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1 IntroductionVisual communication plays a central role in human communication and interaction. Thispaper explores methods by which a computer can recognize visually communicated facialactions|facial expressions. Developing such methods would contribute to human-computerinteraction and to other applications, such as low-bandwidth transmission of facial data andface recognition from dynamic imagery.The study of emotion in human facial expressions was pioneered by Darwin's work [4]and has been extensively studied in psychology during the last thirty years [25]. This re-search has indicated that at least six emotions are universally associated with distinct facialexpressions. Several other emotions, and many combinations of emotions, have been studiedbut remain uncon�rmed as universally distinguishable. The six principle emotions are: hap-piness, sadness, surprise, fear, anger, and disgust (see Figure 1), and these are the emotionswe focus on in this paper.Most psychological research on facial expression has been conducted on \mug-shot" pic-tures that capture the subject's expression at its peak [25]. These pictures allow subjectsto detect the presence of static cues (such as wrinkles) as well as the position and shapeof the facial features. Few studies have directly investigated the inuence of the motionand deformation of facial features on the interpretation of facial expressions. Bassili [2]suggested that motion in the image of a face would allow emotions to be identi�ed evenwith minimal information about the spatial arrangement of features. The subjects of hisexperiments viewed image sequences in which only white dots on the dark surface of theperson displaying the emotion were visible. The reported results indicated that facial ex-pressions were more accurately recognized from dynamic images than from a single staticimage. Whereas all expressions were recognized at above chance levels in dynamic images,only happiness and sadness were recognized at above chance level in static images. Buildingon the results of Bassili [2] we explore the potential of motion analysis in an autonomoussystem for recognition of emotions in facial images.We focus our attention on the appearance of the face from its near frontal image pro-jection, without considering the underlying anatomic and musculature models and actions.In doing so we depart from the current trend in which facial expression analysis is based onrecovering muscle actions [15, 16, 21].Before proceeding, we introduce some terminology. Face region motion refers to thechanges in images of facial features caused by facial actions corresponding to physical featuredeformations on the 3-D surface of the face. Our goal is to develop computational methodsthat use such motions as cues for action recovery.Recent research in computer visionThe problem of recognizing facial expressions has recently attracted attention in the com-puter vision community [15{17, 21, 23]. With the increase of interest in human-computerinteraction and related applications, the need arises to analyze human messages that arecommunicated through body part gestures and facial expressions.1
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SurpriseFigure 1: Six expressions expressed by di�erent facesYacoob and Davis [23] proposed an approach to analyzing and representing the dynamicsof facial expressions from image sequences. This approach is divided into three stages:locating and tracking prominent facial features (i.e., mouth, nose, eyes, and brows), usingoptical ow at these features to construct a mid-level representation that describes spatio-temporal actions, and applying rules for the classi�cation of this mid-level representationinto one of the six universal facial expressions. On a sample of 46 image sequences of 32subjects displaying a total of 105 emotions, the system achieved a recognition rate of 86%for \smile", 94% for \surprise", 92% for \anger", 86% for \fear", 80% for \sadness", and92% for \disgust". Blinking detection success rate was 65%.The work reported here explores the use of a connectionist learning architecture foridentifying the motion patterns characteristic of facial expressions. This approach couldreplace the expert rules developed in [23], and may allow the development of person-speci�c2



learning capabilities. Such systems could be used in applications in which interactions arelimited to a speci�c individual.Matsuno et al. [17] proposed an approach for recognizing facial expressions from staticimages based on a pre-computed parameterization of facial expressions. Their approach laysa grid over the face and warps it based on the gradient magnitude using a physical model.The amount of warping is represented in a multi-variate vector that is compared to learnedvectors of four facial expressions (happiness, sadness, anger, and surprise).Mase [16] used optical ow computation for recognizing and analyzing facial expressionsin both a top-down and bottom-up approach. In both cases, the focus was on computing themotion of facial muscles rather than of facial features. Four facial expressions were studied:surprise, anger, happiness, and disgust.The top-down approach assumed that the face's image can be divided into muscle unitsthat correspond to the Action Units (AUs) suggested by Ekman and Friesen [6]. Opticalow is computed within rectangles that include these muscle units, which in turn can berelated to facial expression. However, Mase did not report any results on mapping the opticalmotion results into facial expressions. This approach relies heavily on