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Abstract

In this paper a radial basis function network architecture is developed that learns the
correlation between facial feature motion patterns and human emotions. We describe a hier-
archical approach which at the highest level identifies emotions, at the mid level determines
motions of facial features, and at the low level recovers motion directions. Individual emo-
tion networks were trained to recognize the “smile” and “surprise” emotions. Each network
was trained by viewing a set of sequences of one emotion for many subjects. The trained
neural network was then tested for retention, extrapolation and rejection ability. Success
rates were about 88% for retention, 73% for extrapolation, and 79% for rejection.
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1 Introduction

Visual communication plays a central role in human communication and interaction. This
paper explores methods by which a computer can recognize visually communicated facial
actions—tacial expressions. Developing such methods would contribute to human-computer
interaction and to other applications, such as low-bandwidth transmission of facial data and
face recognition from dynamic imagery.

The study of emotion in human facial expressions was pioneered by Darwin’s work [4]
and has been extensively studied in psychology during the last thirty years [25]. This re-
search has indicated that at least six emotions are universally associated with distinct facial
expressions. Several other emotions, and many combinations of emotions, have been studied
but remain unconfirmed as universally distinguishable. The six principle emotions are: hap-
piness, sadness, surprise, fear, anger, and disgust (see Figure 1), and these are the emotions
we focus on in this paper.

Most psychological research on facial expression has been conducted on “mug-shot” pic-
tures that capture the subject’s expression at its peak [25]. These pictures allow subjects
to detect the presence of static cues (such as wrinkles) as well as the position and shape
of the facial features. Few studies have directly investigated the influence of the motion
and deformation of facial features on the interpretation of facial expressions. Bassili [2]
suggested that motion in the image of a face would allow emotions to be identified even
with minimal information about the spatial arrangement of features. The subjects of his
experiments viewed image sequences in which only white dots on the dark surface of the
person displaying the emotion were visible. The reported results indicated that facial ex-
pressions were more accurately recognized from dynamic images than from a single static
image. Whereas all expressions were recognized at above chance levels in dynamic images,
only happiness and sadness were recognized at above chance level in static images. Building
on the results of Bassili [2] we explore the potential of motion analysis in an autonomous
system for recognition of emotions in facial images.

We focus our attention on the appearance of the face from its near frontal image pro-
jection, without considering the underlying anatomic and musculature models and actions.
In doing so we depart from the current trend in which facial expression analysis is based on
recovering muscle actions [15, 16, 21].

Before proceeding, we introduce some terminology. Face region motion refers to the
changes in images of facial features caused by facial actions corresponding to physical feature
deformations on the 3-D surface of the face. Our goal is to develop computational methods
that use such motions as cues for action recovery.

Recent research in computer vision

The problem of recognizing facial expressions has recently attracted attention in the com-
puter vision community [15-17, 21, 23]. With the increase of interest in human-computer
interaction and related applications, the need arises to analyze human messages that are
communicated through body part gestures and facial expressions.
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Figure 1: Six expressions expressed by different faces

Yacoob and Davis [23] proposed an approach to analyzing and representing the dynamics
of facial expressions from image sequences. This approach is divided into three stages:
locating and tracking prominent facial features (i.e., mouth, nose, eyes, and brows), using
optical flow at these features to construct a mid-level representation that describes spatio-
temporal actions, and applying rules for the classification of this mid-level representation
into one of the six universal facial expressions. On a sample of 46 image sequences of 32
subjects displaying a total of 105 emotions, the system achieved a recognition rate of 86%
for “smile”, 94% for “surprise”, 92% for “anger”, 86% for “fear”, 80% for “sadness”, and

92% for “disgust”. Blinking detection success rate was 65%.

The work reported here explores the use of a connectionist learning architecture for
identifying the motion patterns characteristic of facial expressions. This approach could
replace the expert rules developed in [23], and may allow the development of person-specific



learning capabilities. Such systems could be used in applications in which interactions are
limited to a specific individual.

Matsuno et al. [17] proposed an approach for recognizing facial expressions from static
images based on a pre-computed parameterization of facial expressions. Their approach lays
a grid over the face and warps it based on the gradient magnitude using a physical model.
The amount of warping is represented in a multi-variate vector that is compared to learned
vectors of four facial expressions (happiness, sadness, anger, and surprise).

Mase [16] used optical flow computation for recognizing and analyzing facial expressions
in both a top-down and bottom-up approach. In both cases, the focus was on computing the
motion of facial muscles rather than of facial features. Four facial expressions were studied:
surprise, anger, happiness, and disgust.

The top-down approach assumed that the face’s image can be divided into muscle units
that correspond to the Action Units (AUs) suggested by Ekman and Friesen [6]. Optical
flow is computed within rectangles that include these muscle units, which in turn can be
related to facial expression. However, Mase did not report any results on mapping the optical
motion results into facial expressions. This approach relies heavily on locating rectangles
containing the appropriate muscles—a difficult image analysis problem, since the muscle
units correspond to smooth, featureless surfaces of the face. Furthermore, the approach
builds on a model that is suitable for synthesizing facial expressions but remains untested in
analysis of facial expressions (for more details see [3]).

The bottom-up approach covered the area of the face with evenly divided rectangular
regions over which feature vectors derived from an optical flow computation were computed.
The feature vectors are defined over a 15-dimensional space that is computed based on the
means and variances of the optical flow. The recognition of expressions is based on a k-
nearest-neighbor voting rule. The optical flow calculation was averaged within each window
to smooth the results over edges. Furthermore, the optical flow was treated on a per-frame
basis without considering the time-sequence of frames. The experiments considered the
expressions of just one face and the results were compared with the performance of human
subjects that were asked to classify the displayed emotions.

Terzopoulos and Waters [21] proposed an approach to synthesis and analysis of facial
expressions based on physical modeling of the muscles of the face. They devised a six
level representation of the face that consists of: expression level (which includes the six
primary expressions); control level (implements a subset of the FACS—Facial Action Cod-
ing System—for controlling muscles), muscle level (models the muscles’ contraction and
expansion as springs), physics level (models the facial tissue’s deformations), geometry level
(provides a geometric representation of the face as a mesh of polyhedral elements that depend
on the curvature of surface), and image level (visualizes the data).

