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Abstract
Affective computing, a subcategory of artificial intelligence, detects, processes, interprets, and mimics human emotions.

Thanks to the continued advancement of portable non-invasive human sensor technologies, like brain–computer interfaces

(BCI), emotion recognition has piqued the interest of academics from a variety of domains. Facial expressions, speech,

behavior (gesture/posture), and physiological signals can all be used to identify human emotions. However, the first three

may be ineffectual because people may hide their true emotions consciously or unconsciously (so-called social masking).

Physiological signals can provide more accurate and objective emotion recognition. Electroencephalogram (EEG) signals

respond in real time and are more sensitive to changes in affective states than peripheral neurophysiological signals. Thus,

EEG signals can reveal important features of emotional states. Recently, several EEG-based BCI emotion recognition

techniques have been developed. In addition, rapid advances in machine and deep learning have enabled machines or

computers to understand, recognize, and analyze emotions. This study reviews emotion recognition methods that rely on

multi-channel EEG signal-based BCIs and provides an overview of what has been accomplished in this area. It also

provides an overview of the datasets and methods used to elicit emotional states. According to the usual emotional

recognition pathway, we review various EEG feature extraction, feature selection/reduction, machine learning methods

(e.g., k-nearest neighbor), support vector machine, decision tree, artificial neural network, random forest, and naive Bayes)

and deep learning methods (e.g., convolutional and recurrent neural networks with long short term memory). In addition,

EEG rhythms that are strongly linked to emotions as well as the relationship between distinct brain areas and emotions are

discussed. We also discuss several human emotion recognition studies, published between 2015 and 2021, that use EEG

data and compare different machine and deep learning algorithms. Finally, this review suggests several challenges and

future research directions in the recognition and classification of human emotional states using EEG.

Keywords Brain–computer interface (BCI) � Affective computing (AC) � Machine learning � Deep learning �
Electroencephalogram (EEG) � Emotion Recognition

1 Introduction

1.1 Brain–computer interface

A brain–computer interface (BCI) is a computer-based

communication system that analyses signals produced by

the central nervous system’s neural activity. It is a very

effective communication technology that does not rely on

neuromuscular or muscle pathways to accomplish com-

munication, command, and hence action. While thinking

with intention, the subject generates brain signals that are

converted to commands for an output device. As a result, a

new output channel is available to the brain [1, 2]. The
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basic goal of a BCI is to detect and assess the features of

signals in the user’s brain that indicate the user’s intention.

These features are then transmitted to an external device

that executes to fulfill the user’s desired intention [1]. As

depicted in Fig. 1, to achieve this goal, a BCI-based system

has four sequential components: signal acquisition, pre-

processing, translation, and feedback or device output.

Signal acquisition, the first BCI component, is primarily

responsible for receiving and recording the signals pro-

duced by neural activity, as well as sending these data to

the preprocessing component for signal enhancement and

noise reduction. Brain signal acquisition methods can be

categorized as invasive and non-invasive. In invasive

methods, electrodes are neuro-surgically placed either

inside or on the surface of the user’s brain. Brain activity is

recorded using external sensors in non-invasive technology

[3]. After preprocessing, the important signal’s different

characters (such as the signal’s characteristic connected to

the user’s intention) are extracted from irrelevant data and

presented in a way that allows them to be translated into

output instructions. This component creates selective fea-

tures for the improved signal, reduces the size of the data

that can be sent to the translation algorithm, and then

converts characters into the relevant instructions that the

external device needs to complete the task (for example,

instructions that complete the user’s intent). The output

device is guided and controlled by the instructions acquired

by the translation algorithm. It assists users in achieving

their goals, such as selecting alphabets, controlling a

mouse, operating a wheelchair, moving a robotic arm, and

moving a paralyzed limb with a neuroprosthesis. Com-

puters are currently the most often utilized output device

for communication [4].

Electroencephalography (EEG) using externally inserted

electrodes can measure neural activity useful for a BCI and

is safe, inexpensive, non-invasive, easy to use, portable,

and maintains high temporal resolution [5]. Because EEG

may be employed in BCI systems in a variety of fields by a

user without the assistance of a technician or operator, it

has become popular among end users. BCIs have made

contributions in a variety of fields, including education,

medicine, psychology, and military affairs [6]. They are

primarily used in the field of affective computing and as a

form of assistance for paralyzed individuals. Spelling sys-

tems, medical neuroergonomics, wheelchair control, virtual

reality, robot control, mental workload monitoring, gam-

ing, driver fatigue monitoring, environment management,

biometrics systems, and emotion detection are among the

most significant successes in EEG-based BCIs [7].

1.2 Emotion recognition

In recent years, due to the increasing availability of various

electronic devices, people have been spending more time

on social media, playing online video games, shopping

online, and using other electronic products. However, most

modern human–computer interaction (HCI) systems are

incapable of processing and comprehending emotional data

and lack emotional intelligence. They are incapable of

recognizing human emotions and using emotional data to

make decisions and take action. In advanced intelligent

HCI systems, resolving the absence of the relationship

between humans and robots is crucial. Any HCI system

that disregards human emotional states will be unable to

respond appropriately to those emotions. To address this

difficulty in HCI systems, machines must be able to

understand and interpret human emotional states. A

dependable, accurate, flexible, and powerful emotion

recognition system is required to realize intelligent HCI

systems HCI [8].

Because HCI is studied in various disciplines, including

computer science, human-factors engineering, and cogni-

tive science, the computer that powers an intelligent HCI

system must be adaptable. To generate appropriate

responses, human communication patterns must be com-

prehended accurately. The ability of a computer to com-

prehend human emotions and behavior is a critical

component of its adaptability. Therefore, it is essential to

recognize the user’s affective states to maximize and

enhance the performance of HCI systems.

In an HCI system, the machine-to-operator interaction

can be improved to make it more intelligent and user-

friendly if the computer can precisely understand the

human operator’s emotional state in real time. This new

Fig. 1 BCI components
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research area is called affective computing (AC). AC is an

area of artificial intelligence that focuses on HCI through

user affect detection. One of the key goals of the AC

domain is to create ways for machines to interpret human

emotion, which may improve their ability to communicate

[9].

Behavior, speech, facial expressions, and physiological

signals can all be used to identify human emotions [10–12].

The first three approaches are somewhat subjective. For

example, the subjects under investigation may purposefully

hide their genuine feelings, which could affect their per-

formance. Emotion identification based on physiological

signals is more reliable and objective [13].

BCIs are portable non-invasive sensor technologies that

capture brain signals and use them as inputs for systems

that understand the correlation between emotions and EEG

changes to humanize HCIs [14]. The central nervous sys-

tem generates EEG signals, which respond to emotional

changes faster than other peripheral neural signals. Fur-

thermore, it has been demonstrated that EEG signals pro-

vide essential features for emotional recognition [15].

1.3 Scientific perspective on emotion

In the following sections, we briefly discuss what emotion

is, emotion representation models, and emotion elicited or

evoked experiments.

1.3.1 What is emotion?

Emotion is a complicated condition that expresses human

awareness and is described as a reaction to environmental

stimuli [16]. Emotions are, in general, reactions to ideas,

memories, or events that occur in our environment. It is

essential for making decisions and human interpersonal

communication. People make decisions depending on their

emotional states; therefore, bad emotions can lead to not

only psychological but also physical difficulties. Unfavor-

able emotions can contribute to poor health while positive

emotions can lead to higher living standards [17].

1.3.2 Models of emotions

Historically, psychologists have used two techniques to

characterize emotions: the discrete (basic) emotion model

[18], and the dimensional model [19]. Dimensional models

categorize emotions on dimensions or scales, and discrete

emotion models comprise multiple major emotions and

include two categories of emotions (positive and negative).

Several theorists have conducted experiments to identify

basic emotions and have offered a number of categorized

models. Darwin [20] proposed an emotion theory that was

later interpreted by Tomkins [21]. Tomkins claimed that

discrete emotions comprise nine basic emotions: interest-

excitement, surprise-startle, enjoyment-joy, distress-an-

guish, dissmell, fear-terror, anger-rage, contempt-disgust,

and shame-humiliation. It is believed that these nine basic

emotions play an important role in optimal mental health.

The Ekman model [22] is based on another well

accepted theory. According to Ekman, basic emotions must

include the following characteristics: (1) emotions are

instinctive; (2) various people develop the same emotion in

the same situation; (3) various people express basic emo-

tions in comparable ways; (4) physiological patterns of

diverse people are constant when basic emotions are pro-

duced. Ekman and his colleagues determined that there

were six primary emotions that are universally recogniz-

able by facial expression: sadness, surprise, happiness,

disgust, fear, and anger. Other compound (non-basic)

emotions, such as shyness, guilt, and contempt, can be

generated from these six basic emotions. Many theorists

and psychologists have included additional emotions in

their sets of basic emotions that were not included in

Ekman’s six. Some divided emotions into tiny groups

[23–28], focusing on general feelings, such as fear or anger

(as negative emotions) and happiness or love (as positive

emotions). Others focused on finer nuances and divided

emotions into larger groupings. Table 1 summarizes some

of the most basic emotion models.

However, some theorists and researchers believe that

discrete model has limits in terms of representing specific

emotions over a wider range of affective states. In other

words, everyday affective states are too complicated to be

well represented by a small number of discrete categories.

As a result, a new method known as dimensional emotion

has been proposed. Emotion is organized in a multidi-

mensional way in this model, with each dimension repre-

senting an emotional characteristic. Each emotion can be

represented as a point in a multidimensional space. Rather

than selecting discrete labels, one might express his or her

feelings on a variety of continuous or discrete-valued

scales, such as attention-rejection or pleasant-unpleasant.

To date, numerous multidimensional techniques to model

emotions have been offered by researchers. Here are a few

examples: (a) Russell’s circumplex 2D model, which can

include up to 150 affective labels using arousal and valence

dimensions [19]; (b) Whissell’s continuous 2D space, with

evaluation and activation as dimensions [34]; and

(c) Schloberg’s three-dimensional emotion model, which

adds an attention-rejection dimension to the two-dimen-

sional model [35].

Russell’s 2D emotion model is used most frequently. As

shown in Fig. 2, the vertical axis represents the arousal

dimension (expressing the emotional intensity of the

experience, ranging from low to excitement), and the

horizontal axis represents the valence dimension (showing
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the degree of cheerfulness or joy, ranging from negative to

positive). There are four categories of emotions in the

arousal-valence coordinate system. The negative emotions

are represented on the left side of the coordinate and the

positive emotions are shown on the right. The valence axis

represents both positive and negative emotions, and the

arousal axis varies from inactive to active emotions. Fig-

ure 2 shows the first area, which comprises high arousal

positive valence (HAPV) emotions which range from

pleased to excited. Area 2 comprises high arousal negative

valence (HANV) emotions that vary from nervous to

annoying. Area 3 comprises low arousal negative valence

(LANV) emotions. The last area encompasses low arousal

positive valence (LAPV) emotions (calm to relax). As

shown in Fig. 2, the first two zones reflect high arousal

(active) emotions, whereas the last two zones indicate low

arousal (inactive) emotions.

1.3.3 Emotions elicitation models

The ability to induce/elicit the experimental subject’s

emotional state in certain appropriate ways, i.e., emotional

arousal, is a crucial step in emotion detection on the basis

of physiological signals. There are three major methods for

eliciting emotions. First, evoking emotions by creating

simulated scenarios. People have a habit of generating

some unforgettable emotions in the past. It is also feasible

to elicit emotions by having the subjects recall fragments

from their past experiences that have distinct emotional

colors. The problem of this approach is that it cannot

ensure that the subject will generate the matching emotion,

and the time of the associated emotion is immeasurable.