locating rectanglescontaining the appropriate muscles|a di�cult image analysis problem, since the muscleunits correspond to smooth, featureless surfaces of the face. Furthermore, the approachbuilds on a model that is suitable for synthesizing facial expressions but remains untested inanalysis of facial expressions (for more details see [3]).The bottom-up approach covered the area of the face with evenly divided rectangularregions over which feature vectors derived from an optical ow computation were computed.The feature vectors are de�ned over a 15-dimensional space that is computed based on themeans and variances of the optical ow. The recognition of expressions is based on a k-nearest-neighbor voting rule. The optical ow calculation was averaged within each windowto smooth the results over edges. Furthermore, the optical ow was treated on a per-framebasis without considering the time-sequence of frames. The experiments considered theexpressions of just one face and the results were compared with the performance of humansubjects that were asked to classify the displayed emotions.Terzopoulos and Waters [21] proposed an approach to synthesis and analysis of facialexpressions based on physical modeling of the muscles of the face. They devised a sixlevel representation of the face that consists of: expression level (which includes the sixprimary expressions); control level (implements a subset of the FACS|Facial Action Cod-ing System|for controlling muscles), muscle level (models the muscles' contraction andexpansion as springs), physics level (models the facial tissue's deformations), geometry level(provides a geometric representation of the face as a mesh of polyhedral elements that dependon the curvature of surface), and image level (visualizes the data).The analysis part assumes that eleven principal contours are initially located manuallyon the face. These contours are tracked throughout the sequence by applying an image force�eld that is computed from the gradient of the intensity image. The estimation of the musclecontractions takes place after the contours' reference points were determined. In addition toassuming a frontal view, it was assumed that the projection is orthographic. Once the musclecontractions have been estimated, they were resynthesized onto the 3D range data model ofthe subject to recreate the muscle contractions. It remains to be determined whether the3



computation of muscle contractions would be useful for facial expression recognition (theauthors did not explore this aspect in [21]).Li et al. [15] proposed an approach that focuses on analyzing facial images for the purposeof resynthesizing these images. Their approach does not attempt to classify or reason aboutfacial expressions and actions, although some aspects of their work might potentially achievethat. The approach is model-based; it assumes that a 3-D mesh has been placed on the face inthe image, and that the depths of points on the face have been recovered. The contributionof the research is an algorithm for recovering the rigid and non-rigid motions of the facefrom the sequence of images, and reapplying these motions to create an approximation tothe initial sequence.The motion recovery employs a facial modeling approach that uses six AUs to repre-sent possible facial expressions, thereby arriving at an a�ne non-rigid motion model. Twomethods for computing the motion between two images were proposed for small and largemotions. In addition, a closed loop feedback architecture was proposed for facial trackingover long image sequences. This architecture assumes motion continuity and employs aprediction-and-correction strategy to handle the motion tracking problem; both linear andadaptive predictors were proposed.2 Overview of our approachThe following constitute the framework within which our approach for analysis and recog-nition of facial expressions is developed:� The face is viewed from a near frontal view throughout the sequence. This allows usto avoid, initially, the increase in ambiguity of expression interpretation as the facemoves from the frontal view.� The overall rigid motion of the head is small between any two consecutive frames.� The non-rigid motions that are the result of face deformations are spatially bounded,in practice, by an n � n window between any two consecutive frames. The imagesequence is densely sampled in time.� The subjects wear no eyeglasses.We chose not to model or analyze facial muscle actions, setting our work apart from[15, 16, 21], as well as not to use models for muscle actions [6]. Instead, we focus on themotions associated with the edges of the mouth, eyes, and eyebrows. These edges allowus to refer to the face features using natural linguistic terminology (for a detailed list ofconsiderations see [24]).Figure 2 describes the ow of computation of our facial expression system. The systemis similar to [23] in the tracking and optical ow computation but di�ers in the analysis andinterpretation of motion patterns. The system is composed of the following components:4