The analysis part assumes that eleven principal contours are initially located manually
on the face. These contours are tracked throughout the sequence by applying an image force
field that is computed from the gradient of the intensity image. The estimation of the muscle
contractions takes place after the contours’ reference points were determined. In addition to
assuming a frontal view, it was assumed that the projection is orthographic. Once the muscle
contractions have been estimated, they were resynthesized onto the 3D range data model of
the subject to recreate the muscle contractions. It remains to be determined whether the
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computation of muscle contractions would be useful for facial expression recognition (the
authors did not explore this aspect in [21]).

Li et al. [15] proposed an approach that focuses on analyzing facial images for the purpose
of resynthesizing these images. Their approach does not attempt to classify or reason about
facial expressions and actions, although some aspects of their work might potentially achieve
that. The approach is model-based; it assumes that a 3-D mesh has been placed on the face in
the image, and that the depths of points on the face have been recovered. The contribution
of the research is an algorithm for recovering the rigid and non-rigid motions of the face
from the sequence of images, and reapplying these motions to create an approximation to
the initial sequence.

The motion recovery employs a facial modeling approach that uses six AUs to repre-
sent possible facial expressions, thereby arriving at an affine non-rigid motion model. Two
methods for computing the motion between two images were proposed for small and large
motions. In addition, a closed loop feedback architecture was proposed for facial tracking
over long image sequences. This architecture assumes motion continuity and employs a
prediction-and-correction strategy to handle the motion tracking problem; both linear and
adaptive predictors were proposed.

2 Overview of our approach

The following constitute the framework within which our approach for analysis and recog-
nition of facial expressions is developed:

e The face is viewed from a near frontal view throughout the sequence. This allows us
to avoid, initially, the increase in ambiguity of expression interpretation as the face
moves from the frontal view.

e The overall rigid motion of the head is small between any two consecutive frames.

e The non-rigid motions that are the result of face deformations are spatially bounded,
in practice, by an n x n window between any two consecutive frames. The image
sequence is densely sampled in time.

e The subjects wear no eyeglasses.

We chose not to model or analyze facial muscle actions, setting our work apart from
[15, 16, 21], as well as not to use models for muscle actions [6]. Instead, we focus on the
motions associated with the edges of the mouth, eyes, and eyebrows. These edges allow
us to refer to the face features using natural linguistic terminology (for a detailed list of
considerations see [24]).

Figure 2 describes the flow of computation of our facial expression system. The system
is similar to [23] in the tracking and optical flow computation but differs in the analysis and
interpretation of motion patterns. The system is composed of the following components:
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Figure 2: The flow of the facial analysis algorithm

e Optical flow computation: Optical flow is computed at the points with high gradient
at each frame. Our algorithm for flow computation is based on a correlation approach
proposed by Abdel-Mottaleb et al. [1]. It computes subpixel flow assuming that the
motion between two consecutive images is bounded within an n X n window.

e Region tracking: Accurate localization of facial features is both difficult and compu-
tationally expensive if performed for each frame. We assume that, for each feature,
we can initially compute a rectangular region that encloses it. Such an algorithm has
been recently proposed for range data by Yacoob and Davis [22] and a similar algo-
rithm could be developed for intensity images (or stereo images), a problem we are
currently working on. Our algorithm tracks these regions through the remainder of the
sequence. The tracking is based on the localization of points with high gradient and
the optical flow fields computed at these points.

o Connectionist classification: We propose a connectionist approach for learning the
facial motion information and relations that are important to the determination of
emotion. This system learns using a training set which consists of images from a
diverse set of human subjects displaying the same emotion.

In this paper we focus on the connectionist approach to solving this problem.

3 Psychological basis for recognizing facial expressions

Table 1 summarizes the results of Ekman and Friesen [5] on the universal cues for recognizing
the six principal emotions. These cues describe the peak of each expression and thus they
provide a human interpretation of the static appearance of the facial feature. For example, a
description such as “brows are raised” means that the viewer’s interpretation of the location
of the brows relative to other facial features indicates they are not in a neutral state but higher
than usual. The viewer uses many cues to deduce such information from the image, among
these are: the appearance of wrinkles in certain parts of the face, effect of the hypothesis of a
high brow on the shape of the eyes (i.e., state of eyelids), etc. Unfortunately, the performance
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of humans in arriving at such descriptions is far better than what can be currently achieved
by computers if only static images are considered. Some of the linguistic expressions used to
describe these cues appear very hard to model computationally— “upper lid is tense, tension
or stress in the mouth, lip trembling”, etc. These descriptions seem rather instinctive to
humans but are quite difficult to translate into computational procedures.

Table 1: The cues for facial expression as suggested by Ekman and Friesen

|| Emotion | Observed facial cues ||

Surprise brows raised (curved and high)

skin below brow stretched

horizontal wrinkles across forehead

eyelids opened and more of the white of the eye is visible
jaw drops open without tension or stretching of the mouth
Fear brows raised and drawn together

forehead wrinkles drawn to the center

upper eyelid is raised and lower eyelid is drawn up

mouth is open

lips are slightly tense or stretched and drawn back

Disgust upper lip 1s raised

lower lip is raised and pushed up to upper lip or i1s lowered and slightly protruding
nose is wrinkled

cheeks are raised

lines below the lower lid, lid 1s pushed up but not tense

brows are lowered, lowering the upper lid

Anger brows lowered and drawn together

vertical lines appear between brows

lower lid is tense and may or may not be raised

upper lid is tense and may or may not be lowered due to brows’ action

eyes have a hard stare and may have a bulging appearance

lips are either pressed firmly together with corners straight or down,
or are open, tensed in a squarish shape

nostrils may be dilated (could occur in sadness too)

unambiguous only if registered in all three facial areas

Happiness | corners of lips are drawn back and up

mouth may or may not be parted with teeth exposed or not

a wrinkle runs down from the nose to the outer edge beyond lip corners

cheeks are raised

lower eyelid shows wrinkles below it, and may be raised but not tense

crow’s-feet wrinkles go outward from the outer corners of the eyes

Sadness inner corners of eyebrows are drawn up

skin below the eyebrow is triangulated, with inner corner up

upper lid inner corner is raised

corners of the lips are drawn or lip is trembling

Figure 3 summarizes the observations of Bassili [2] on motion based cues for facial expres-
sions. Recall that the experiments of Bassili were intended to explore only the role of motion
in facial expressions; therefore the face features, texture and complexion were unavailable to
the experiment subjects. As illustrated in Figure 3, Bassili identified principal facial motions
that provide effective cues to the subjects to recognize facial expressions.
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Disgust

Figure 3: The cues for facial expression as suggested by Bassili

Bassili’s results do not explicitly associate the motion patterns with specific face features
or muscles since such information was unavailable to the subjects. For example, a “surprise”
motion is recognized by an upward motion in the upper part the face and a downward motion
in the lower part of the face. Our work unifies the face features described by Ekman and
Friesen and the general motion patterns suggested by Bassili into one spatio-temporal system
that allows facial expression recognition from dynamic images.