Second, eliciting emotions by displaying videos, music,

photographs, and other stimulating materials. This is a

frequent approach for eliciting emotions, getting the par-

ticipants to generate emotional states and label them

objectively. Finally, the subject must play a computer or

video game. Computer games are not only physically

beneficial but also they are psychologically beneficial.

Subjects just listen and watch the sounds of the environ-

ment while using short films or clips. Subjects in computer

games, on the other hand, do not just observe or watch the

stimuli; they actually experiment with the scene firsthand.

They adopt the role model of the game characters, and this

has a similar effect on the individuals’ emotions.

The most common resources for emotion elicitation are

the International Affective Digitized Sound System (IADS)

[36] and the International Affective Picture System (IAPS)

[37]. These datasets contain standardized emotional stim-

uli. As a result, it is valuable in experimental studies. IAPS

is made up of 1200 photographs divided into 20 groups of

60 images. Each photograph is assigned a valence and

arousal value. The newest edition of IADS includes 167

digitally recorded natural sounds that are common in

everyday life and are categorized for valence, dominance,

and arousal. Using the Self-Assessment Manikin system

[38], participants labeled the dataset. The authors of [39]

state that emotions evoked by visual or aural stimuli are

comparable. The results of affective labeling of multime-

dia, on the other hand, may not be generalizable to

Table 1 Summary of

categorized emotions models
Reference Emotions

[21] Surprise, joy, interest, rage, disgust, fear, anguish, shame

[22] Fear, sadness, happiness, anger, disgust, surprise

[23] Rage and terror, anxiety, joy

[24] Pain, pleasure

[25] Fear, love, rage

[26] Fear, grief, love, rage

[27] Expectancy, rage, fear, panic

[28] Sadness, happiness

[29] Anger, courage, aversion, dejection, despair, desire, fear, hope, hate, sadness, love

[30] Happiness, sadness, fear, anger, disgust

[31] Desire, interest, happiness, surprise, sorrow, wonder

[32] Anger, disgust, contempt, distress, guilt, fear, interest, shame, joy, surprise

[33] Anger, fear, elation, disgust

Fig. 2 The 2D emotion model
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everyday situations or more interactive situations. As a

result, more investigations involving interactive emotional

stimuli in order to guarantee generalizability of BCI results

are welcome. Only a few studies, to our knowledge, have

employed more interactive situations to produce emotions,

such as individuals playing games or using flight

simulators.

1.4 Motivations and main contributions

The motivations for this review is to enable researchers to

use machine learning methods to increase the rate of

accurate and quick recognition of human emotional states

from EEG-based BCI. The objective of this review is to

identify different studies in the literature that use machine

and deep learning approaches to classify human emotional

states using EEG. Thus, the primary contributions of this

study are to seek answers to the following questions:

– What are emotion, emotion models and emotion

elicitation experiments?

– What is the role of brain–computer interface in emotion

recognition?

– What is the relation between EEG data and emotional

states in humans?

– What are the different feature extraction methods?

– What are the different feature selection and reduction

methods?

– Which machine and deep learning techniques are

currently being used to classify human emotional states

using EEG-based BCI?

– What evaluation measures are utilized to assess the

efficacy of the classification models?

– What is the recent work in the field of human emotion

recognition using EEG data?

– What are the problems that need to be solved and the

research directions that should be pursued in the future

in the recognition of human emotional states using EEG

data?

1.5 Paper organization

The structure of this paper is as follows: Sect. 1 describes

background about brain–computer interface, emotion

recognition and application areas of its techniques, differ-

ent emotional elicitation models. Section 2 introduces the

role of each brain area in the formation of emotions,

describes EEG frequency bands and EEG characteristics,

and investigates the relationship between emotions and

EEG data. Section 3 describes the structure of EEG-based

human emotion recognition BCI models and provides an

overview of EEG signal acquisition, preprocessing, feature

extraction, feature reduction and selection, classification,

and performance evaluation for emotion recognition

problem. Section 4 describes public databases of EEG data

for emotional information and presents background infor-

mation on deep and machine learning approaches. Sec-

tion 5 introduces related studies that analyze machine and

deep learning techniques to recognize human emotional

states using EEG-based BCI. Challenges and future

research directions will be covered in Sect. 6. Finally, Sect.

7 concludes the research review.

2 Emotion and EEG signals overview

This section gives an overview of EEG and emotion. The

brain’s structure and functions are described in Sect. 2.1.

The cerebral cortex is typically separated into four areas,

each one performs a distinct function. The prefrontal cortex

(PFC) has been proven to be the most closely connected

with emotion in studies. Section 2.2 describes in detail the

electroencephalogram, its origin, its frequency bands and

its characteristics. Section 2.3 provides background infor-

mation on the association between emotional changes and

EEG signals, and the brain areas most associated with

emotions, with the goal of using fewer electrodes to

achieve good emotion classification performance.

2.1 Brain’s structure and functions

The cerebellum, cerebrum, and brainstem are the three

major components of the human brain. The cerebral cortex,

brain nucleus, and limbic system make up the cerebrum.

Cognitive and higher-level emotional functions are prin-

cipally controlled by the cerebral cortex. It is found on the

human brain’s outermost layer, with a thickness of around

1-4 mm, and is primarily made up of grey matter, with

white matter below [40]. The brain is divided into left and

right hemispheres by a central sulcus in the middle. As

shown in Fig. 3 [6], the Frontal Lobe, Occipital Lobe,

Fig. 3 Physiological structure of the cerebral cortex
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Parietal Lobe, and Temporal Lobe are the four areas of the

cerebral cortex. The functions of these four areas are dis-

tinct. The frontal lobe is placed before the brain’s central

sulcus. It is in charge of higher cognitive activities. Pre-

frontal lobe, frontal motion area, and primary motion area

are all part of it. They are mainly in charge of planning,

thinking, and physiological functions associated with a

person’s emotions and needs. Behind the central sulcus and

just ahead of the occipital fissure is the parietal lobe. It is a

sensory centre of the highest level. It is primarily respon-

sible for the integration of somatosensory information as

well as the reaction to spatial information such as pain,

pressure, temperature, taste, and touch. This area is also

linked to logical and mathematical thinking. Under the

lateral fissure is the temporal lobe, with the frontal lobe in

front, the occipital lobe in the back, and the parietal lobe

above. It is primarily in charge of processing auditory and

smell information, and is associated with emotion and

memory (mental activities). Finally, the occipital lobe is

situated behind the occipital sulcus, in the back of the

hemisphere, and is mostly in charge of processing vision-

related information. It also has to do with a person’s

memory, behavioral perception, and abstract conceptions

2.2 EEG signals

2.2.1 History of EEG

The brain works by transferring electrical signals between

neurons. One method to study the brain’s electrical activity

is to record the potential of the scalp caused by brain

activity. The signal that is recorded, i.e., the potential

variations between two placements, is called an elec-

troencephalogram (EEG). EEG is one of the most efficient

methods to monitor brain activity, often known as brain

wave. Hans Berger recorded the first human EEG in 1929

and published the first human EEG paper [41]. As a major

in the field, it was he who devised the term ‘‘ectroen-

cephalogram’’. Richard Caton’s early research on animal

brain activity in the nineteenth century were the foundation

for his work. Electrophysiologists and neurophysiologists

gradually verified his results, allowing EEG research in

clinical medicine and brain science to advance quickly.

The changes in emotion can be understood by studying the

EEG signals. The central nervous system’s (CNS) func-

tional and physiological changes can be reflected in neu-

ronal potentials. The EEG does not just represent the

electrical activity of a single neuron, but rather the elec-

trical activity of a group of neurons in the brain area where

the EEG measuring electrode is positioned. As a result, the

EEG signal includes a wealth of useful and meaningful

psychophysiological information. In medicine, EEG signal

classification, processing, and analysis can give an

objective basis for detecting some diseases. In neuro-

engineering, disabled people can use EEG signals produced

by motion imagery or mind to control wheelchairs or

robotic limbs. This is a popular topic right now that is

known as Brain-Computer Interface (BCI). Analysis and

processing of EEG signals is always problematic in brain

research because of the non-stationarity of EEG data and

the numerous environmental influences.

2.2.2 Basics of EEG

EEG signals are classified into five categories based on the

variation in frequency bands: delta (0.5–4 Hz), theta (4–8

Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma ([ 30

Hz), as depicted in Fig. 4 [6].

Delta waves usually occur in the frontal cortex with

amplitude 20–200 lV. They are usually detected in an

unconscious state of lack of oxygen, deep, dreamless sleep,

or being anaesthetized. The wave would vanish in an adult

who is awake and alert. Theta waves usually appear in the

parietal and temporal lobes with amplitude 100–150 lV.
They are associated with relaxation state and working

memory load. Theta waves on the frontal midline will rise

when positive emotions are evoked. Alpha waves mainly

occur in the occipital lobe and parietal lobe with amplitude

20–100 lV. They can be detected in resting state with eyes

closed. External stimuli like visual or auditory stimuli, or

when individuals are engaged in mental activity, can cause

alpha waves to disappear. They have more oscillatory

energy than beta and gamma waves in both positive and

negative emotions.

Beta waves are typically only observed in the frontal

lobe; however, when one is contemplating, the beta wave

emerges in a variety of locations. The amplitude is 5–20

lV. They happen when a person’s mind is very active and

focused. The cerebral cortex is dominated by alpha waves

while the human body is relaxed, and beta rhythm gradu-

ally fades as emotional activity increases. When the CNS is

under tension/stress/strain, the Alpha wave’s amplitude

Fig. 4 The waveforms of five EEG bands
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decreases while the Beta frequency increases, and the

Alpha wave progressively turns into a Beta wave. When

the cerebral cortex appears to be in a beta state, it usually

means that it is excited. Gamma waves are found with

different sensory and non-sensory cortical networks. The

amplitude is commonly lower than 2 lV. They are asso-

ciated with brain cognitive tasks and functions at a high

level like information reception, processing, integration,

transmission, and feedback in the brainstem as well as

activities that demand a lot of attention (concentration).

They are frequently observed during multi-modal sensory

processing [5, 6, 8, 13].

2.2.3 EEG signal characteristics

EEG signal is a direct representation of brain activity and is

useful in the study of human brain physiological phe-

nomena. The following are its primary characteristics [6, 8]

1. Recordings of EEG are typically noisy and sensitive to

interference from the environment. They are generally

mingled with other signals (including EOG, ECG, and

EMG ), interferences, artifacts, and noises.

2. EEG signals can be classified as spontaneous or

evoked. During the signal acquisition process, various

peripheral physiological signals will inevitably affect

spontaneous EEG or evoked potentials. EEG signals

are very nonlinear due to adaptation of human tissues

or physiological regulation.

3. EEG signal change is unstable, susceptible to external

environmental variables, and has a strong non-station-

arity property. To discover and recognize features of

EEG signals, several studies employ statistical analytic

approaches.

4. Although EEG signals have a frequency range of

0.5–100 Hz, the low-frequency range of 0.5–30 Hz is

the most relevant to cognition. Researchers usually

decompose it into five sub-bands of frequency, each of

which corresponds to a distinct cognitive function.

The two forms of EEG waves are commonly classed as

spontaneous and evoked. The nervous system produces a

rhythmic potential fluctuation without any external stimuli,

which is known as spontaneous EEG. Evoked potentials

are measurable potential changes in the cerebral cortex as a

result of external excitation/stimulation of the human

sensory organs.