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from Optical Flow DirectionsFigure 2: The ow of the facial analysis algorithm� Optical ow computation: Optical ow is computed at the points with high gradientat each frame. Our algorithm for ow computation is based on a correlation approachproposed by Abdel-Mottaleb et al. [1]. It computes subpixel ow assuming that themotion between two consecutive images is bounded within an n� n window.� Region tracking: Accurate localization of facial features is both di�cult and compu-tationally expensive if performed for each frame. We assume that, for each feature,we can initially compute a rectangular region that encloses it. Such an algorithm hasbeen recently proposed for range data by Yacoob and Davis [22] and a similar algo-rithm could be developed for intensity images (or stereo images), a problem we arecurrently working on. Our algorithm tracks these regions through the remainder of thesequence. The tracking is based on the localization of points with high gradient andthe optical ow �elds computed at these points.� Connectionist classi�cation: We propose a connectionist approach for learning thefacial motion information and relations that are important to the determination ofemotion. This system learns using a training set which consists of images from adiverse set of human subjects displaying the same emotion.In this paper we focus on the connectionist approach to solving this problem.3 Psychological basis for recognizing facial expressionsTable 1 summarizes the results of Ekman and Friesen [5] on the universal cues for recognizingthe six principal emotions. These cues describe the peak of each expression and thus theyprovide a human interpretation of the static appearance of the facial feature. For example, adescription such as \brows are raised" means that the viewer's interpretation of the locationof the brows relative to other facial features indicates they are not in a neutral state but higherthan usual. The viewer uses many cues to deduce such information from the image, amongthese are: the appearance of wrinkles in certain parts of the face, e�ect of the hypothesis of ahigh brow on the shape of the eyes (i.e., state of eyelids), etc. Unfortunately, the performance5



of humans in arriving at such descriptions is far better than what can be currently achievedby computers if only static images are considered. Some of the linguistic expressions used todescribe these cues appear very hard to model computationally|\upper lid is tense, tensionor stress in the mouth, lip trembling", etc. These descriptions seem rather instinctive tohumans but are quite di�cult to translate into computational procedures.Table 1: The cues for facial expression as suggested by Ekman and FriesenEmotion Observed facial cuesSurprise brows raised (curved and high)skin below brow stretchedhorizontal wrinkles across foreheadeyelids opened and more of the white of the eye is visiblejaw drops open without tension or stretching of the mouthFear brows raised and drawn togetherforehead wrinkles drawn to the centerupper eyelid is raised and lower eyelid is drawn upmouth is openlips are slightly tense or stretched and drawn backDisgust upper lip is raisedlower lip is raised and pushed up to upper lip or is lowered and slightly protrudingnose is wrinkledcheeks are raisedlines below the lower lid, lid is pushed up but not tensebrows are lowered, lowering the upper lidAnger brows lowered and drawn togethervertical lines appear between browslower lid is tense and may or may not be raisedupper lid is tense and may or may not be lowered due to brows' actioneyes have a hard stare and may have a bulging appearancelips are either pressed �rmly together with corners straight or down,or are open, tensed in a squarish shapenostrils may be dilated (could occur in sadness too)unambiguous only if registered in all three facial areasHappiness corners of lips are drawn back and upmouth may or may not be parted with teeth exposed or nota wrinkle runs down from the nose to the outer edge beyond lip cornerscheeks are raisedlower eyelid shows wrinkles below it, and may be raised but not tensecrow's-feet wrinkles go outward from the outer corners of the eyesSadness inner corners of eyebrows are drawn upskin below the eyebrow is triangulated, with inner corner upupper lid inner corner is raisedcorners of the lips are drawn or lip is tremblingFigure 3 summarizes the observations of Bassili [2] on motion based cues for facial expres-sions. Recall that the experiments of Bassili were intended to explore only the role of motionin facial expressions; therefore the face features, texture and complexion were unavailable tothe experiment subjects. As illustrated in Figure 3, Bassili identi�ed principal facial motionsthat provide e�ective cues to the subjects to recognize facial expressions.6
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Fear DisgustFigure 3: The cues for facial expression as suggested by BassiliBassili's results do not explicitly associate the motion patterns with speci�c face featuresor muscles since such information was unavailable to the subjects. For example, a \surprise"motion is recognized by an upward motion in the upper part the face and a downward motionin the lower part of the face. Our work uni�es the face features described by Ekman andFriesen and the general motion patterns suggested by Bassili into one spatio-temporal systemthat allows facial expression recognition from dynamic images.4 Optical Flow ComputationThe approach we use for optical ow computation is one recently proposed by Abdel-Mottaleb et al. [1]. Assume that a pixel's displacement (�x;�y) between frame t andframe t + 1 is at most n pixels and is expressed in terms of an integer and a fraction part,i.e., (�x;�y) = (ix + fx; iy + fy). A pixel in frame t, in general, will be a combination of7



four pixels in frame t+ 1, explicitly written as:It(x; y) = (1 � jfxj)(1 � jfyj)It+1(x; y) + jfxj(1� jfyj)It+1(x; y + sy) +jfxjjfyjIt+1(x+ sx; y + sy) + (1 � jfxj)jfyjIt+1(x+ sx; y) (1)where sx = 1 + ix if �x is positive and sx = (�1 � ix) if �x is negative, and sy is de�nedsimilarly. Figure 4 shows the graphic explanation for Eq. 1.