4 Optical Flow Computation

The approach we use for optical flow computation is one recently proposed by Abdel-
Mottaleb et al. [1]. Assume that a pixel’s displacement (Ax, Ay) between frame t and
frame ¢ + 1 is at most n pixels and is expressed in terms of an integer and a fraction part,
e, (Ax,Ay) = (tx + fr ity + fy). A pixel in frame ¢, in general, will be a combination of



four pixels in frame ¢t + 1, explicitly written as:

Li(z,y) = (1 = [fol)(1 = [fuD ea (@, y) + [ Fo | (1 = [ £y ) Lega (2, y + sy) +
| fellfyllea (2 + sz, y + sy) + (1 = [fo])fy [l (z + s2,y) (1)

where sx = 1 + 4, if Ax is positive and sz = (=1 — i) if Az is negative, and sy is defined
similarly. Figure 4 shows the graphic explanation for Eq. 1.
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Figure 4: The correlation based optical flow computation

The difference, e, between the right and left sides of Eq. 1 may not be zero due to noise.
This difference is to be minimized over all possible motions of the pixel within the defined
window. Let d = (Ax, Ay); then using Bayes’ rule we can write

p(dle) = p(e|d)p(d)/p(e) (2)
In the case of Gaussian noise with mean zero and standard deviation o, we have

1 €T€

eXp 2wy (3)

pleld) =

2moy

where ¢, = 202, Since P(e) is constant with respect to d it can be dropped, and the MAP
estimate of the displacement is

arg max p(dle,,) = arg max p(e,|d)p(d) (4)

where p(e,|d) = 7" ;21p(e;|d) and e; is the error term at pixel j in frame i.



5 Tracking face regions

Yuille et al. [26] used deformable templates and an energy minimization approach to localize
and approximate the eyes and mouth in intensity face images. This approach requires an
accurate initial estimate of the location of the features, and might not be easily applied to
facial features such as the eye when it is being closed or opened, since the deformations of
the template could become quite complex.

Yacoob and Davis [22] present an approach for qualitatively localizing and labeling nat-
ural facial components from range data. They used a multi-stage diffusion process that
classifies range points into relative convexities and concavities. The convexities are isolated
and contextual reasoning is employed to determine possible labels for each component and
an overall consistent interpretation of those labels. Their approach does not quantitatively
recover the facial features but it designates rectangles that enclose the features.

The only dynamic tracking algorithm for facial features we are aware of is that of Ter-
zopoulos and Waters [21]. Eleven contours were manually located in the first image of the
sequence and then tracked using deformable contour models that are attracted by the local
minima of the intensity image. The performance of the tracking algorithm depends on the
image gradients since the gradient is used as an external attractive force on the deformable
contours. In the experiments reported there was a requirement to enhance the edges in each
tracked contour, accomplished by having the subject wear makeup.

Figure 5: An example of the rectangles surrounding the face regions of interest for the
intensity and gradient images

We assume that rectangles enclosing the regions of interest are given for the first frame.
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Each rectangle is assumed to enclose just the feature of interest, so the flow computation
within the region is not “contaminated” by the motions of other facial features. Figure 5
shows the initial rectangles enclosing the regions of interest of the face for one of our subjects.
To simplify the modeling of the eyebrows, we define the rectangles to include the eyes, and
then subtract the rectangles of the corresponding eye from the combined rectangle.

Our approach to tracking the face regions is based on computing two sets of parameters
at the points with high gradient magnitude within the rectangle that encloses each feature.
The following are computed from frame ¢ after placing the rectangles from frame : — 1 over
the image in frame ¢:

e The centroid (C*,, C%,) of the points having a high gradient value within each rectangle
in frame z.

e The window W = (WXimin — 2 WY hin — 2, WX e + 2, WY s + 2) which encloses
those high gradient values and leaves a buffer, two pixels deep, that allows the detection
of window expansion during subsequent iterations.

The centroid’s location determines the translation of the rectangle from the previous
frame. The window W determines the scaling of the rectangle.

The translation and scaling of the rectangles are limited between consecutive images.
Limits on scaling are set a priori. For example, when tracking the eyes we assume that the size
of the rectangle that encloses the eyes cannot scale more than +0.1 from the “neutral” state
(i.e., neither wide open in “surprise” nor closed). These scaling bounds were determined,
empirically, from our image data sets.

The temporal tracking incorporated the optical flow results in refining the scaling and
translations computed by the gradient magnitude change. The statistics of the motion direc-
tions within a rectangle are used to verify translation of the rectangles upward and downward
(by measuring significant similar optical flow) and to verify scaling of the rectangles (by mea-
suring motions that imply scaling).

This tracking algorithm is admittedly quite simple and has the following shortcomings:

o When the edges of different features move too close together, the rectangles surround-
ing the features may sometimes be subject to incorrect scaling or translation. We
developed heuristic constraints that minimize such artifacts. For example, the rect-
angle surrounding a feature is not allowed to move too far from the other rectangles
over the sequence (which is motivated by the fact that the deformation of the face is
constrained by anatomic and muscle factors).

e Due to specularity or change in feature location the gradient at some points may be-
come lower than the threshold. This results in exclusion of these points from the
computation of the parameters of the rectangle. For example, for some subjects the
lower part of the lower lip tended to produce values below the threshold due to high-
lights. We are studying ways to overcome this in our current research.

In spite of these shortcomings, the algorithm was quite robust when applied to thousands
of images.
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6 The Inputs and Outputs of the Neural Network

We perform three stages of preprocessing on the input sequence before providing it to the
neural network. The first stage generates a sequence of images which represents the in-
stantaneous optical flow of the image sequence. The second stage extracts, using tracking
techniques, the facial features from the optical flow sequence (i.e., the right and left eyebrows
and the mouth). The third stage of preprocessing performs a log-polar transformation on
the feature motion images of the sequence. This transformation compresses the outer ex-
tremities of the feature images for the purpose of reducing the effects of size variance. Size
variance occurs because of the different subjects’ distance from the camera, subject’s motion
during the image sequences, and the natural diversity in the sizes of subjects’ features.