2.3 EEG signals in emotion recognition

We need to understand the sources of emotions in our

bodies in order to teach the computer to understand and

recognize them. Emotions can be expressed verbally, such

as through well-known words, or nonverbally, such as

through voice tone, facial expression, and our nervous

system’s physiological changes. Because facial expressions

and voice can be faked or cannot be considered as a result

of a certain emotion, they are not trustworthy predictors of

emotion. Because the user has no control over the physi-

ological signals, they are more precise. The fundamental

sources of emotion in our bodies are physiological changes.

Physiological changes can be divided into two categories:

those that affect the Central Nervous System (CNS) and

those that affect the Peripheral Nervous System (PNS). The

spinal cord and brain make up the CNS. The brain is the

control center for everything in our bodies, and changes in

electrical activity are translated into various actions and

emotions. The electroencephalogram (EEG) is a test that

measures electrical changes in the brain. EEG is described

as alternating-type electrical activity recorded from the

surface of the scalp using metal electrodes and conductive

medium [42].

EEG contains a wealth of useful information on the

brain’s many physiological states. It responds more quickly

and sensitively to changes in affective states, and thus it is

a particularly valuable tool for understanding human

emotional states. The low-frequency region evokes emo-

tional EEG more fully than the high-frequency band, and

negative emotions are more widespread and intense than

positive emotions [6]. In the presence of joyful, sad, and

frightening emotions, the average power of Beta, Alpha,

and Theta waves on the brain’s midline will be dramati-

cally different, indicating that the EEG’s midline power

spectrum is one of the most useful features of the classi-

fication of emotions [43].

According to physiological research, humans’ higher

emotional cognitive functions are primarily controlled by

the cerebral cortex. Through EEG-based emotion detec-

tion, it would be beneficial to find the brain regions that are

closely related to emotion [44]. The electrodes are first

classified according to where they are placed in the cerebral

cortex. Each group of electrodes’ EEG features are

extracted, and then emotion classification is conducted.

The feature selection algorithm sorts/ranks all of the

electrodes according to their degree of importance, and

then the significance of the electrodes is illustrated using a

brain topographic map, allowing for easier recognition of

the brain regions where the electrodes with a higher rank

are distributed.

According to certain researchers who study functional

brain connectivity based on EEG, there is a correlation

between emotional states and specific areas of the brain.

According to Ekman and Davidson [45], the left frontal

portions of the brain are activated by enjoyment. The

functional connection network was integrated with local

activation by the authors in [46] to depict the activity of

local parts of the brain that reacts to emotions and reflects
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the interactions between critical brain areas. Another study

discovered that when individuals adopted fear emotions,

their left frontal activity decreased [47]. Pleasurable emo-

tions are associated with increased theta band power in the

frontal midline while unpleasant emotions are associated

with the opposite [48]. These studies reveal a correlation

between changes in emotion and the characteristics of the

corresponding EEG signals, which is more useful for

researching EEG signal emotion classification. This also

gives a neurophysiological foundation for detecting emo-

tions from EEG data.

3 EEG-based BCI emotion recognition
methodology

The architecture of an EEG-based BCI system for emotion

recognition is shown in Fig. 5. EEG signal acquisition,

preprocessing, feature extraction, feature selection, emo-

tion classification, and performance evaluation are distinct

processes that will be discussed in the following sections.

3.1 EEG signal acquisition

EEG is now universally accepted as a standard method to

measure electrical activity of the brain. Modern EEG

equipment includes a set of electrodes, a data storage unit,

an amplifier, and a display unit. Invasive and non-invasive

EEG signal acquisition methods are available. In the

invasive method, the ratio of signal to noise and signal

intensity are both high. Electrodes must be surgically

implanted into the skull cavity, and the electrodes penetrate

the brain’s cortex, making it difficult to operate. In the non-

invasive acquisition approach, the electrodes are attached

to the subject’s scalp. This approach is straightforward to

use and is the most common acquisition method in con-

temporary BCI research. EEG signals can be efficiently

acquired using low-cost wearable EEG headsets and hel-

mets that place non-invasive electrodes throughout the

scalp. Various low-cost EEG-based BCI devices are cur-

rently available on the market [49].

Research objectives differ; therefore, in EEG experi-

ments that focus on emotion recognition, the gathered EEG

signals differ as do the number and location of electrodes.

The International 10–20 electrode placement system is

used in most EEG emotion experiments. The electrode

count varies from six to 62. Based on Fig. 6 [8], it was

found that EEG electrodes that are linked to emotions were

mostly distributed in the frontal lobe (red), the parietal lobe

(green), the occipital lobe (blue), the temporal lobe (yel-

low), and in the central area (squares). The front polar,

anterior frontal, frontal, front central, temporal, parietal,

and occipital regions of the brain are abbreviated FP, AF,

F, FC, T, P, and O, respectively. The left hemisphere is

indicated by an odd number suffix, and the right hemi-

sphere is indicated by an even number suffix. These areas

match the physiological basis of emotion creation pre-

cisely. The extracted feature dimension can be lowered

significantly by adjusting the electrode distribution. Cal-

culation complexity can be reduced, making the experi-

ment simpler and easier to carry out.

3.2 EEG signal preprocessing

Preprocessing EEG signals is concerned with signal

cleaning and enhancement. EEG signals are inherently

weak and can be easily infected by noise from both internal

and external sources. The noise could be generated by

electrodes or by the human body itself. The term ‘‘arti-

facts’’ refers to these noises. EEG electrodes can pick up

undesired electrical physiological signals, such as the

electromyogram (EMG) from eye blinks and neck muscles,

while recording an EEG signal. When the subject moves,

there are also worries regarding motion artifacts caused by

cable movement and electrode displacement. As a result,

the preprocessing phase is crucial to reduce these artifacts

in the raw EEG data, which could influence posterior

classification. Whether these artifacts should be deleted

must be evaluated carefully as they may contain essential

information about emotional states and may enhance the

performance of emotion detection systems.

To reduce the artifacts in the collected EEG signals,

frequency domain filters can be used to narrow the band-

width of the EEG to be studied. High-frequency filters,

low-frequency filters (also called high-pass and low-pass

filters by electrical engineers), Butterworth filters, and

notch filters are some of the most frequently used filters.

Frequencies between 1 and 50–60 Hz are filtered using

Fig. 5 Architecture of an EEG-based BCI system for emotion recognition
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high- and low-frequency filters. A Butterworth filter has a

wide transition zone and a flat reaction in the stopband and

passband. Notch filters are employed to prevent a specific

frequency rather than a range of frequencies from being

transmitted. A notch filter is used to remove the frequency

of electrical networks, which normally varies between 50

and 60 Hz based on the frequency of the standard electrical

signal in the particular country [13]. When filters are uti-

lized, they must be used carefully to avoid signal

distortions.

Common methods for preprocessing EEG data that have

been employed in various studies include independent

component analysis (ICA) [50], principal component

analysis (PCA) [51], common average reference (CAR)

[52] and common spatial patterns (CSP) [53]. When

employing multi-channel recordings, PCA and ICA tools

use blind source analysis to remove noise from the source

signals, allowing them to be utilized to remove artifacts

and reduce noise. The CSP method identifies spatial filters

that can be used to identify signals that correlate with

muscular motions. For noise reduction, the CAR is ideal.

EEG data from emotional and baseline (non-emotional)

states are included in the preprocessed EEG data for

emotion detection. Furthermore, the physiological signals

reveal significant heterogeneity between individuals (i.e.,

variation from one person to the next). At various points in

time and/or in various environments, different emotions

may be evoked, even when the subject and stimulus

material are the same. As a result, among the preprocessing

methods, to reduce the impact of the prior stimulus mate-

rial on the emotional state that follows, as well as the

impact of individual variances in physiological signals, the

features of the baseline EEG (before any type of emotional

stimulation) were removed from the features of EEG after

the emotional stimulation. Then, the remaining features are

scaled to an interval of [0, 1] [8]. Individual variances in

subjective emotional responses for a similar stimulus are a

major difficulty in emotion recognition research. Conse-

quently, most studies have a limited number of emotion

classes. Many studies of DEAP emotion recognition [54]

focus on binary (high vs. low arousal or positive vs. neg-

ative) classification problems [55–59], and the target

emotional labels are typically determined by utilizing a

simple hard threshold of the subjects’ subjective rating

data.

3.2.1 Independent component analysis

Independent component analysis (ICA) is a statistical

method for finding linear projections of observable data

that maximize mutual independence [60]. When used for

blind source separation (BSS), ICA seeks to recover

independent sources from mixes of those sources using

multi-channel observations. In EEG signal processing, ICA

separates signals into neural independent source activities

originating from various brain areas and non-neural inde-

pendent source activities (artifactual components) related

to eye movements, blinks, heart, muscle, and line noise,

which can be easily comprehended based on their spatio-

temporal characteristics [50].

The following is a description of the ICA problem.

Assume a linear mixing model, m channel EEG signals,

X ¼ ½x1; x2; :::xm� of n independent sources s ¼ ½s1; s2. . .sn�.
The observed signals vector X can be expressed as:

X ¼ As ð1Þ

where A is a mixing matrix with the size of m� n.

Activities of independent components (recovered source

signals), V, were obtained by applying an unmixing matrix

W (i.e., an inverse of the matrix A) to X [60]:

V ¼ WXX ¼ W�1V ð2Þ

where each column of W�1 comprises electrode weights

(i.e., a spatial projection) of an independent component and

each row of W is a spatial filter for estimating an inde-

pendent component.

Three steps are involved in ICA-based artifact removal:

(a) apply ICA to EEG data, (b) identify and delete artifact-

related independent components, and (c) project EEG-re-

lated independent components back to electrodes to rebuild

artifact-corrected EEG data. In general, prior knowledge of

the spatio-temporal characteristics of EEG artifacts can be

used to identify artifact independent components.

Many studies have demonstrated the superiority of ICA

in removing EEG artifacts. ICA was used by Wang et al.

[50] to correct EEG signals recorded during a movement-

Fig. 6 Electrodes for EEG recording in different lobes
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planning task that involves a lot of muscle and aye

movements. After removing artifact components coming

from muscle and eye activities, EEG signals encoding

movement directions can be used to anticipate the direction

of an intended movement. In a sleepiness monitoring study

[61], the ICA-based artifact removal was employed as a

routine way to correct the EEG data recorded in a driving

process, which comprised multiple body/head movements.

After reducing EMG/EOG artifacts from motor imagery-

based BCIs, performance of the system (e.g., classification

accuracy) was improved [62].

3.3 EEG feature extraction

After preprocessing and noise reduction , the following

stage is to extract features. After the signals have been

cleaned of noise, the BCI must extract critical features that

will be sent to the classifier. The major goal of feature

extraction in the emotion recognition process using EEG

data is to obtain information that can effectively reflect an

individual’s emotional state. Subsequently, such informa-

tion may be used in emotion classification algorithms. The

accuracy of emotion identification is mostly determined by

the extracted features. Therefore, extracting essential EEG

features of emotional states is critical.

Conventional EEG feature analyses are often conducted

in the time, frequency, and time-frequency domains.

Because of the nonlinear properties of EEG data, nonlinear

dynamics analysis of EEG signals can be employed for

more in-depth study. This section will cover four EEG

feature analysis methods used to recognize emotions: time,

frequency, and time-frequency domains, as well as non-

linear feature analyses.

Table 2 shows the feature extraction methods used in the

studies covered in this review. Figure 7 presents the usage

percentage of the domains of features that have been

employed in many of the research papers in this review.