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5 Tracking face regionsYuille et al. [26] used deformable templates and an energy minimization approach to localizeand approximate the eyes and mouth in intensity face images. This approach requires anaccurate initial estimate of the location of the features, and might not be easily applied tofacial features such as the eye when it is being closed or opened, since the deformations ofthe template could become quite complex.Yacoob and Davis [22] present an approach for qualitatively localizing and labeling nat-ural facial components from range data. They used a multi-stage di�usion process thatclassi�es range points into relative convexities and concavities. The convexities are isolatedand contextual reasoning is employed to determine possible labels for each component andan overall consistent interpretation of those labels. Their approach does not quantitativelyrecover the facial features but it designates rectangles that enclose the features.The only dynamic tracking algorithm for facial features we are aware of is that of Ter-zopoulos and Waters [21]. Eleven contours were manually located in the �rst image of thesequence and then tracked using deformable contour models that are attracted by the localminima of the intensity image. The performance of the tracking algorithm depends on theimage gradients since the gradient is used as an external attractive force on the deformablecontours. In the experiments reported there was a requirement to enhance the edges in eachtracked contour, accomplished by having the subject wear makeup.

Figure 5: An example of the rectangles surrounding the face regions of interest for theintensity and gradient imagesWe assume that rectangles enclosing the regions of interest are given for the �rst frame.9



Each rectangle is assumed to enclose just the feature of interest, so the ow computationwithin the region is not \contaminated" by the motions of other facial features. Figure 5shows the initial rectangles enclosing the regions of interest of the face for one of our subjects.To simplify the modeling of the eyebrows, we de�ne the rectangles to include the eyes, andthen subtract the rectangles of the corresponding eye from the combined rectangle.Our approach to tracking the face regions is based on computing two sets of parametersat the points with high gradient magnitude within the rectangle that encloses each feature.The following are computed from frame i after placing the rectangles from frame i� 1 overthe image in frame i:� The centroid (C ix; C iy) of the points having a high gradient value within each rectanglein frame i.� The window W = (WX imin� 2;WY imin� 2;WX imax+2;WY imax+2) which enclosesthose high gradient values and leaves a bu�er, two pixels deep, that allows the detectionof window expansion during subsequent iterations.The centroid's location determines the translation of the rectangle from the previousframe. The window W determines the scaling of the rectangle.The translation and scaling of the rectangles are limited between consecutive images.Limits on scaling are set a priori. For example, when tracking the eyes we assume that the sizeof the rectangle that encloses the eyes cannot scale more than �0:1 from the \neutral" state(i.e., neither wide open in \surprise" nor closed). These scaling bounds were determined,empirically, from our image data sets.The temporal tracking incorporated the optical ow results in re�ning the scaling andtranslations computed by the gradient magnitude change. The statistics of the motion direc-tions within a rectangle are used to verify translation of the rectangles upward and downward(by measuring signi�cant similar optical ow) and to verify scaling of the rectangles (by mea-suring motions that imply scaling).This tracking algorithm is admittedly quite simple and has the following shortcomings:� When the edges of di�erent features move too close together, the rectangles surround-ing the features may sometimes be subject to incorrect scaling or translation. Wedeveloped heuristic constraints that minimize such artifacts. For example, the rect-angle surrounding a feature is not allowed to move too far from the other rectanglesover the sequence (which is motivated by the fact that the deformation of the face isconstrained by anatomic and muscle factors).� Due to specularity or change in feature location the gradient at some points may be-come lower than the threshold. This results in exclusion of these points from thecomputation of the parameters of the rectangle. For example, for some subjects thelower part of the lower lip tended to produce values below the threshold due to high-lights. We are studying ways to overcome this in our current research.In spite of these shortcomings, the algorithm was quite robust when applied to thousandsof images. 10