The output nodes of the system could be structured so an output is associated with a
particular emotion. In this case we would have six output nodes, one each for happiness,
anger, sadness, disgust, fear, and surprise. The activations of the output nodes would repre-
sent the network’s confidence that the subject experienced the corresponding emotion. This
representation, however, does not provide enough spread for the neural network to learn
effectively. An intermediate output representation is required to provide this spread. The
intermediate output representation could then be connected to the ideal final output layer
or to a post-process that determines which emotion occurred based on the intermediate out-
put representation. The intermediate output representation we have chosen represents the
stage of an emotion to which an input image of a sequence corresponds. Each output unit is
associated with a stage of the emotion sequence. The activation of an intermediate output
unit in this representation corresponds to the network’s confidence that the emotion of the
current subject in the sequence is in the stage corresponding to the particular output unit.

Pomerleau [19] found that when there exists a proximal relation between output units,
the supervised learning unit activations should reflect this relation. In our application, an
output unit represents a stage of an emotion. The stages are related by a temporal proximal
relation, in that one stage occurs before and after others in time. If the current training
vector is to reflect that the emotion is currently in stage N, then output unit N should be set
with the greatest activation, while output units N +1 and N —1 should be set with a slightly
lower activation and so on until the boundaries of the output vector are reached. Pomerleau
used a Gaussian function to set the training activations. We also used a Gaussian, placing
its peak on the current stage in the output training vector and setting the output units
corresponding to the value of the Gaussian at that position in the vector (see Figure 6).

7 The Network Architecture for Emotion Decomposition

We divide the emotion detection architecture into three layers. The first layer is a decompo-
sition by emotion (see Figure 7), and occurs at the network level (i.e., we train a separate
network for each emotion). During training, a network in this layer is only exposed to one
emotion for multiple subjects. The second layer of decomposition is at the facial component
level. This decomposition is internal to each of the emotion tuned networks. Each emotion
network is broken into three subnetworks, where each subnetwork specializes in a particular
facial component. A component-tuned subnetwork only uses the portion of the input vector
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Figure 6: The Gaussian weighted output vector

that corresponds to its component specialization (see Figure 8). The third layer of decompo-
sition is by direction sensitivity, and further decomposes the component subnetworks. These
“subsubnetworks” are sensitive to one direction of motion for a specific pre-assigned facial
component for a specific emotion. In order to capture all resultant motions, we use the four
direction sensitivities of “up”, “down”, “right”, and “left”.

The fusion of information from each of the six emotion-tuned networks is performed by
a process external to these networks. We developed a heuristic scheme (discussed in a later
section) which combines the outputs of all six emotion networks. The fusion of information
from the internal subnetworks is done internally in each of the emotion networks through
the coupling of these component subnetworks and the output units of the individual emotion
network.

8 The Basic Connectionist Building Block

The overall architecture for this application is a hierarchy of neural networks. We chose to
use as a building block a modified version of the radial basis function network (RBFN), based
on its ability to represent prototypical visual templates from the application domain [20]. In
the rest of this section we discuss the basic RBFN architecture, and the enhancements we
made to the basic RBFN architecture to handle the temporal relations associated with this
problem.

8.1 The General RBFN Architecture

Neural networks are used to approximate multivariate nonlinear functions using sparsely
sampled data. The networks are trained using sample data from the function to be ap-
proximated, achieving (essentially) a form of function fitting in a multi-dimensional space.
If the training set is representative of the function being approximated, the network can
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Figure 7: The hierarchy of networks based on emotion decomposition

approximate it with a high degree of accuracy; otherwise the network may learn the func-
tion incorrectly. In most cases a well trained network can successtully generalize within the
input space subtended by the training set (interpolation), and in some cases, the network
can successfully generalize to inputs that fall outside the space subtended by the training
set (extrapolation).

The radial basis function network performs a form of template matching in which a
template contributes to the generation of the output proportional to the degree that the
template matches the input, and by the significance of that template to the output. This
relates to the across-fiber-pattern theory used to describe sensory coding in humans and
animals [7]. Goldstein remarks “This theory states that different qualities are signaled to
the brain by the pattern of activity across a large number of neurons.” The simple RBFN of
Moody and Darken [18] consists of an input layer, a hidden layer, and an output layer (see
Figure 9 for the simple RBFN architecture). The input layer consists of a number of units
clamped to the input vector. The hidden layer is composed of units which are driven by
radial basis activation functions; we will refer to these units as receptive fields. The output
layer consists of units clamped to the output vector. The input units are fully connected by
unit weighted links to the receptive fields in the hidden layer, and the receptive fields are
fully connected by weighted links to the output units.

The radial basis function used for the receptive field activation functions can take many
forms. A common radial activation function is an N dimensional Gaussian

pil#) = exp (=B (7 — @)"(F — @) ()
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where p;(7) is the response of the :'! basis function to input vector ¥, @; represents the center
of the 7*® basis function, and 3; is the reciprocal of the standard deviation squared. We refer
to the standard deviation as the “width” of the basis function. The activation function for

6i(T) = >_ fij pilF) (6)

an output unit is

where ¢;(7) is the activation level for the ¢*® output unit with input vector #, and f;; is the
weight of the link from the ;' receptive field to the *" output unit [18].

Several improved versions of the simple RBFN have been made; one of these is called the
Connectionist Normalized Linear Spline Network(CNLS) [11]. The CNLS differs from the

simple RBFN in two ways:

1. In the CNLS network a linear term has been added to the activation function for an

output unit.

2. The responses of the receptive fields have been normalized.

These changes modify equations (5) and (6) to

—

pi(T) = Soiexp (—p; (& —d;)t (@ —ay))
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These enhancements to the original RBFN improve the interpolation ability of the network
and reduce the amount of training necessary for accurate learning [10, 12-14].

In the RBEFN there are three phases of learning. Learning can be performed on: 1) the
center locations of the receptive fields in input space, 2) the widths of the receptive fields,
and 3) the layer of weights between the hidden layer and the output layer. The first two
phases of learning are optional, but the last phase of learning is mandatory. We will explain
the algorithm for each phase of learning and how it improves the network’s performance.

The training of the receptive field centers is done using task-dependent clustering tech-
niques [8, 18]. An input pattern to the network corresponds to an N-component vector
in the N-dimensional input space, and the receptive fields in the hidden layer act as N-
dimensional Gaussian response regions in the input space. We would like to distribute the
receptive fields of the hidden layer in regions of input space where input patterns occur; this
is done using clustering techniques. A simple algorithm for performing this clustering is to
expose the network to a set of typical input patterns, and for each input pattern move the
closest receptive field closer to that input vector.

d . o
axclosest[t] - n(xcenter[t] - xclosest[t]) (9)

Clustering of receptive fields around nominal input vectors makes more efficient use of the
receptive fields in the network, and results in a crisper response from receptive fields near
an input vector, and negligible response from receptive fields with little correspondence to
the input vector.