The most commonly utilized features are those in the time-

frequency domain (35%). Frequency domain features are

second (27%), and time domain features are third (20%).

Furthermore, raw data (without features) are also utilized

(11%). Raw data are utilized as input for deep learning

algorithms. Using raw data produces acceptable results,

presumably because information is retained and the risk of

omitting important signal features associated with emotion

is eliminated. Nonlinear features were also utilized (7%).

3.3.1 Time domain analyses

For a long time, time domain analyses have been applied in

the research of brain activity. The majority of EEG

acquisition equipment on the market today gathers EEG

data in the time domain. There are many techniques in the

time domain for the analysis of the EEG such as event-

related potential (ERP), histogram analysis method, Hjorth

features/parameters: activity, mobility and complexity

[87], higher-order crossing (HOC) [88, 89], principal

component analysis (PCA) [90], independent component

analysis (ICA), and Higuchi’s fractal dimensions (FD) as a

measurement of self-similarity and complexity of the sig-

nals in this domain [91]. These techniques rely on

Table 2 Feature extraction methods used in the studies covered in this

review (2015–2021)

References Feature extraction

[63] WT, SF

[56] SF, HP, FFT, ShE, SE, KE.

[57, 64–66] DWT, SF

[67] STFT, PSD, DE, DASM, ASM, RASM, DCAU

[58] MSST

[68] SF, DE

[59] FFT, HOS, Bispectral

[55] SF, HP, FD

[69] graph-theoretical features

[70] SF, PSD

[71] Lempel-Ziv complexity, WT, EMD, AE

[72] FFT, PSD,SF

[73] HOS

[74] EMD,SF

[75] WT, WE, AE, SE, FE

[76] TQWT,SF

[77] PSD, SF, DWT

[78, 79] DE

[80] VMD, PSD, SF

[81] DWT, ToC

[82] DT-CWT,SF, PSD, FD, DE

[83] DWT, DE, FD, HP,PSD

[84] EMD

[85] DE, PSD

[86] DDE

Statistical Features (SF), Wavelet Transform (WT), Hjorth Parame-

ters (HP), Fast Fourier Transform (FFT), Discrete Wavelet Transform

(DWT), Shannon Entropy (ShE); Spectral Entropy (SE), Kolmogorov

Entropy (KE), Short-Time Fourier Transform (STFT), Power Spectral

Density (PSD), Differential Asymmetry (DASM), Differential

Entropy (DE), Rational Asymmetry (RASM), Differential Caudality

(DCAU), Asymmetry (ASM), Multivariate Synchrosqueezing

Transform (MSST), Higher-Order Spectral (HOS), Fractal Dimension

(FD), Empirical Mode Decomposition (EMD), Approximate Entropy

(AE), Wavelet Energy (WE), Sample Entropy (SE), Fuzzy Entropy

(FE), Variational mode decomposition (VMD), Tunable Q Wavelet

Transform (TQWT), Third-order Cumulant (ToC), Dual-tree Com-

plex Wavelet Transform (DT-CWT), Dynamic Differential Entropy

(DDE)
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extracting time-based features. In addition, there are sta-

tistical features like mean, power, maximum, minimum,

median, standard deviation, skewness, variance, relative

band energy, kurtosis, and so on [55, 92]. The geometric

features of EEG signals are the starting point for time

domain analysis, and these features can be statistically

analyzed by the EEG analyzer with precision and intuition.

The features in this domain comprise EEG data with

minimal loss of information. However, because of the

complicated waveform of EEG data, there is no common

method for analyzing EEG signals’ time-domain features.

Therefore EEG analysts must have extensive expertise and

knowledge.

3.3.2 Frequency domain analyses

Features in the frequency domain have been demonstrated

to be more successful for automatic emotion identification

using EEG than features in the time-domain. Frequency

domain analysis methods convert time-domain EEG sig-

nals to frequency domain signals in order to evaluate and

extract frequency domain features. The EEG signal is

usually divided into various sub-bands, and features like

power spectral density (PSD), logarithm energy spectrum,

higher-order spectrum (HOS), and differential entropy

(DE) retrieved for analysis. The most common method to

perform frequency analysis is to apply the fast Fourier

transform (FFT) directly to a short EEG segment [93, 94].

3.3.2.1 Differential entropy Differential entropy (DE) is

the logarithm energy spectrum in a particular frequency

band for a fixed-length EEG sequence [95]. Like the

entropy for assessing the complexity of continuous random

variables, DE can be represented as:

DE ¼ �
Z

y

f ðyÞ logðf ðyÞÞdy ð3Þ

f(y) is the probability density function of y, where y is a

random variable. Experiments reveal that after band-pass

filtering, a series of sub-frequency bands of EEG signals

roughly obey Gauss distribution Nðl; r2Þ, and its differ-

ential entropy can be calculated as:

DE ¼ �
Z1

�1

1ffiffiffiffiffiffiffiffiffiffiffi
2pri2

p e
�ðy�lÞ2

2ri
2 log

1ffiffiffiffiffiffiffiffiffiffiffi
2pri2

p e
�ðy�lÞ2

2ri
2

� �
dy

¼ 1

2
logð2peri2Þ

ð4Þ

3.3.3 Time-frequency domain analyses

The above methods use the time or frequency-domain

characteristics of EEG, respectively, as the detection cri-

teria. These methods are based on the assumptions that the

EEG signals are linear and quasi-stationary, i.e., the fre-

quency content of the EEG signals is assumed to be con-

stant during the analysis window. Recent research,

however, has revealed that EEG signals have non-station-

ary characteristics. The time domain analysis of a signal,

using techniques based on features such as amplitude,

duration, variance, and autocorrelation are not suitable for

analyzing a non-stationary signal like the adult EEG signal.

Analysis of a non-stationary signal requires information

about the distribution of energy over different frequencies

and the frequency variations over time. This information is

not provided neither by the time domain analysis tech-

niques nor the frequency domain analysis. The frequency

domain representation has the disadvantage that all tem-

poral information is lost when forming the spectrum. Due

to these limitations, alternative tools have been developed

to represent the signals known as time-frequency domain.

The time-frequency domain analysis technique combi-

nes information from the time and frequency domains and

allowing for time-frequency domain localized analysis. As

a result, time-frequency-domain features are well suited to

capture time-varying and non-stationary signals, which can

be used to characterize various emotional states. The most

widely used approach in time-frequency analysis is the

Wavelet transform [96]. Short-time Fourier transform

(STFT) [6], Hilbert Huang transform (HHT) [97] and

wavelet packet transform (WPT) [98] are also essential

time-frequency domain analysis approaches.

3.3.3.1 Wavelet transform The wavelet transform (WT)

is a method of signal processing for dealing with nonlinear

and non-stationary signals. An important feature of WT is

that at high frequencies it gives perfect time information

and at lower frequencies it gives perfect frequency infor-

mation. Because the signals in emotion detection applica-

tions typically comprise low-frequency data with a lengthy

time duration and high-frequency data with a short time

duration, this characteristic is significant. Another benefit

Fig. 7 Pie chart of the domains of the features used in the studies

discussed in this review
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of the wavelet transform is that it allows for a more flexible

time-frequency representation of a signal by using analysis

windows of varied sizes, which allows a selective analysis

during the extraction of features to recognize different

emotions and increases the performance classification

system. EEG signal multi-scale analysis using WT enables

EEG signal to provide details as well as approximations at

various wavelet scales. EEG signal wavelet decomposition

yields a set of wavelet coefficients at various scales. These

coefficients can be utilized as a signal’s feature set for

classification because they can fully characterize the sig-

nal’s characteristics. The wavelet function wðtÞ is defined
as follows:

wðtÞ ¼ 1ffiffiffi
a

p w
t � b

a

� �
ð5Þ

where a and b are represented as scale factor and time-

shift, respectively. There are two types of wavelet trans-

form: continuous wavelet transform (CWT) and discrete

wavelet transform (DWT) [99]. The following is how the

CWT is defined:

CWTða; bÞ ¼
Z 1

�1
xðtÞ 1ffiffiffiffiffiffi

jaj
p w

t � b

a

� �
dt ð6Þ

where x(t) is a signal that needs to be processed. The

wavelet analysis will be much more efficient if the scales

and shifts parameters are converted into powers of two,

known as dyadic scales and positions. The DWT, which is

depicted as follows, provides such analysis:

DWTðj; kÞ ¼
Z 1

�1
xðtÞ 1ffiffiffiffiffiffiffi

j2jj
p wðt � 2jk

2j
Þdt ð7Þ

where 2j and 2jk are substituted for a and b, respectively.

3.3.4 Nonlinear feature analyses

EEG signals are highly complex and have nonlinear and

non-periodic proprieties that can be studied by nonlinear

dynamic analysis. In recent years, there are many nonlinear

analysis methods that have become popular in the analysis

of EEG data [100–102]. Among the nonlinear dynamic

methods are permutation entropy [103], approximate

entropy [104], singular value decomposition entropy,

power spectrum entropy [105] and sample entropy [106].

3.4 EEG feature selection and reduction

In EEG-based emotion recognition, the feature selection

and reduction process is crucial. In a BCI system, the

feature vectors are often of high dimensionality [107]. As a

result, feature selection and/or feature reduction techniques

are frequently used to minimize the number of features.

Such techniques simplify the problem’s complexity; only

features that carry significant information are passed to a

classifier. Selecting an appropriate feature selection and

reduction technique can increase both model training effi-

ciency and prediction accuracy.

Feature selection is a technique for efficiently removing

a huge number of unnecessary (or redundant) features

based on particular usefulness criteria in order to obtain the

best results with the least amount of data processing.

Feature selection approaches also lower the chance of

overfitting if the dataset includes many features but there

are not enough observations. By extracting crucial infor-

mation from a dataset, feature/dimensionality reduction

seeks to transform high-dimensional data into a compre-

hensible representation of lower dimensions [108]. Ideally,

the reduced representations should contain the fewest

number of parameters necessary to account for the data’s

observed properties [109]. The importance of feature

reduction stems from its capacity to alleviate the dimen-

sionality curse that plagues high-dimensional datasets. In

general, feature selection and reduction are required to aid

in data visualization and comprehension, minimize model

training time and avoid the curse of dimensionality, all of

which improve model prediction performance (or

generalizability).

The common methods for EEG feature/dimensionality

reduction are Principal Component Analysis (PCA)

[110, 111], linear discriminant analysis (LDA) [112] and

Independent Component Analysis (ICA) [112]. PCA

attempts to represent d-dimensional data in a less-dimen-

sional space. This will limit the range of possibilities as

well as the complexities of time and space. Here, the goal

is to represent data in a space that accurately reflects

variance in terms of the sum squared error. Additional

information can be found in the literature [112]. ICA

converts a signal that is multivariate and random to a signal

with mutually independent components. From mixed sig-

nals, this approach can be utilized to extract independent

components. Here, independence means that the informa-

tion provided by one component cannot be derived from

the others. Details are given in [112, 113]. The goal of

LDA is to produce a new variable that incorporates the

original predictors. This is performed by maximizing the

differences in the new variable between the predefined

groups. The idea is to integrate the prediction scores into a

single new composite variable known as the discriminant

score. Details are given in [112].

A search strategy and evaluation criterion can be used to

categorize feature selection methods [114]. Two distinct

techniques, filter and wrapper, could be used to assess a

subset of features that have been selected. Filter methods

[115, 116] pick features before delivering them to the

classification algorithm. In other words, filter techniques
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choose a subset of features based on prior understanding of

the problem of classification or statistics acquired from the

data, and they do so independently of the classifier design.

