Mantero, S., and Levi, G. Multiple functions of Dlx genes. Int J Dev Biol 6, 619, 2000.
- 68. Satokata, I., Ma, L., Ohehima, H., Bei, M., Woo, I., Nishizawa, K., Maeda, T., Takano, Y., Uchiyama, M., Heaney, S., Peters, H., Tang, Z., Maxson, R., and Maas, R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 4, 391, 2000.
- 69. Vecchione, A., Croce, C.M., and Baldassarre, G. Fez1/Lzts1 a new mitotic regulator implicated in cancer development. Cell Div **2**, 24, 2007.
- 70. Califano, D., Pignata, S., Pisano, C., Greggi, S., Laurelli, G., Losito, N.S., Ottaiano, A., Gallipoli, A., Pasquinelli, R.,

De, Simone, V., Cirombella, R., Fusco, A., and Chiappetta, G. FEZ1/LZTS1 protein expression in ovarian cancer. J Cell Physiol **2**, 382, 2010.

- Vecchione, A., Ishii, H., Baldassarre, G., Bassi, P., Trapasso, F., Alder, H., Pagano, F., Gomella, L.G., Croce, C.M., and Baffa, R. FEZ1/LZTS1 is down-regulated in high-grade bladder cancer, and its restoration suppresses tumorigenicity in transitional cell carcinoma cells. Cancer Epidemiol Biomarkers Prev 2, 194, 2006.
- 72. Romieu-Mourez, R., Francois, M., Boivin, M.N., Stagg, J., and Galipeau, J. Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J Immunol 179, 1549, 2007.

Address correspondence to: Giuseppe Maria de Peppo, M.Sc. Department of Biomaterials Sahlgrenska Academy at University of Gothenburg Box 412, SE 405 30 Göteborg Sweden

E-mail: giuseppe.de.peppo@biomaterials.gu.se

Received: September 19, 2009 Accepted: February 4, 2010 Online Publication Date: March 10, 2010