The second phase of learning is training on the receptive field widths. Moody and Darken
train receptive field widths by minimizing the following objective function with respect to
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The adjustment of receptive field widths using this technique is only dependent on the
locations of receptive field centers and widths, and does not depend directly on input training
vectors [18]. Also note that this approach considers the widths along each dimension to be
equal, resulting in a Gaussian hyper-sphere response from each receptive field. The training
of the receptive field widths optimizes the specialization of receptive fields. A receptive field
with a relatively large width in N-space will respond to a large set of input vectors, and a
receptive field with a small width will respond to a small set of input vectors.

Training the weight terms between the receptive fields and the output units is the third
and mandatory phase of training. This is accomplished by minimizing the sum squared error

of the output layer:
1
B3 - 08 (1)
(0
Any optimization technique can be used to adjust the weight settings in the network. In
our work on RBFN’s we have used Newton’s Method. The weight change equation for the

constant weight term from the j*® receptive field to the ¢*" output unit is
pi(T) Xk pr(7)
>k PR(T)

where 7y is the learning rate for the constant weight term. The weight change equation for
the linear weight term from the j'" receptive field to the " output unit is

T =1+ g (@) — ¢i(@)) (12)

dif' = dij +na (yi(T) — 6i(7)) (13)
where 74 is the learning rate for the linear weight term. Each weight represents the contribu-
tion a receptive field makes to the activation level of an output unit. Thus, a large positive
weight means that a receptive field plays a large role in an output unit’s activation, a small
weight indicates that a receptive field plays little role in an output unit’s activation, and a
large negative weight indicates a receptive field has a large inhibitory effect on an output
unit’s activation.

An RBF receptive field is a response region in N-dimensional input space, with an N-
component center coordinate. The input space can be considered as an image space, since
the input units are clamped directly to the values of the pixels of an image retina. Since each
coordinate in image space corresponds to a unique image on the image retina, the receptive
field centers also correspond to unique images on the image retina, and these function as
the application templates. The maximum response of a receptive field occurs when an input
image is situated at the same location as the center of the receptive field, and the response
degrades in a Gaussian fashion as the Euclidean distance of the input image to the receptive
field center increases.
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8.2 The Spatio-Temporal Building Blocks

The RBFN is well suited to handle static spatial image information, since the receptive field
centers capture prototypical images from the application, which in turn directly capture
two-dimensional spatial information. The RBFN architecture, however, is not well suited to
handle temporal relations. A significant part of the task of analyzing sequences of images is
being able to relate information in consecutive frames and over time so that past information
contributes to the current response. For example, there are several emotions where the eye-
brows of a subject move downward. In the “surprise” emotion, the eyebrows move downward
at the end of the emotion, and in “anger” the eyebrows move downward at the beginning
of the emotion. In order to decipher whether the eyebrows are moving downward in the
“surprise” or “anger” emotion, it is necessary to determine what happened to the eyebrows
before they moved downward. In “surprise”, the eyebrows move upward before they move
downward, and in “anger”, the eyebrows are not moving before they move downward. If
this information is incorporated into the current state, the upward motions of the eyebrows
for “surprise” and “anger” can be distinguished. Past information will contribute to the
current input vector during the training and usage modes, will be used in the placement of
the receptive field centers during the center training mode, and will also contribute to the
current receptive field activations also during the training and usage modes.

Past information is incorporated into the input vector by using feedback from the previous
state of the input vector multiplied by a decay constant. Input units that use self feedback
are called “context units” [9]. The activation function for each input unit in our architecture
is

1 if aCy(t— 1) + L(1) > 1

Cilt) = { aCi(t — 1)+ [;(t) otherwise (14)

where C;(t) is the activation of input unit ¢ at time ¢, C;(f — 1) is the activation of input
unit ¢ at time ¢t — 1, « is the decay constant, and I,(¢) is the current input to unit ¢ at time
t. The decay constant is set so that remnants of previous motions linger for a portion of
the sequence. If motion occurs for several iterations at the same pixel location in the input
image, the input unit activation that corresponds to that pixel location becomes saturated
and 1is set to the maximum activation level of one. The effects of using past information
in the current input vector can be seen in Figure 10. For visual simplicity Figure 10 shows
the effects of decay for a sequence of images showing a ball moving across a retina. The
brightest portions of the image are a result of the most recent frames in the sequence, and
the darker ghost images are a result of older remnants from previous frames. In our network,
retinas will contain motion images of facial features after a log-polar transformation; decay,
however, will have the same effect on these images as the sequence of the ball.

Figure 10: The effect of decay on the input vector
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As discussed earlier, the emotion network is divided into three subnetworks, each spe-
cializing in a particular facial component and motion direction. Each subnetwork consists of
receptive fields tuned to the particular component feature, and the weights fully connecting
those receptive fields to the output units. The set of receptive fields corresponding to a
particular component and for each motion direction are further tuned to become sensitive
to only portions or subsequences of the input sequence. In other words, the component
receptive fields become sensitized to stages of the emotion sequence for the component and
direction they are assigned to. A receptive field center image or template is set by adding
up the motion images for a subsequence of the receptive field’s assigned facial component
and motion direction sensitivity. Any position in the summed image that has a value greater
than zero is set to one. Figure 11 shows how a subsequence is used to set the center of
a receptive field for a simple sequence of a ball moving across the retina. This creates a
blurring effect of the template image, similar to the blurring effect created by using a slow
shutter speed in photography, but with no decay of the “ghost” images. It is important to
note that an input vector can never perfectly match a receptive field center template unless
the decay constant for calculating the input vector is set to one.

In order to minimize the problem of overloading and under-utilizing receptive fields, we
defined a parameter which represented the minimum number of pixels that must be turned
on during the image summing stage to set a receptive field center with the summed image.
If the number of “on” pixels during the summation crossed over this minimum threshold, no
additional images were incorporated into the summed image and a receptive field center was
set with the current accumulated image. The result was that portions of the sequence where
significant motion occurred were spread over more center templates for higher temporal
resolution, and portions of the sequence where little motion occurred were fit into fewer
center templates for lower temporal resolution (see Figure 12).