6 The Inputs and Outputs of the Neural NetworkWe perform three stages of preprocessing on the input sequence before providing it to theneural network. The �rst stage generates a sequence of images which represents the in-stantaneous optical ow of the image sequence. The second stage extracts, using trackingtechniques, the facial features from the optical ow sequence (i.e., the right and left eyebrowsand the mouth). The third stage of preprocessing performs a log-polar transformation onthe feature motion images of the sequence. This transformation compresses the outer ex-tremities of the feature images for the purpose of reducing the e�ects of size variance. Sizevariance occurs because of the di�erent subjects' distance from the camera, subject's motionduring the image sequences, and the natural diversity in the sizes of subjects' features.The output nodes of the system could be structured so an output is associated with aparticular emotion. In this case we would have six output nodes, one each for happiness,anger, sadness, disgust, fear, and surprise. The activations of the output nodes would repre-sent the network's con�dence that the subject experienced the corresponding emotion. Thisrepresentation, however, does not provide enough spread for the neural network to learne�ectively. An intermediate output representation is required to provide this spread. Theintermediate output representation could then be connected to the ideal �nal output layeror to a post-process that determines which emotion occurred based on the intermediate out-put representation. The intermediate output representation we have chosen represents thestage of an emotion to which an input image of a sequence corresponds. Each output unit isassociated with a stage of the emotion sequence. The activation of an intermediate outputunit in this representation corresponds to the network's con�dence that the emotion of thecurrent subject in the sequence is in the stage corresponding to the particular output unit.Pomerleau [19] found that when there exists a proximal relation between output units,the supervised learning unit activations should reect this relation. In our application, anoutput unit represents a stage of an emotion. The stages are related by a temporal proximalrelation, in that one stage occurs before and after others in time. If the current trainingvector is to reect that the emotion is currently in stage N , then output unit N should be setwith the greatest activation, while output units N+1 and N�1 should be set with a slightlylower activation and so on until the boundaries of the output vector are reached. Pomerleauused a Gaussian function to set the training activations. We also used a Gaussian, placingits peak on the current stage in the output training vector and setting the output unitscorresponding to the value of the Gaussian at that position in the vector (see Figure 6).7 The Network Architecture for Emotion DecompositionWe divide the emotion detection architecture into three layers. The �rst layer is a decompo-sition by emotion (see Figure 7), and occurs at the network level (i.e., we train a separatenetwork for each emotion). During training, a network in this layer is only exposed to oneemotion for multiple subjects. The second layer of decomposition is at the facial componentlevel. This decomposition is internal to each of the emotion tuned networks. Each emotionnetwork is broken into three subnetworks, where each subnetwork specializes in a particularfacial component. A component-tuned subnetwork only uses the portion of the input vector11
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corresponding to the fifteenth stage of an emotion sequenceFigure 6: The Gaussian weighted output vectorthat corresponds to its component specialization (see Figure 8). The third layer of decompo-sition is by direction sensitivity, and further decomposes the component subnetworks. These\subsubnetworks" are sensitive to one direction of motion for a speci�c pre-assigned facialcomponent for a speci�c emotion. In order to capture all resultant motions, we use the fourdirection sensitivities of \up", \down", \right", and \left".The fusion of information from each of the six emotion-tuned networks is performed bya process external to these networks. We developed a heuristic scheme (discussed in a latersection) which combines the outputs of all six emotion networks. The fusion of informationfrom the internal subnetworks is done internally in each of the emotion networks throughthe coupling of these component subnetworks and the output units of the individual emotionnetwork.8 The Basic Connectionist Building BlockThe overall architecture for this application is a hierarchy of neural networks. We chose touse as a building block a modi�ed version of the radial basis function network (RBFN), basedon its ability to represent prototypical visual templates from the application domain [20]. Inthe rest of this section we discuss the basic RBFN architecture, and the enhancements wemade to the basic RBFN architecture to handle the temporal relations associated with thisproblem.8.1 The General RBFN ArchitectureNeural networks are used to approximate multivariate nonlinear functions using sparselysampled data. The networks are trained using sample data from the function to be ap-proximated, achieving (essentially) a form of function �tting in a multi-dimensional space.If the training set is representative of the function being approximated, the network can12