Generally, filter methods are fast due to the fact that they

select the most relevant features from the training data and

then discard certain features based on a specific threshold.

Because they are less computationally expensive, these

approaches are ideal for extremely large datasets. Wrapper

algorithms [117, 118] execute feature selection in the

context of (and in conjunction with) the classification

algorithm. The classifier is used in the feature selection

process as a subroutine in these approaches to assess the

feature set that has been selected. These techniques rep-

resent a type of optimization algorithm that employs the

classification results as the target function. Wrapper

methods are computationally intensive, which restricts

their application to huge datasets, where their aim is to

improve accuracy. In addition to these two methods, the

built-in method is used internally in classifier algorithms

like deep learning. Wrapper methods require more com-

putation than the built-in method.

Table 3 shows the feature selection and reduction

methods used in the studies discussed in this review. Fig-

ure 8 presents the usage percentage of the feature selection

and reduction methods that have been used in the various

studies reviewed in this paper. 56% of these studies do not

use a feature selection or reduction method. Built-in

methods, which operate internally in classification algo-

rithms like deep learning are frequently used (37%), fol-

lowed by reduction methods (e.g., PCA and ICA), filter

methods (e.g., mRMR) (25% of each), and wrapper

methods (e.g., PSO) (13%). More details about the filter

and wrapper feature selection methods are provided in the

following sections.

3.4.1 Filter methods

Filter methods use different ranking techniques, selected

due to their simplicity and success in different applications,

to order the features. Ranking methods score each feature

based on its relevance and use a threshold to remove fea-

tures below the threshold. Because they are used before

classification to filter out the less important variables,

ranking methods are filter methods. Various measurements

and definitions for a variable’s relevance have been pre-

sented in several publications [119, 120]. One of these

definitions is that ‘‘If a feature is conditionally independent

of the labels of the classes, it is considered irrelevant’’. The

relevance of features will be measured by different tech-

niques such as the Pearson correlation coefficient of the

mutual information (MI) technique [121]. Some research-

ers have applied filtering methods to find the most relevant

features to discriminate different emotions [105]. The

majority of filtering algorithms are univariate, meaning

they consider each input feature individually, so that each

feature can be self-evaluated and independent of the others.

This can lead to two issues: features discarded because they

are not individually relevant may become relevant when

combined with others and features that are considered

individually as relevant may result in unneeded redun-

dancies. The most widely used filter method is the wavelet

transform

3.4.1.1 Minimal redundancy maximal relevance Minimal

redundancy maximal relevance (mRMR) is a filter-based

feature selection algorithm that has been proved to be

computationally fast [122]. The main goal of mRMR is to

find a subset of features in the feature space of the given

samples that have minimal redundancy with other features

but maximum relevance to the target class. The MRMR

algorithm measures the relevance of features to target

classes or other features in the feature space using mutual

Table 3 Feature selection and reduction methods used in the studies

covered in this review (2015–2021)

References Feature selection/reduction

[63] PCA

[55, 67] mRMR

[58] ICA

[68] Autoencoder

[59] BSS

[70] Welch’s t -test with PCA

[72] LRFS

[73] CSS

[81] PSO

Principal Components Analysis (PCA), Minimal Redundancy Maxi-

mal Relevance (mRMR), Independent Component Analysis (ICA),

Backward Sequential Selection (BSS), Locally Robust Feature

Selection (LRFS), Correlation-based Subset Selection (CSS), Particle

Swarm Optimization (PSO)

Fig. 8 Pie chart of common EEG feature selection and reduction

methods used in the studies discussed in this review
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information. It is based on two principles: maximum rel-

evance and minimum redundancy. Maximum relevance is

defined as follows:

D ¼ 1

jSj
X
xi�S

Iðxi; cÞ ð8Þ

where S stands for feature set and Iðxi; cÞ for mutual

information between feature i and target class c. The

minimum redundancy between features is computed as

follows:

R ¼ 1

jSj2
X
xi;xj�S

Iðxi; xjÞ ð9Þ

where Iðxi; xjÞ stands for mutual information between

feature i and j.

We can get the feature selection criterion for the mRMR

method by combining Eqs. 8 and 9:

maxðD� RÞ ð10Þ

3.4.2 Wrapper methods

Sequential selection algorithms and heuristic search algo-

rithms are two types of wrapper methods. The sequential

selection [123, 124] algorithm starts with a blank set and

adds features till the maximum performance of the objec-

tive function/classification is achieved. In order to expedite

the selection process, a criterion is chosen that gradually

improves the objective function till the maximum perfor-

mance is achieved with the fewest features possible. The

heuristic search algorithms assess various subsets to

enhance the objective function. In feature selection,

searching an optimal subset is critical. Despite the fact that

a heuristic search approach does not assure that the optimal

subset will be found, it generally discovers a satisfactory

answer in a reasonable amount of time [125]. Specific

heuristics produced to address a specific problem, while

general-purposed metaheuristics developed to handle a

variety of problems are the two types of heuristic methods

[125]. Metaheuristics have demonstrated its efficiency and

efficacy in handling difficult and large-scale challenges in

engineering design, data mining scheduling, and machine

learning over the last two decades.

The majority of nature-inspired algorithms are meta-

heuristics [126]. Evolutionary-based (e.g., artificial

immune systems and evolutionary algorithms), swarm-

based (e.g., particle swarm optimization, ant colony and

bee colony), and physics-based(e.g., simulated annealing))

are the three main sources of inspiration [125]. Exploration

of the search space and exploitation of the optimal solu-

tions discovered are two paradoxical criteria that all of

these techniques have in common [125]. Swarm

intelligence-inspired optimization techniques have

increased in popularity over the previous decade. Swarms

of flocks of birds, social insects and schools of fish are all

models for them. The advantage of these approaches

compared to traditional techniques is their flexibility and

robustness. Because of these qualities, swarm intelligence

is a successful design model for algorithms that tackle

more complicated problems.

New evolutionary algorithms have recently been pre-

sented and demonstrated good performance in many

applications when it comes to the challenge of selecting

features. In [127], the Ant Lion Optimizer (ALO) was used

as a feature selection wrapper model to address this prob-

lem. Grey wolf optimizer (GWO) was effectively used to

solve feature selection problems in [128]. In [129], the

authors used particle swarm optimization (PSO) in facial

expression-based emotion recognition for feature selection.

Moreover in [130], authors used differential evolution (DE)

algorithm as a wrapper-based feature selection algorithm

for classification of motor imagery EEG signals.

3.5 EEG emotion classification

EEG data collection, preprocessing, feature extraction,

feature selection or reduction, and emotion classification

are all steps in the process of building an emotion recog-

nition model. One of the most crucial aspects of developing

a successful emotion classification system is finding the

best classifier that is able to accurately classify various

emotions. The developed classifier has an important

influence on emotion recognition accuracy [131]. A clas-

sifier relies on a mathematical function that predicts the

true class of an unknown observation in a validation

dataset. A variety of classification methods have been

employed in the affective computing domain to classify

affective EEG data. These classifiers range from conven-

tional classifiers (traditional machine learning algorithms)

like support vector machines and decision trees, and linear

discriminant analysis to advanced classifiers (deep learning

algorithms), such as recurrent neural networks and long

short term memory.

3.6 Performance evaluation

The findings for emotion recognition must be presented in

a consistent manner in order for various study groups to

comprehend and compare them. As a result, it is critical to

select and specify evaluation techniques carefully [132]. A

confusion matrix and accuracy are the most recommended

performance evaluation measures for evaluating the emo-

tion classifier’s performance. Based on the confusion

matrix, five classification performance measures, i.e.,

specificity, recall (sensitivity), precision, F-measure, and
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area under the curve (AUC) are usually calculated. In

general, these measures are calculated based on four major

metrics of a binary classification outcome (positive/nega-

tive), true positive (TP) and true negative (TN) which

indicate correctly identified emotional states, and false

positive (FP) and false negative (FN), which indicate false

identification of emotional states. These performance

measures are defined as follows.

Accuracy (Acc): This metric measures how many cases

are correctly classified. If the classes are balanced, that is,

if each class has an equal amount of samples, it works well.

It is calculated by Eq. 11

Acc ¼ ðTPþ TNÞ
ðTPþ FN þ TN þ FPÞ � 100 ð11Þ

Sensitivity (Sens): It is also called true positive rate or

recall. It evaluates how often a classifier properly classifies

a good outcome. It is defined by Eq. 12

Sens ¼ TP

ðTPþ FNÞ � 100 ð12Þ

Specificity (Spec): It is also known as true negative rate. It

calculates the percentage of times a classifier correctly

categorises a negative outcome. As a result, the False

Positive Rate (FPR) equals 1-specificity. Spec can be cal-

culated by Eq. 13

Spec ¼ TN

ðTN þ FPÞ � 100 ð13Þ

Precision (Prec): This metric represents the percentage of

correct classifications. It can be denoted by Eq. 14

Prec ¼ TP

ðTPþ FPÞ � 100 ð14Þ

F-Measure (F): It represents the harmonic mean of Preci-

sion and Sensitivity. It is important because the higher the

precision, the lower the sensitivity, and vice versa. It is

measurable by Eq. 15

F ¼ 2 � ðPrec � SensÞ
ðPrecþ SensÞ ð15Þ

AUC: The receiver operator characteristic (ROC) curve is a

probability curve that graphs the Sens against FPR at

various threshold values. The ROC curve depicts a classi-

fier’s performance at different degrees of significance. The

area under the ROC curve (AUC) summarizes the ROC

curve that indicates how well a classifier can discriminate

between true positive and true negative.

4 Basics and background

4.1 EEG emotion recognition datasets

This section provides a summary of the public EEG data-

sets for emotional recognition that were used in the various

researches in this review. Table 4 shows that seven public

EEG datasets were used for emotional recognition,

including DEAP, MAHNOB-HCI tagging, DREAMER,

SEED, AMIGOS, SAFE and GAMOMA datasets. These

datasets are useful for study, and they have been used in a

number of emotion recognition studies. Figure 9 shows the

percentage of EEG datasets utilized in emotion recognition

according to the studies in this review. DEEP and SEED

are the most commonly employed (51% and 19% of par-

ticipation, respectively). Other studies (17 %) employed

their own datasets, which are often not openly accessible.

DREAMER is a publicly available dataset appeared with a

participation of 7% in this review. The MAHNOB-HCI,

GAMOMA and AMIGOS appeared in our research sample,

each with a 2% participation rate.

4.2 Overview of machine learning

The problem of emotion recognition can be represented as

a classification or regression problem. The distinction is

based primarily on the emotional model used to represent

emotions, which was discussed in Sect. 1.3.2. Emotions are

represented as distinct entities with labels in categorical

representations. Dimensional models, in contrast to dis-

crete representations, try to describe emotions using con-

tinuous values of their defining features, which are

commonly represented on axes.

The majority of previous techniques, as shown in Sect.

5.1, treat emotion recognition as a classification problem,

attempting to distinguish between categories emotions, or

between different areas of Russell’s 2D emotion model. In

general, the literature contributes far more to emotion

classification than it does to emotional dimension regres-

sion. As a result, in this section, we’ll be concentrating on

machine learning classification techniques.

In the systems that recognize emotions, machine learn-

ing algorithms were used to classify different emotional

states from EEG-based BCI. Using the scopus database as a

source of information, Figure 10a shows statistics for

machine learning and EEG emotion recognition and clas-

sification research from 2012 to 2021. Figure 10b displays

the machine learning distribution in the EEG emotion

recognition research area.