In addition to using past information to set the center positions of the receptive fields,
past information is also used to determine the activations of the receptive fields during the
training and usage modes. The determination of a receptive field activation is similar to the
determination of the activation of an input unit, in that the activation from the previous
time step is factored into the activation at the current time step using a decay constant. The
activation of a receptive field in our architecture is determined by the following equation:

(= _ )1 if ypi(T, 1) + Vi(t) > 1
pilTeer,t +1) = { ypi(Z,t) + Vi(t) otherwise (15)
where v is the decay constant and
exp _62' T - 62 T T - 62
- (=8 (Fon = @) (Fia — @) 5)

X exp (=05 (Fep — @)1 (Top1 — @)
Like the input vector determination, the receptive field response can become saturated, in
which case the activation is set to the maximum value of one.

There is an ambiguity in using a decay constant to determine receptive field activation.
The ambiguity can lead to a blurring between temporal and spatial effects. The ambiguity

arises because a receptive field response can arrive at a particular activation through tem-
poral decay or by spatial similarity. The temporal decay can give the faulty appearance of
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Figure 11: The approach to setting the receptive field centers from subsequences
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Figure 12: The temporal resolution of the receptive field centers

a receptive field responding poorly to an input vector. In the implementation of our ar-
chitecture, this ambiguity did not present a problem. Since an ensemble of receptive field
activations was used to collectively generate an output response, the ambiguities at spe-
cific receptive fields were absorbed; thus, the network was able to learn the correspondence
between receptive field responses and desired outputs no matter how the receptive fields ar-
rived at their activation state. This is similar to the theory in psychology and neuroscience,
across-pattern-fiber-theory, used to explain how ensembles of neurons in the brain are used
to collectively generate a response while overcoming the ambiguities that occur at individual
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neurons [7].

9 Implementation of Training

In order to ensure randomness in our pattern presentation during training, we present the
network with all of the images from all of the sequences in a random order, removing the
notion of an individual sequence. An individual training pattern would then consist of
the pre-processed image from a sequence tagged with the learning vector representing the
stage of the emotion that the image corresponds to. A difficulty arises in dealing with
temporal information using this highly randomized training set in this network architecture.
Temporal information is a key element of this architecture, which is embedded in the fixed
sequential ordering of the images in a sequence, and is lost when this ordering is altered. In
this architecture, the temporal relations of an emotion are captured by the receptive field
activation patterns over the entire set of receptive fields, which are a result of the combination
of remnant activations from previous inputs and current responses from the current input.
The weights between the receptive field layer and the output layer are trained to learn the
correspondence between these receptive field patterns and the stage of the emotion coded
into the learning vector. If we capture the receptive field activation patterns for each image
in a sequential sequence presentation to the network, and tag these activation patterns with
the learning vector that corresponds to the current stage of the input image, we can use the
resulting pairs as the training exemplars for the training set. This training set can now be
presented to the network in a completely random order without losing the temporal relations
between images in a sequence.

The weight training phase thus required an extra pre-processing step that involved build-
ing the training set of receptive field activation pattern/learning vector pairs. We built the
training set by exposing the network to each subject sequence for a particular emotion in
sequential order, capturing the receptive field activation pattern and current emotion stage
for each image, and placing the pair in a training buffer. Once the training buffer was filled
with the pairs, a training exemplar was randomly selected from the training buffer for each
iteration of weight training. This technique solved the retention problems of the network
during training.

10 The Analysis of Network Output

10.1 The Absolute Analysis of the Emotion Tuned Network

In this subsection we focus on the interpretation of the output vector from an emotion
tuned network. This analysis level will be called the absolute analysis. Neural networks will
always produce an output result, which in some cases is beneficial because this allows for
interpolation. It is not desired, however, for the network to interpolate in regions of the input
space where it did not specialize; outputs as a result of inputs from these regions can be
unreliable. In order to discard unreliable results we need a measure of network confidence for
the generation of an output vector. This confidence measure can then be used to determine
whether to use the information provided by the network or not, or in a more continuous
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approach, how much to weigh the results of the network. It also provides us with a relative
means of comparison between networks to determine which network is the most confident.
We made use of a technique called Output Appearance Reliability Estimation (OARE) to
provide this confidence measure [19]. This technique of determining network reliability is
based on comparing the shape of the network generated output distribution with the ideal
shape of the training vector distribution; the farther the actual distribution is from the ideal
distribution the less reliable the network is. As previously discussed, the output vector in
this application was trained to generate a Gaussian output distribution.

Hypothetically, if a network has learned to recognize the stages of an emotion with 100%
accuracy, then over the sequence of input images, every stage of the emotion will be turned
on in sequential order; thus, we are not only concerned with how many and which stages
turned on but also with the order in which they turned on. We use three scoring measures
to interpret the neural network output:

o Stage count: This measure determines the number of stages that turn on during an
emotion sequence. Each time a stage is turned on, the Gaussian distribution should
be centered on the output unit corresponding to that stage. Figure 13 shows the ideal
output activation distribution over the output units for each iteration of a perfectly
learned input sequence. Every stage of the emotion will be the center of the Gaussian

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13 t+14 t+15 t+16 t+17 t+18 t+19

|0| 1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|

Output Vector Representing the stages of an emation

Figure 13: The Gaussian weighted output vector

distribution. We can maintain a counter for each stage that is incremented whenever
that stage occurs at the peak of the Gaussian. Ideally, at the end of an emotion
sequence every stage counter should be at least one, and the sum of the stage counters
should equal the number of images in the input sequence. Note that in this hypothetical
situation, the output distributions for each stage are perfect Gaussians; this will not
be true for an actual network. We want to determine passage through a stage, but
we do not want to increment a stage counter if the network confidence is low. First,
we determine at which stage the approximate peak occurs. We find the approximate
peak by scanning the output vector for the maximum activation. In order to determine
if we increment a stage counter, a confidence measure is determined for every output
generation, and if the iteration confidence is greater than a threshold, we increment
the stage counter.
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o Transition ratio: This measure relates to the sequential ordering of the stage activa-
tions. We previously discussed the use of decay constants in an emotion tuned network
to help the network learn these temporal relations. The decay constants should mini-
mize high activations for motions that do not occur in the correct order for a specialized
emotion network. A network with decay constants, however, can be fooled. An incor-
rect lengthy motion sequence can register a large activation, and will therefore turn on
several stages. In observing the output patterns over time for emotion sequences that
did not match the specialization of the network, we noticed that several stages would
often turn on, but the ordering was incorrect; later stages turned on before earlier
stages. This was a sign that the network was not viewing an emotion that it was tuned
for. In this second measure we rewarded forward stage transitions, penalized reverse
stage transitions, and minimally penalized no-stage transitions. The reward or penalty
was added to a running sum, called the transition score, throughout the emotion se-
quence. The transition score was then normalized by the number of iterations in the
sequence to get the average transitions per iteration, and this was called the transition
ratio which was used in the interpretation rules.