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Figure 7: The hierarchy of networks based on emotion decompositionapproximate it with a high degree of accuracy; otherwise the network may learn the func-tion incorrectly. In most cases a well trained network can successfully generalize within theinput space subtended by the training set (interpolation), and in some cases, the networkcan successfully generalize to inputs that fall outside the space subtended by the trainingset (extrapolation).The radial basis function network performs a form of template matching in which atemplate contributes to the generation of the output proportional to the degree that thetemplate matches the input, and by the signi�cance of that template to the output. Thisrelates to the across-�ber-pattern theory used to describe sensory coding in humans andanimals [7]. Goldstein remarks \This theory states that di�erent qualities are signaled tothe brain by the pattern of activity across a large number of neurons." The simple RBFN ofMoody and Darken [18] consists of an input layer, a hidden layer, and an output layer (seeFigure 9 for the simple RBFN architecture). The input layer consists of a number of unitsclamped to the input vector. The hidden layer is composed of units which are driven byradial basis activation functions; we will refer to these units as receptive �elds. The outputlayer consists of units clamped to the output vector. The input units are fully connected byunit weighted links to the receptive �elds in the hidden layer, and the receptive �elds arefully connected by weighted links to the output units.The radial basis function used for the receptive �eld activation functions can take manyforms. A common radial activation function is an N dimensional Gaussian�i(~x) = exp ���i (~x� ~ai)T (~x� ~ai)� (5)13
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Figure 8: An individual emotion tuned networkwhere �i(~x) is the response of the ith basis function to input vector ~x, ~ai represents the centerof the ith basis function, and �i is the reciprocal of the standard deviation squared. We referto the standard deviation as the \width" of the basis function. The activation function foran output unit is �i(~x) =Xj fij �j(~x) (6)where �i(~x) is the activation level for the ith output unit with input vector ~x, and fij is theweight of the link from the jth receptive �eld to the ith output unit [18].Several improved versions of the simple RBFN have been made; one of these is called theConnectionist Normalized Linear Spline Network(CNLS) [11]. The CNLS di�ers from thesimple RBFN in two ways:1. In the CNLS network a linear term has been added to the activation function for anoutput unit.2. The responses of the receptive �elds have been normalized.These changes modify equations (5) and (6) to�i(~x) = exp ���i (~x� ~ai)T (~x� ~ai)�Pj exp (��j (~x� ~aj)T (~x� ~aj)) (7)14
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the �'s: E = 12Xi 24Xj �i(~aj)(~ai � ~aj)2�i352 (10)The adjustment of receptive �eld widths using this technique is only dependent on thelocations of receptive �eld centers and widths, and does not depend directly on input trainingvectors [18]. Also note that this approach considers the widths along each dimension to beequal, resulting in a Gaussian hyper-sphere response from each receptive �eld. The trainingof the receptive �eld widths optimizes the specialization of receptive �elds. A receptive �eldwith a relatively large width in N -space will respond to a large set of input vectors, and areceptive �eld with a small width will respond to a small set of input vectors.Training the weight terms between the receptive �elds and the output units is the thirdand mandatory phase of training. This is accomplished by minimizing the sum squared errorof the output layer: E = 12Xi;� (&�i �O�i )2 (11)Any optimization technique can be used to adjust the weight settings in the network. Inour work on RBFN's we have used Newton's Method. The weight change equation for theconstant weight term from the jth receptive �eld to the ith output unit isf t+1ij = f tij + �f (yi(~x)� �i(~x))�j(~x)Pk �k(~x)Pk �2k(~x) : (12)where �f is the learning rate for the constant weight term. The weight change equation forthe linear weight term from the jth receptive �eld to the ith output unit is~dt+1ij = ~dtij + �d (yi(~x)� �i(~x)) (~x� ~aj) �j(~x)Pk �k(~x)Pk (~x� ~ak)T (~x� ~ak) �2k(~x) : (13)where �d is the learning rate for the linear weight term. Each weight represents the contribu-tion a receptive �eld makes to the activation level of an output unit. Thus, a large positiveweight means that a receptive �eld plays a large role in an output unit's activation, a smallweight indicates that a receptive �eld plays little role in an output unit's activation, and alarge negative