As an artificial intelligence product, machine learning

has played a significant role in distinguishing between
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distinct brain activity patterns; thus, it has become an

important part of BCI’s data analysis. Machine learning

can learn important knowledge and rules from the source

task and then apply them to the target task. Furthermore,

machine learning data mining technology can store data in

a data management system and analyze it using machine

learning algorithms, resulting in the extraction of poten-

tially important information. The machine learning algo-

rithm chosen can have a big impact on the final

classification or prediction outcomes [138].

There are two categories of machine learning models:

supervised and unsupervised learning. Supervised machine

learning is a technique for determining the classifier’s

parameters using training data. After seeing the output

value, the learning task is to set the value of its parameters

for any valid input value. A test dataset containing data that

has not been contributed to the model while learning is fed

Table 4 List of publicly available EEG datasets used for emotional recognition

Dataset Participants EEG channels Emotion elicitation Emotion states

DEAP [54] 32 32 Music videos Valence, arousal, dominance and

liking

MAHNOB-HCI

tagging [133]

27 32 Fragments of videos

and images

Arousal and valence rated with

the self-assessment manikin to

elicitseveral emotions (anxiety,

neutral, sadness, amusement,

disgust, joy, surprise, anger

and fear)

SEED [44, 134] 15 62 Film clips Positive, negative and neutral

DREAMER [135] 23 14 Film clips Arousal, valence and dominance

AMIGOS [136] 40 14 short and long videos Arousal, valence, dominance, liking,

familiarity and basic emotions.

SAFE [137] 6 5 Selected sounds from

IADS.

Pleasant, happy, frightened and angry

GAMEEMO [64] 28 14 Computer games Boring, calm, horror and funny

Fig. 9 Pie chart of the EEG datasets for emotion recognition utilized

in the studies discussed in this review

Fig. 10 The machine learning methods for EEG emotion recognition studies conducted in the recent decade [2012–2021] based on the scopus

database
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into the classifier to validate the performance of a learnt

algorithm. Unsupervised learning, on the other hand, is a

machine learning technique that determines parameters

based on input data and a cost function that must be

reduced. In recent years, several ML models have been

implemented for the management of the classification of

EEG signals for human emotion recognition. Among these

methods are Support Vector Machines (SVM), Naı̈ve

Bayes (NB), k-nearest neighbor (K-NN), Decision Trees

(DT), Random forest (RF) and Artificial Neural Networks

(ANN), which are widely used as classification methods;

we will briefly describe them in the following sections.

4.2.1 Support vector machine

Support vector machine (SVM) is a supervised ML tech-

nique able to solve linear and nonlinear regression and

classification problems. Vladimir Vapnik was the one who

introduced it [139]. SVM has been employed in a variety of

applications, including Face detection and recognition

[140–142], Disease diagnosis [143–145], and Text

Recognition [146–148]. In general, the SVMs are intuitive,

theoretically well founded and have proven to be virtually

successful.

SVM’s main goal is to locate hyperplanes that precisely

separate various groups (two or more classes) of n-di-

mensional data. SVM is based on training cases put on the

edge of the class descriptor, known as support vectors;

every other case is eliminated. Based on the labels or

classes you’ve defined, SVM tries to maximize the sepa-

ration boundaries between your data points. As a result, the

optimum hyperplane with the longest distance to the

closest training point of any class is obtained to accomplish

good feature separation. When SVM is unable to separate

data linearly, it uses kernel functions to map/transform

input data into high-dimensional feature spaces. In a high-

dimensional space, it is feasible to design a hyperplane that

enables linear separation (which in the lower-dimensional

input space corresponds to a curved surface). As a result, in

SVM, the kernel function is crucial. Kernel functions such

as polynomial, linear and Gaussian can be employed in

practice.

Optimization algorithms can be used to find a particular

global optimum for SVM parameters such as the kernel

function parameter r and the misclassification trade-off

factor c, which controls the trade-off between the maxi-

mum margin and the smallest training error. As a result, the

performance of SVM-based classification is determined by

parameter optimization and the selection of a suitable ker-

nel function. SVM parameter settings that are incorrect

result in poor classification results such as overfitting or

underfitting. [149]. SVM provides the benefit that the

problem of overfitting can be simply managed by selecting

a proper data separation margin (i.e., support vectors)

[150].

4.2.2 Artificial neural network

Artificial neural networks (ANNs) are a form of machine

learning technique that was developed to simulate the

human brain [151]. That is, much as neurons in human

nervous system can learn from previous data, the ANN

may learn from data and respond in the form of classifi-

cations or predictions. It is made up of simple processing

units, known as artificial neurons or nodes, and their con-

nections. The weight of any connection between two units

is used to assess what is the impact of one unit on the other.

Some units serve as input nodes, some serve as hidden

nodes, and the rest serve as output nodes, doing summation

and thresholding [150].

In a neural network, there are three essential layers:

input layers, hidden layers and output layer [152], as shown

in Fig. 11. The input layer of an ANN is the initial layer

that receives data in the form of numbers, texts, image

pixels, audio files and so on. The hidden layers are in the

midst of the ANN model. It is possible to have a single

hidden layer, such as in a perceptron, or numerous hidden

layers. These hidden layers use the input data to execute

various types of mathematical computations and recognize

patterns. The result gained by the middle layer’s rigorous

computations is in the output layer.

A neural network’s performance is affected by a number

of parameters and hyper-parameters. The output of ANNs

is mostly influenced by these parameters. Weights, biases,

batch size, learning rate and other parameters are among

them. The artificial neuron is a component of the artificial

neural network (ANN) that is designed to mimic the

function of a biological neuron. Each artificial neuron

(node) in the network is with a set of weights attached to it

Fig. 11 Basic architecture of ANN
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as shown in Fig. 12. The weighted sum of the inputs and

the bias are calculated using a transfer function. The acti-

vation function receives the result after the transfer func-

tion has computed the sum. The activation functions fire

the appropriate result from the node based on the output

received. The activation function checks if the output

meets a specified threshold and outputs zero or one. Sig-

moid, ReLU, Softmax, Tanh and other common activation

functions are utilized in Artificial Neural Networks [153].

We get the final output based on the value fired by the

node. Then, with the help of the error functions, we cal-

culate the differences between the predicted and actual

outputs and, using backpropagation, modify the weights of

the neural network.

There are many various types and architectures of neural

networks, each with a basic difference in how they learn;

they are well described in the literature [151, 152]. Among

these architectures are multilayer perceptron neural net-

work (MLPNN) and Extreme Learning Machine (ELM).

4.2.3 Decision tree

Decision tree (DT) is a common machine learning method

used for both regression and classification problems. It is

based on the division of the data set into several subset

according to a criterion that maximizes the separation of

the data, repeating this process recursively to produce a

tree [154, 155]. The most commonly used criterion is

information gain, which means that the reduction of

entropy due to each split is maximized.

Each leaf node in a decision tree is assigned a class

label; nonterminal nodes, such as the root node and other

internal nodes, carry attribute testing conditions that help

distinguish records with distinctive characteristics [156].

Each decision tree node can be defined as a rule. The upper

nodes in the decision tree have a greater impact on the

overall sample accuracy [157].

J. Ross Quinlan created ID3 (Iterative Dichotomizer 3),

a decision tree-generating algorithm, in the late 1970s and

early 1980s. He presented the C4.5 method as an improved

version of ID3 a few years later. According to [158], C4.5

provides the foundation for new supervised classification

algorithms. The J48 algorithm is a Java-based version of

the C4.5 classification method, which emerged as a result

of the necessity of recoding the algorithm after it was first

built in C [156]. The algorithm always chooses the best

locally evaluated step, regardless of whether or not it will

generate the optimal solution, and it breaks down a prob-

lem into sub-problems by generating subtrees between the

root and the leaves. Salvatore Ruggieri created EC4.5, a

classification technique that calculates the identical deci-

sion trees as C4.5 but at up to five times the performance

gain, in 2002. [159].

Decision trees have the benefit over other machine

learning methods in that they are not black-box models and

can be easily expressed as rules. This advantage has a

greater impact in many application domains, so that these

models are widely used.

4.2.4 Random forest

Random forest (RF) [160] is a sophisticated ensemble

approach that uses a forest of decision trees to do classi-

fication and regression during training. It is based on the

bagging algorithm concept. It can handle large amounts of

data because it only employs a subset of features while

creating decision trees. It takes a fraction of the time to

train compared to other classifiers [161]. Random Forest is

a popular classification technique due to all of these qual-

ities. The voting of all decision trees determines the ulti-

mate output of RF [162]. Step-by-step RF working model

is explained below:

– The training sets are chosen at random and are the same

size as the sample set.

– Each training set is utilized to build a decision tree.

– Extract a group of attributes at random from all

attributes with the same likelihood, and after that

choose the best attribute to split the nodes from this

subset.

– Prediction is obtained from each decision tree.

– Vote is obtained for each predicted result.

– Final decision is made by selecting the maximum voted

results

4.2.5 k-nearest neighbor

k-nearest neighbor (K-NN) is one of supervised and

statistics-based machine learning algorithms used for

regression and classification problems [163]. The K-NN

algorithm has been greatly refined over time and is now

widely utilized in a variety of fields: text recognition [164],

emotion recognition [165] and face recognition [166]. The

Fig. 12 Model of an artificial neuron
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idea of K-NN based on a measure of similarity (e.g., dis-

tance function) between the training and test set. Find the

training example that is most similar to object x when

asked to identify its class. After that, label x with the class

of this example. The accuracy of the algorithm may

improve as the number of nearest neighbors (k) increases.

The K-NN approach starts by choosing a training sam-

ple set. Select the number of neighbors (k). K-NN uses the

Euclidean distance between the test sample and the training

samples to discover the nearest K-samples in the training

set for each new test instance as shown in Eq.16. Count

how many training samples each class has among the K

neighbors you have chosen. The target class of the test

instance is determined by the most common class value of

K-training samples [163]. The expense of K-NN is exces-

sive calculation complexity. The volume of data in the

dataset determines the computational complexity. As a

result, K-NN is best suited to data sets with a modest

number of samples.

DðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

jai; bij2
 !vuut ð16Þ

4.2.6 Naive Bayes

A naive Bayes (NB) classifier is a probabilistic classifica-

tion algorithm which is based on Bayes’ theorem with high

independence assumptions [167, 168]. The NB classifier

assumes that the presence (or absence) of one feature in a

class has no bearing on the presence (or absence) of other

features. The NB classifier makes the assumption that the

presence (or lack) of one feature in a class has no influence

on the presence (or lack) of other features. The maximum

likelihood technique is utilized in order to calculate

parameters in naı̈ve Bayes models [169]. The NB classifier

can be taught very effectively in a supervised learning

setting, on the basis of the accurate nature of the proba-

bility model, and requires minimal training data for clas-

sification. The resulting class in this classifier is the one

with the highest post-probability.

4.3 Overview of deep learning

Deep learning (DL) is a subset of machine learning and

artificial intelligence that can learn from the given data

[170]. In several classification and regression tasks and

datasets, DL can yield significant results. It has become a

popular topic in the computing world, with applications in

healthcare, visual recognition, text analytics, cybersecurity,

and a variety of other fields [171].

DL employs several hidden layers in neural networks to

perform numerous levels of nonlinear operations.