o Average stage confidence: The first metrics only make use of high confidence and
weakness and do not utilize occurrences of low confidences. It may be possible for
several stages to turn on with very high confidence, and the rest to have extremely low
confidence—so low, in fact, that it is probable that the input emotion is not the emotion
the network is tuned for. In order to utilize low confidence a second confidence measure
is calculated. This score is determined by summing all of the iteration confidences
determined throughout the sequence, and dividing by the number of iterations to get
the average confidence per iteration. For trials on subjects not in the training set, the
stage score and transition ratio are often not as revealing as for trials on subjects in the
training set for the same emotion. At this point we can look at the average confidence
to gain some insight as to whether the network is really seeing the emotion it is tuned
for.

There are various ways to use the above measures to interpret the network response. One
approach is to use a rule set, and a second approach is to use a neural network to interpret the
results. We found it necessary to tune the output interpretation rules by varying thresholds
in the rules. There are four possible outcomes of the rule set for the interpretation of the
network output: 1) a hit, 2) a miss, 3) a false alarm, and 4) a correct negative. By tuning the
rules it was possible to vary the conservativeness of the system. By making the thresholds
high, the rules became strict, reducing the number of false alarms, but increasing the number
of misses. By making the thresholds low, thus, making the rules less strict, the number of
hits increased, but so did the number of false alarms. We tuned the interpretation rules until
the responses were close to optimal for a model of unit cost and rewards for incorrect and
correct decisions, respectively.

10.2 The Relative Analysis of the Emotion Tuned Networks

In the previous subsection we identified several measures to interpret the individual emotion-
tuned network response. These same measures can be used in a relative comparison between
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different emotion tuned networks to determine the emotion of a subject in an emotion se-
quence. In the relative analysis, a network that experienced ambiguous results in the absolute
analysis may score relatively higher than the other emotion networks, resolving the ambi-
guity. It is important to recognize that it is possible that no emotion is being conveyed
through facial feature motion, and the relative analysis should be able to detect this. If
no emotion network responds beyond a minimum threshold of response, then the relative
analysis response will be for a null emotion.

11 Experiments and Results

For our preliminary experiments, we only trained two emotion networks; one for the “smile”
emotion, and another for the “surprise” emotion. The test stage included image sequences
of “smile”, “surprise”, and “anger” emotions.

Our database of image sequences includes 32 different faces (see Figure 14). For each
face several expressions were recorded each lasting between 15 and 120 frames of 120 x 160
pixels (at 30 frames per second), some expressions recurring. We requested each subject to
display the emotions in front of the video camera while minimizing his/her head motion.
Nevertheless, subjects inevitably moved their heads during a facial expression. As a result,
the optical flow at facial regions was sometimes overwhelmed by the overall head rigid motion.
Our facial expression system detects such rigid motion easily (all face regions move in one
direction, an event unlikely to be found in a facial expression) and marks the respective
frames as unusable for analysis.

Before we discuss the methodology and results we define the terminology used. The term
familiar-face indicates that the face used is that of a person that the system has seen in
the training session. For such a face there can be two types of sequences, familiar- and
unfamiliar-sequences. The former denotes those image sequences that were used in the
training, and the latter indicates these sequences of the familiar-face that are new to the
system.

11.1 Absolute Analysis

In order to evaluate the performance of the neural network architecture, we conducted exper-
iments that measure the network’s retention, extrapolation, and rejection ability. Retention
refers to the ability of the network to perform successfully on familiar sequences. Extrapo-
lation refers to the ability of the network to perform successfully on sequences of unfamiliar
faces. Rejection refers to the ability of the network to reject a sequence that did not express
the emotion that the network was tuned for.

To measure the performance of the system relative to the above criteria we divided the
experiments into four categories. The first category encompassed familiar sequences, and
it measured the network’s retention ability. In the second category, unfamiliar faces were
tested in order to measure the extrapolation ability. The third category included unfamiliar
sequences of familiar faces and it measured a smaller increment of extrapolation than the
second category. The fourth category included sequences of emotions that the tuned network

23



2
Qe
i ﬂ

o
8

A ,.
Figure 14: Thirty-two faces used in experiments

24




did not specialize in (these can be for any type of emotion and face) and it measures the
rejection rate of the network.

For the “smile” and “surprise” emotions, we trained two networks that only differed in
receptive field width, and we tested each network using the four test categories. Each net-
work was trained for 100,000 iterations, and the receptive field widths for SMILENET 1 and
SURPNET 1 were larger than the receptive field widths for SMILENET 2 and SURPNET
2 (see Table 2). The “smile” and “surprise” networks were trained with 20 and 14 subjects,
respectively. The output vector for each network represented 40 stages of an emotion. We
used the criterion of at least seven stages being turned on to signify that the network recog-
nized the emotion of a sequence, and we used an iteration confidence threshold of 0.155 to
increment a stage counter for a frame of the sequence. Table 3 shows the results from the
absolute analysis.

Table 2: The relative receptive field width settings for the experimental analysis

network mouth rf widths | eyebrow rf widths
SMILENET 1 1 1
SURPNET 1 1 1
SMILENET 2 .694 563
SURPNET 2 .694 563

Table 3: The results of the absolute analysis

network familiar seq. | unfamiliar face | unfamiliar seq. | foreign expression
SMILENET 1 | 16/20=80% 2/4=50% 7/7=100% 29/41=11%
SURPNET 1 | 13/14=93% 5/6=83% 3/3=100% 39/52=75%
SMILENET 2 | 16/20=80% 2/4=50% 4/7=57% 32/41=18%
SURPNET 2 | 13/14=93% 2/6=33% 3/3=100% 46/53=87%

In Table 4 we further break down category 4 to show that “anger” sequences were rejected
differently than “smile” and “surprise” sequences. The “surprise” and “smile” rejection rates
only apply to a network if it was trained for the alternate emotion from the test sequence.