Functions that are complex can be trained to identify output

classes in a classification task using various transforma-

tions and several hidden layers. Several studies on the use

of deep learning (DL) techniques for automated emotion

recognition have recently been published, despite the fact

that they are fairly new when compared to the lengthy

history of emotion study in psychophysiology. Based on

data from the scopus database, Figure 13a shows statistics

for DL and EEG emotion recognition and classification

research from 2014 to 2021. Figure 13b displays the DL

distribution in the EEG emotion recognition research area.

To improve classification performance and save com-

puting time, feature extraction and feature selection find a

smaller feature set. Deep and shallow feature extraction are

two types of feature extraction. Features that have been

handcrafted in diverse analytic domains, like time domain,

frequency domain, and time-frequency domain, are refer-

red to as shallow features. As described in section 3.4,

numerous feature selection or reduction approaches are

used to minimize the higher-dimensional features. Shallow

features, unfortunately, rely largely on heuristics and

necessitate a huge amount of labeled data, which can be

difficult to obtain in the context of real-world applications.

Manual features extraction and selection is usually time-

consuming and tedious, but it has a significant influence on

machine learning models’ performance. Shallow features

made by hand are frequently domain-specific, making them

difficult to reuse in other problems.

Classical feature engineering and machine learning

techniques may struggle to extract complicated and non-

linear patterns from time series data with several variables.

Also, picking the most important features from a big fea-

ture set is crucial and will necessitate the use of dimen-

sionality reduction approaches. Additionally, feature

extraction and selection take a long time to compute. The

cost of computing feature selection, for example, may grow

exponentially as feature dimensionality grows. Search

algorithms, in general, may fail to find the best feature set

for a particular ML model.

Many researchers have focused on DL techniques in

order to solve the challenges of extracting useful and

stable features from time series data. DL makes it easier to

extract handmade features for ML algorithms. Rather, it

has the capability of learning the hierarchical representa-

tion of the feature autonomously. In a traditional machine

learning pipeline, this removes the requirement for feature

space reconstruction and data preprocessing. Artificial

neural networks (ANN) are at the heart of deep learning,

with the ‘‘deep’’ in the name indicating the number of

layers in a neural network. A neural network having more

than three layers, encompassing inputs and outputs, is

known as a deep learning algorithm. DL’s career began in

the 1980s. Perhaps the first artificial neural network was the
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neocognitron [172] to have the ‘‘deep’’ property and take

neurophysiological insights into consideration. Hinton and

Salakhutdinov [173] made a significant contribution to

feature extraction in 2006, which has been followed up on

in subsequent years [174–177]. According to various

research [178–180], multilayer NNs can be used to repre-

sent and learn features utilizing iterative or non-iterative

methodologies.

Deep neural networks are utilized in DL techniques to

extract relevant features by applying high-level data rep-

resentation. The ability to deal directly with raw data and

automate the extraction and selection of features is an

appealing aspect of DL approaches. The network is fed

with time series samples and a hidden representation of the

preceding layer’s inputs is created after each nonlinear

transformation, resulting in a hierarchical data representa-

tion structure. To put it another way, in a deep network

paradigm, each layer takes the outputs from the preceding

layer and uses a nonlinear mapping to turn them into a new

feature set.

Recently, deep learning algorithms like autoencoder,

deep belief network (DBN), convolutional neural network

and recurrent neural network have generated a great impact

in different applications such as speech recognition, com-

puter vision, object recognition, natural language process-

ing and machine translation. Different deep architecture

models are proposed and applied to EEG signals and

achieved comparable results compared to other conven-

tional methods [181–184]. In recent years, DL has been

utilized to construct emotion recognition architectures that

can be reconfigured due to its ability to provide high-level

data abstraction.

In recent years, several DL models have been imple-

mented to manage the classification of EEG signals for

human emotion recognition. Among these methods,

recurrent neural network (RNN) with long short-term

memory networks (LSTMs) as special type of it and con-

volutional neural network (CNN), which are widely

employed as classification methods; we will briefly

describe them in the following sections.

4.3.1 Recurrent neural network

The recurrent neural network (RNN) is a deep learning

method for processing variable-length sequential data like

time series data (sensors), sound or written natural lan-

guage. It is made up of cyclically connected feedforward

neural networks. It leverages the temporal correlations

between the data at different points in time to map the full

history of input into the network and anticipate each

output.

In a standard neural network, all inputs (and outputs) are

considered to be independent of one another. RNN is a kind

of neural network that has cyclic connections and can learn

temporal sequential data. RNN networks can catch tem-

poral patterns that are dynamic and save information

thanks to that each hidden layer has internal feedback

loops. Multiple nodes make up an RNN’s hidden layer,

which generates outputs on the basis of the inputs currently

available and prior hidden states.

The backpropagation through time (BPTT) algorithm

[185] can be utilized to train RNNs. However, RNNs are

difficult to train because of exploding gradient and van-

ishing issues, which can make it difficult for the network to

back propagate gradients over extended time intervals

[186, 187]. This restricts the amount of context they have

access to, which is crucial for sequence data. As a result,

the long short-term memory (LSTM) and gate recurrent

unit (GRU) [187] have grown in popularity as alternatives.

Fig. 13 The deep learning methods for EEG emotion recognition studies conducted in the recent decade [2014–2021] based on the scopus

database
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4.3.1.1 Long short-term memory network Long short-

term memory networks (LSTMs) are a kind of recurrent

neural network (RNN) with a unique architecture.

Hochreiter and Schmidhuber introduced it in 1997 [188] to

address the issue of long-term dependency in RNNs.

Because a conventional RNN is taught by backpropagation

through time (BPTT) [185], learning long sequences can be

challenging, which leads to the vanishing/exploding gra-

dient problem [186]. The RNN cell is substituted with a

gated cell, such as an LSTM cell, to overcome this

problem.

The LSTM cells have a memory block and gates that

allow information to pass via the LSTM connection. There

are a number of connections to go in and out of these gates.

In the memory blocks, the temporal state of the network is

stored in memory cells with self-connections and the flow

of information is controlled by specific multiplicative units

called gates [188]. In the original construction, each

memory block had three gates: an input gate, a forget gate

and an output gate. The first gate is a forget gate, which

uses a sigmoid layer to choose which information from the

cell state should be discarded. The input gate is the second

gate that includes a sigmoid layer for determining what

values have been set to update and a tanh layer for creating

a vector of newly updated values. Finally, the current

state’s output will be computed using the sigmoid layer and

the updated cell state. The sigmoid layer determines which

aspects of the cell state are final.

4.3.2 Convolutional neural network

Convolutional neural network (CNN) is a kind of deep,

feedforward artificial neural networks based on the struc-

ture of the visual cortex of animals and is most commonly

used for analyzing images. The assumption that the inputs

are images is obvious in CNN architectures, allowing us to

encode specific attributes into the architecture. As a result,

constructing the forward function is more efficient, and the

network’s parameters count is drastically decreased. Unlike

a conventional fully connected network, in which a neuron

is connected to all of the neurons in the layer preceding it, a

neuron in a CNN is only connected to a special portion of

the layer known as the local receptive field. CNN has three

different types of layers in its design: (1) convolution, (2)

pooling, and (3) fully connected layers [189]. Convolution

and pooling layers are for feature extraction, while a fully

connected layer transfers those features into ultimate out-

put, like classification.

The convolution layer is a critical part of the CNN

design since it extracts features, which often involves a mix

of linear and nonlinear processes, such as the convolution

process and activation functions. Convolution is a form of

linear process that is utilized to extract features and it

consists of several feature maps. Local characteristics of

distinct points in the former are extracted using each neu-

ron of the same feature map. A nonlinear activation func-

tion is applied to the outputs of a linear operation like

convolution. The rectified linear unit (ReLU) is the most

widely used nonlinear activation function nowadays, which

is used to convert linear operation to nonlinear. The

pooling layer is utilized to minimize the feature maps’

dimension and improve feature extraction robustness. The

convolved layer output values are also selected using a

sliding filter in the pooling layer. The mean and max-

pooling layers are the two forms of pooling layer. The fully

connected layer receives all of the features that have been

created. This layer’s output is a probability distribution for

all classes. The fully connected layer is the classification’s

final result. It combines all of the neurons from the prior

layer into a single layer.

5 Human emotion recognition techniques
using EEG-based BCI

Several research papers on emotion recognition employing

BCI devices for EEG data collection have been published

in recent years. These papers use several techniques of

machine and deep learning. According to the scopus

database, Fig. 14 shows the number of articles from 2015

to 2021 that employed the most widely used classifiers:

ANN, SVM, RF, K-NN, NB, and deep learning. In this

section, we will discuss and review some of widespread

machine and deep learning techniques for EEG emotion

recognition as shown in the following sections.

5.1 Machine learning methods for EEG emotion
recognition

Different methods of machine learning are used to classify

different emotional states from EEG data like support

Fig. 14 The number of publications from 2015 to 2021 of the most

commonly used machine and deep learning methods for EEG emotion

recognition based on scopus database

Neural Computing and Applications (2022) 34:12527–12557 12547

123



vector machine (SVM), random forest (RF), k-nearest

neighbor (K-NN), extreme learning machine (ELM), arti-

ficial neural network (ANN) and naive Bayes (NB). These

shallow classification techniques all classify EEG signals

based on their features alone, without taking into account

the signals’ internal temporal dynamic information [190].

Table 5 Summary of EEG emotion classification papers using traditional machine learning methods from 2015–2021

References Dataset used Classification methods Emotions Acc (%)

[63] Own dataset SVM Disgust Avg.90.2

[56] DEAP C4.5 2class/Arousal

2class/Valence

Arousal: 69.09

Valence: 67.89

[64] GAMEEMO MLPNN HAPV, HANV, LAPV and LANV

Positive and negative

4 classes/avg. 73.2

2 classes/avg. 81.36

[57] DEAP MLPNN Positive and negative 77.14

[67] DEAP and SEED GELM DEAP: HAHV,HALV, LAHV and

LALV

SEAD: Positive, neutral and negative

DEAP: 69.67

SEED: 91.07

[58] DEAP ANN 2class/Arousal

2class/Valence

Arousal: 82.11

Valance: 82.03

[68] DEAP and SEED RF, K-NN, DT Positive, neutral (calm) and negative DEAP: 62.63

SEED: 74.85

[59] DEAP LSSVM ( Linear) 2class/Arousal,

2class/Valence

Arousal:64.84

Valence: 61.17

[55] DEAP SVM ( (RBF)) 2class/Arousal,

2class/Valence

Arousal: 73.06

Valence: 73.14

[69] DEAP SVM and RVM 2class/Arousal,

2class/Valence,

2class/Dominance

and 2class/Liking.

Arousal: 68

Valence: 65

Dominance: 63

Liking: 67

[70] DEAP SVM (RBF) 2class/Arousal,

2class/Valence

Arousal: 67.7

Valence: 69.6

[71] Own dataset LIBSVM 2class/Arousal,

2class/Valence

Arousal: 74.88

Valence: 82.63

[72] DEAP and

MAHNOB-HCI

LSSVM (RBF) 2class/Arousal,

2class/Valence

DEAP:

Arousal: 65

Valence: 68

MAHNOB-HCI:

Arousal: 67

Valence: 70

[65] DEAP K-NN 2class/Arousal,

2class/Valence

Arousal: Avg. 92.9

Valence: Avg. 92.8

[73] DEAP LDA Positive, negative, angry

and harmony

82

[74] DEAP MLPNN HVHA, LVLA, HVLA and

LVHA

93.8

[75] Own dataset SVM Positive, neutral and negative 85.9

[76] SEED RFE, SVM Positive, neutral and negative 93

[77] DEAP RF Happy, sad, angry and relaxed 75.60

[191] DEAP NB Valence, arousal and dominance 78.06

Least Square Support Vector Machine (LSSVM), Graph Regularized Extreme Learning Machine (GELM), Relevance Vector Machine (RVM),

Linear Discriminant Analysis(LDA), Rotation forest ensemble (RFE)
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Table 5 summarizes the research in emotion recognition

from EEG from 2015 to 2021 using machine learning

techniques. Figure 15 illustrates a chart of the usage per-

centage of several methods of machine learning used for

EEG emotion recognition addressed in this review.