The results indicate that the retention rates are higher than the extrapolation rates.
Category 3 success rates are higher than category 2 rates, since category 3 represents a
smaller increment of extrapolation from the training set than does category 2. In the absolute
analysis we found that the “surprise” networks performed better overall than the “smile”
networks because of larger detectable motion.

In Table 4 the rejection rates for “surprise” were better than those for “smile” for the
three emotions. For the “smile” and “surprise” networks with the same receptive field
widths, the “surprise” network had a much higher rejection rate of the “smile” emotion
than the “smile” network had of the “surprise” emotion. The larger detectable motion of
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Table 4: The further breakdown of category 4

network anger surprise smile
SMILENET 1 | 16/18=89% | 13/23=57% -
SURPNET 1 | 17/18=94% - 22/31=T1%
SMILENET 2 | 16/18=89% | 16/23=70% -
SURPNET 2 | 18/18=100% - 28/31=90%

the “surprise” emotion improved performance for all four test categories, thus improving
retention, extrapolation and rejection of the “surprise” networks over the corresponding
width size “smile” networks.

Also from Table 3 and Table 4 we can see that larger receptive field widths enhanced
extrapolation abilities of the networks (categories 2 and 3), but at the same time reduced
the retention and rejection rates (categories 1 and 4). Since one of the main goals of this re-
search was to determine if a network could learn the commonalities of an emotion over a wide
population from a small sample set, wider receptive field widths are better suited for our ap-
plication. Wider receptive fields respond to larger regions of the input space surrounding the
receptive field center. On one hand, if the receptive fields widths for a network are too large,
thus over-generalizing, then all the receptive fields will respond with equally large activations,
and the categorizing ability of the network is lost. On the other hand, if the receptive field
widths are too small, the receptive fields will respond crisply to training patterns, but will
have negligible responses to test patterns that only vary slightly from the training patterns,
thus possessing no generalization ability. Therefore a retention/extrapolation trade-off exists
between large and small receptive field widths.

11.2 Relative Analysis

Since it was our intention to teach a network extrapolation instead of retention, we focused
our relative analysis on networks SMILENET 1 and SURPNET 1, which had better extrap-
olation performance because of their relatively larger receptive field widths. The relative
analysis is dependent on the results of the absolute analysis. Similarly, in the relative anal-
ysis we defined four test categories to measure retention, extrapolation and rejection. The
first category tests familiar sequences of “smile” or “surprise”. The second category tests
sequences of unfamiliar faces. The third category tests unfamiliar sequences of familiar faces
in at least one of the two training sets. The fourth category tests expression sequences for-
eign to both networks. Since we trained on the “smile” and “surprise” emotions, the only
emotion sequences in the fourth category were those of “anger”.

In the relative analysis, we compare the responses of the two networks; the thresholding
is done in the earlier absolute stage of analysis. In the case of two networks, we have four
possible combinations of outputs: Yes/Yes, No/Yes, Yes/No, and No/No (where a “Yes”
signifies that a network recognizes a sequence as its specialization emotion, and a “No”
signifies the network did not recognize the emotion). The Yes/No and No/Yes responses are
straightforward, in that the relative emotion response is taken as the emotion of the network
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that responded with a “Yes”. The No/No relative response also represents a clear answer that
neither network recognizes the emotion of the sequence. The Yes/Yes response is ambiguous,
however, and is resolved by the relative analysis. To resolve the Yes/Yes ambiguity, the
absolute output statistics of each network for the ambiguous sequence are compared. We
used the number of stages turned on as the comparison statistic. The network that had the
highest number of stages turned on was declared the winning network, and the resultant
emotion was determined to be the specialization emotion of that network. The Yes/Yes
ambiguous response was possible in test categories 1, 2, and 3; thus, the relative ambiguity
resolution was expected to improve the performance for these three categories. Table 5
shows the resulting accuracies from the relative analysis after the ambiguity resolution for
categories 1, 2 and 3.

Table 5: The results of the relative analysis

familiar seq. | unfamiliar face | unfamiliar seq. | foreign expression

30/34=88% | 11/15=73% | 11/12=92% 14/18=77%

In order to compare the absolute and relative analyses, the absolute performances for the
SMILENET 1 and the SURPNET 1 are combined into one performance measure based on
a weighted average of the number of test cases for each network in each test set category,
except category 4, since it does not apply. Table 6 shows the combined results from the
absolute analysis compared with the results from the relative analysis for each category.
The results show an expected slight performance improvement for categories 1 and 2, and an

Table 6: Comparison of the absolute results with the relative results

analysis | familiar seq. | unfamiliar face | unfamiliar seq.
absolute 85% 70% 100%
relative 83% 3% 92%

unexpected slight reduction in performance for category 3 between the absolute and relative
analysis. The reduction in performance for category 3 was caused by the incorrect network
having a higher score than the correct network.

12 Conclusion

In this paper, we developed a radial basis function network based human emotion detection
system. By training the network, it was able to learn the correlations between facial feature
motion patterns and specific emotions. In order to capture the temporal relations that
are important to emotion detection, several enhancements were made to the underlying
network architecture. In order to make the problem more tractable, the emotion detection
problem was divided into several levels, which mapped directly back to the overall network

27



architecture. The high level decomposition was by emotion, the mid level decomposition
was by facial feature, and the low level decomposition was by motion direction sensitivity.
For our preliminary experiments, of the six universal human emotions, we trained networks
to recognize the “smile” and “surprise” emotions. Our experiments tested each network’s
retention, extrapolation, and rejection abilities. The analysis of the experimental results
were conducted by absolute and and relative terms. The purpose of the relative mode was to
improve overall emotion detection over the absolute mode by comparing all network outputs
and picking a winner.

From our experiments, we found, as one might expect, that networks tuned better on
emotions that involved more motion. The larger the motions and the more sources of motion
in the image, the more sources of discrimination between emotions. We also found that a
trade-off existed between large and small receptive field widths. Large widths improved
extrapolation, while degrading retention and rejection, while small widths had the opposite
effect. Since our focus was to learn generalities, we used relatively large receptive field widths.

We encountered several problems in these preliminary experiments due to subject rigid
motions and subject orientation. The neural network learns to correlate motions in certain
parts of the image retina with specific emotions. When these motion patterns are offset
by rigid motion, they do not register properly with the neural network. The problems due
to varying subject orientations can be handled algorithmically or through neural network
training. Algorithmically, the image can be adjusted based on facial feature locations and
the assumption of facial symmetry. A second approach is to include varying orientations of
subjects in the training set, and allow the network to learn these variations.
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