According to Table 5, traditional machine learning

methods’ classification accuracy ranges from 61.17 to 93%.

As shown in Fig. 15, SVM and its derivatives are the most

commonly used, contributing for 41%, and the related

kernel functions are Gaussian, linear, radial basis functions

(RBF) and so on. Artificial Neural Networks (ANN) and its

architecture MLPNN are the second most popular, with

18% usage. RF is chosen by 14% of the researchers. The

usage of the K-NN is similar to that of the DT, each

accounting for 9%. Only 5% of the researchers choose NB.

ELM is the least commonly used, with approximately 4%.

SVM, as a representation of classical machine learning

techniques, has the advantage of being able to separate

classes in a higher-dimensional space using different kernel

functions, and it has long been chosen by most researchers.

As a result, it ranks first in this review in terms of algorithm

usage frequency.

5.2 Deep learning methods for EEG emotion
recognition

In the last few years, deep learning techniques have been

adopted by a large number of researchers. Because of their

advantages of recurrent neural network (RNN), convolu-

tional neural network (CNN), deep neural network (DNN),

deep belief network (DBN) and long- and short-term

memory (LSTM) in representational learning and high

classification accuracy, they can be used to classify more

complicated situations. As a result, a growing number of

researchers consider deep learning to be an important study

method for EEG emotion detection. Table 6 summarizes

the research in this field using deep learning methods from

2015 to 2021. Figure 16 illustrates a chart of the usage

percentage of different deep learning techniques used for

EEG emotion recognition addressed in this review.

According to Table 6, the deep learning algorithms’

classification accuracy varies between 61.25% and 97.56%.

It can be seen that traditional machine learning methods do

not have a classification effect as good as deep learning

methods. To determine the characteristics of EEG signals,

classical machine learning techniques necessitate a lot of

previous knowledge. However, various people have sig-

nificant differences in the complicated cognitive process,

making it difficult to find effective features. All of this

makes improving the EEG signal classification accuracy

extremely difficult. Deep learning, unlike traditional

machine learning algorithms, does not necessitate exten-

sive previous knowledge or manual extraction of features.

It is capable of extracting features from complicated data

on a level-by-level basis. As shown in Fig. 16, LSTM and

its derivatives are the most commonly utilized, accounting

for 50% of the total. CNN and its derivatives are the second

most popular, accounting for 36% of the studies. DBN and

DNN are the least popular, each with a proportion of 7%.

6 Challenges and future research directions

As this review study has shown, we can employ BCI

devices to record EEG signals and analyze them using

modern ML and DL algorithms for real-world applications

of emotion detection technology. However, there are

unresolved issues there that need to be addressed. On

average, existing approaches to emotion detection utilizing

EEG signals produced classification accuracies greater than

80%, which appears to be appropriate for practical appli-

cations; however, recognition accuracy is unique to each

application and highly reliant on the datasets used in the

study. The following are some of the open issues and

directions for future research in the field of emotion

recognition that were discovered during this review.

1. The existing research primarily focuses on the subjec-

tive dependent emotion recognition problem, which

requires a personalized classifier for each participant. A

model of emotion recognition that is subject-indepen-

dent (or generic) and suitable for a collection of

individuals would be extremely useful in real-world

circumstances. However, to achieve emotion detection

accuracy that is consistent across individuals, the

subject-independent classifier model must be inte-

grated with the transfer learning technique.

2. The majority of known EEG datasets were collected

using visual elicitation tools in laboratory settings. In

earlier studies, the emotional condition of the subjects

Fig. 15 Various machine learning methods used in EEG emotion

recognition addressed in this review
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Table 6 Summary of EEG emotion classification papers using DL methods from 2015–2021

References Dataset used Classification methods Emotions Acc (%)

[78] Own dataset BiLSTM Positive, neutral

and negative

72.83

[192] Own dataset DL withRBM Happy, calm, sad,

and scared

68.4

[80] DEAP DNN 2class/Arousal,

2class/Valence

Arousal: 61.25 Valance: 62.50

[81] DEAP

and SEED

LSTM HAHV,HALV, LAHV

and LALV,

2class/Arousal, and

2class/Valence

Positive, neutral and

negative

DEAP:

4 classes: 82.01

Arousal: 85.21 Valance: 84.16

SEED: 90.81

[82] SEED SRU Positive, neutral and

negative

80.02

[193] Own dataset LSTM Happy, fear, anger, sad,

Surprise and disgust

87.25

[194] DEAP and DREAMER RACNN 2class/Arousal,

2class/Valence

DEAP:

Arousal: 97.11 Valence: 96.65

DREAMER:

Arousal: 97.01 Valence: 95.55

[83] DEAP,DREAMER,

SEED and AMIGOS.

CNN?SVM 2class/Arousal,

2class/Valence

Positive and negative

DEAP:

Arousal:77.7 andValence: 76.6

DREAMER:

Arousal: 90.4 andValence: 88.2

AMIGOS:

Arousal :90.5 andValence: 78.4

SEED: 88.5

[84] Own dataset, DEAP

and SEED

LSTM Disgust, sadness, surprise

and anger

Positive, negative,

and neutral

DEAP: 91.38 SEED: 89.34

Own dataset

4 class: 94.12

3 class: 92.66

[195] DEAP BiDCNN 2 class/Arousal,

2 class/Valence

Subject-dependent

Arousal:94.72 Valence: 94.38

Subject-independent

Arousal: 63.94 Valence: 68.14

[196] DEAP LSTM 2 class/Arousal,

2 class/Valence,

2 class/Liking

Arousal: 85.65 Liking: 87.99

Valence: 85.45

[66] DEAP Merged LSTM 2class/Arousal,

2class/Valence,

2 class/Liking

2 class/Dominance

Arousal 83.85 Valence 84.89

Liking 80.72 Dominance 84.37

[79] Own dataset BiLSTM Neutral, sad, fear, and

Happy

84.21

[85] SEED and DGCNN Positive, neutral and SEED:
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before the experiments were conducted was not

considered. Such individual differences can cause

datasets to be inconsistent.

3. Many studies only considered a binary classification of

each emotion dimension.

4. In many emotion recognition studies, researchers

examined EEG data under different emotional states

and neglected the baseline (spontaneous) EEG data.

5. EEG-based emotion detection of mixed emotions, such

as bittersweet feelings, that integrate positive and

negative influences perceived at the same time, was not

found in the literature. The research to improve

creative performance is linked to these mixed emo-

tions, which is why they are interesting [198].

In addition to the above points, the following will be

considered in future work.

1. Traditionally, actual emotion classes have been labeled

based on a predetermined subjective rating data

threshold. Unfortunately, determining the appropriate

threshold is difficult. A novel approach is to consider

the valence as well as the arousal dimensions at the

same time and then utilize data clustering methods to

find the emotion actual classes.

2. EEG-based BCI system components, such as feature

extraction and selection, are continually evolving.

They ought to be established on a thorough compre-

hension of the physiology and biology of the brain. The

creation of distinctive features has the potential to

dramatically improve the results of emotion detection

systems. As an example, time-domain characteristics

are mixed with frequency, time-frequency features, and

channel location.

3. Emotional models with more dimensions must be

developed. Currently, the two-dimensional emotion

model is widely employed. Multi-class emotion recog-

nition necessitates the development of higher-dimen-

sional emotion models. For example, accumulated

analysis of the context information of the subject can

predict the ’stance’ dimension in a three-dimensional

emotion model (i.e., arousal, stance, and valence).

4. Advanced machine learning approaches, such as deep

and transferable ML techniques, must be developed.

Emotions are a reflection of cognitive processes linked

to biological comprehension and psychophysiological

occurrences, and their creation is a subjective and

difficult procedure. As a result, proposing a recognition

method solely based on classic ML methods is

problematic.

5. To monitor temporal emotional fluctuations in real

time, traditional time series analysis approaches must

be integrated with machine learning techniques

[55, 199–203].

6. The majority of engineering techniques for emotion

recognition show that arousal categorization is usually

more accurate than valence distinction. The rationale

for this could be that arousal level changes are directly

related to autonomic nervous system activities (e.g.,

Table 6 (continued)

References Dataset used Classification methods Emotions Acc (%)

DREAMER negative

2class/Arousal,

2class/Valence,

2 class/Dominance

90.40

DREAMER:

Arousal 84.54 Valence 86.23

Dominance 85.02

[86] SEED DECNN Positive and negative 97.56

[197] DEAP 3D-CNN 2class/Arousal,

2class/Valence

Arousal 88.49 Valence 87.44

Restricted Boltzmann machine (RBM), Simple Recurrent Units (SRU), Regional-Asymmetric Convolutional Neural Network (RACNN), Bi-

hemisphere Discrepancy Convolutional Neural Network (BiDCNN), Bidirectional Long Short-Term Memory Network (BiLSTM), Dynamical

Graph Convolutional Neural Network (DGCNN), Dynamic Empirical Convolutional Neural Network (DECNN)

Fig. 16 Different deep learning methods used in EEG emotion

recognition addressed in this review
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skin conductivity and blood pressure) that are simple to

measure, while the distinction of valence level neces-

sitates a factor analysis of ANS reactions that are cross-

associated. As a result, we will need to create an

emotion-specific categorization framework and extract

a variety of valence-relevant characteristics from EEG

data in a variety of analysis domains (e.g., time-

frequency, frequency, time, entropy, and multi-scale

entropy).

7. We need to create more datasets that employ active

elicitation techniques such as video games because

they better imitate ‘‘real-life’’ experiences and are more

effective at inducing emotion.

7 Conclusion

Emotion recognition has grown in importance in the HCI

field as technologies for human–machine systems and

automation improve. In recent years, EEG-based BCI

emotion recognition has received increasing attention in

the affective computing field. Numerous research studies

have been undertaken due to significant advances in the

creation of affordance and easy to use BCI devices. We

examined over 195 publications for this review. We cov-

ered state-of-the-art EEG emotion identification approa-

ches developed in recent years (2015 to 2021). We also

considered existing datasets and described the main com-

ponents of the emotion detection pipeline utilizing EEG-

based BCI. EEG signals are dependable data that cannot be

faked or simulated. EEG reacts to emotional changes in

real time. The following computational processes comprise

the general methodology for EEG-based BCI emotion

recognition: data collecting, preprocessing, feature extrac-

tion, feature selection or dimensionality reduction, classi-

fication, and performance evaluation. In our review, we

focused on several techniques for preprocessing, feature

extraction, and feature selection/dimensionality reduction.

In addition, we reviewed various machine and deep

learning classification techniques and commonly used

performance metrics. Investigating the relationship

between brain signals and emotions is a difficult task, as

shown in this review, and new methodologies and imple-

mentations are constantly being developed. Many of the

current challenges are expected to be resolved soon, paving

the way for a wide range of potential applications based on

EEG-based emotion identification. It is intended that this

review will provide researchers, particularly those just

starting out in the field, insight into the current state of

research into the recognition and categorization of emo-

tional-oriented EEG features.
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