weight indicates a receptive �eld has a large inhibitory e�ect on an outputunit's activation.An RBF receptive �eld is a response region in N -dimensional input space, with an N -component center coordinate. The input space can be considered as an image space, sincethe input units are clamped directly to the values of the pixels of an image retina. Since eachcoordinate in image space corresponds to a unique image on the image retina, the receptive�eld centers also correspond to unique images on the image retina, and these function asthe application templates. The maximum response of a receptive �eld occurs when an inputimage is situated at the same location as the center of the receptive �eld, and the responsedegrades in a Gaussian fashion as the Euclidean distance of the input image to the receptive�eld center increases. 16



8.2 The Spatio-Temporal Building BlocksThe RBFN is well suited to handle static spatial image information, since the receptive �eldcenters capture prototypical images from the application, which in turn directly capturetwo-dimensional spatial information. The RBFN architecture, however, is not well suited tohandle temporal relations. A signi�cant part of the task of analyzing sequences of images isbeing able to relate information in consecutive frames and over time so that past informationcontributes to the current response. For example, there are several emotions where the eye-brows of a subject move downward. In the \surprise" emotion, the eyebrows move downwardat the end of the emotion, and in \anger" the eyebrows move downward at the beginningof the emotion. In order to decipher whether the eyebrows are moving downward in the\surprise" or \anger" emotion, it is necessary to determine what happened to the eyebrowsbefore they moved downward. In \surprise", the eyebrows move upward before they movedownward, and in \anger", the eyebrows are not moving before they move downward. Ifthis information is incorporated into the current state, the upward motions of the eyebrowsfor \surprise" and \anger" can be distinguished. Past information will contribute to thecurrent input vector during the training and usage modes, will be used in the placement ofthe receptive �eld centers during the center training mode, and will also contribute to thecurrent receptive �eld activations also during the training and usage modes.Past information is incorporated into the input vector by using feedback from the previousstate of the input vector multiplied by a decay constant. Input units that use self feedbackare called \context units" [9]. The activation function for each input unit in our architectureis Ci(t) = ( 1 if �Ci(t� 1) + Ii(t) > 1�Ci(t� 1) + Ii(t) otherwise (14)where Ci(t) is the activation of input unit i at time t, Ci(t � 1) is the activation of inputunit i at time t� 1, � is the decay constant, and Ii(t) is the current input to unit i at timet. The decay constant is set so that remnants of previous motions linger for a portion ofthe sequence. If motion occurs for several iterations at the same pixel location in the inputimage, the input unit activation that corresponds to that pixel location becomes saturatedand is set to the maximum activation level of one. The e�ects of using past informationin the current input vector can be seen in Figure 10. For visual simplicity Figure 10 showsthe e�ects of decay for a sequence of images showing a ball moving across a retina. Thebrightest portions of the image are a result of the most recent frames in the sequence, andthe darker ghost images are a result of older remnants from previous frames. In our network,retinas will contain motion images of facial features after a log-polar transformation; decay,however, will have the same e�ect on these images as the sequence of the ball.Figure 10: The e�ect of decay on the input vector17



As discussed earlier, the emotion network is divided into three subnetworks, each spe-cializing in a particular facial component and motion direction. Each subnetwork consists ofreceptive �elds tuned to the particular component feature, and the weights fully connectingthose receptive �elds to the output units. The set of receptive �elds corresponding to aparticular component and for each motion direction are further tuned to become sensitiveto only portions or subsequences of the input sequence. In other words, the componentreceptive �elds become sensitized to stages of the emotion sequence for the component anddirection they are assigned to. A receptive �eld center image or template is set by addingup the motion images for a subsequence of the receptive �eld's assigned facial componentand motion direction sensitivity. Any position in the summed image that has a value greaterthan zero is set to one. Figure 11 shows how a subsequence is used to set the center ofa receptive �eld for a simple sequence of a ball moving across the retina. This creates ablurring e�ect of the template image, similar to the blurring e�ect created by using a slowshutter speed in photography, but with no decay of the \ghost" images. It is important tonote that an input vector can never perfectly match a receptive �eld center template unlessthe decay constant for calculating the input vector is set to one.In order to minimize the problem of overloading and under-utilizing receptive �elds, wede�ned a parameter which represented the minimum number of pixels that must be turnedon during the image summing stage to set a receptive �eld center with the summed image.If the number of \on" pixels during the summation crossed over this minimum threshold, noadditional images were incorporated into the summed image and a receptive �eld center wasset with the current accumulated image. The result was that portions of the sequence wheresigni�cant motion occurred were spread over more center templates for higher temporalresolution, and portions of the sequence where little motion occurred were �t into fewercenter templates for lower temporal resolution (see Figure 12).In addition to using past information to set the center positions of the receptive �elds,past information is also used to determine the activations of the receptive �elds during thetraining and usage modes. The determination of a receptive �eld activation is similar to thedetermination of the activation of an input unit, in that the activation from the previoustime step is factored into the activation at the current time step using a decay constant. Theactivation of a receptive �eld in our architecture is determined by the following equation:�i(~xt+1; t+ 1) = ( 1 if �i(~xt; t) + Vi(t) > 1�i(~xt; t) + Vi(t) otherwise (15)where  is the decay constant andVi(t) = exp���i (~xt+1 � ~ai)T (~xt+1 � ~ai)�Pj exp (��j (~xt+1 � ~aj)T (~xt+1 � ~aj)) (16)Like the input vector determination, the receptive �eld response can become saturated, inwhich case the activation is set to the maximum value of one.There is an ambiguity in using a decay constant to determine receptive �eld activation.The ambiguity can lead to a blurring between temporal and spatial e�ects. The ambiguityarises because a receptive �eld response can arrive at a particular activation through tem-poral decay or by spatial similarity. The temporal decay can give the faulty appearance of18
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Figure 12: The temporal resolution of the receptive �eld centersa receptive �eld responding poorly to an input vector. In the implementation of our ar-chitecture, this ambiguity did not present a problem. Since an ensemble of receptive �eldactivations was used to collectively generate an output response, the ambiguities at spe-ci�c receptive �elds were absorbed; thus, the network was able to learn the correspondencebetween receptive �eld responses and desired outputs no matter how the receptive �elds ar-rived at their activation state. This is similar to the theory in psychology and neuroscience,across-pattern-�ber-theory, used to explain how ensembles of neurons in the brain are usedto collectively generate a response while overcoming the ambiguities that occur at individual19



neurons [7].9 Implementation of TrainingIn order to ensure randomness in our pattern presentation during training, we present thenetwork with all of the images from all of the sequences in a random order, removing thenotion of an individual sequence. An individual training pattern would then consist ofthe pre-processed image from a sequence tagged with the learning vector representing thestage of the emotion that the image corresponds to. A di�culty arises in dealing withtemporal information using this highly randomized training set in this network architecture.Temporal information is a key element of this architecture, which is embedded in the �xedsequential ordering of the images in a sequence, and is lost when this ordering is altered. Inthis architecture, the temporal relations of an emotion are captured by the receptive �eldactivation patterns over the entire set of receptive �elds, which are a result of the combinationof remnant activations from previous inputs and current responses from the current input.The weights between the receptive �eld layer and the output layer are trained to learn thecorrespondence between these receptive �eld patterns and the stage of the emotion codedinto the learning vector. If we capture the receptive �eld activation patterns for each imagein a sequential sequence presentation to the network, and tag these activation patterns withthe learning vector that corresponds to the current stage of the input image, we can use theresulting pairs as the training exemplars for the training set. This training set can now bepresented to the network in a completely random order without losing the temporal relationsbetween images in a sequence.The weight training phase thus required an extra pre-processing step that involved build-ing the training set of receptive �eld activation pattern/learning vector pairs. We built thetraining set by exposing the network to each subject sequence for a particular emotion insequential order, capturing the receptive �eld activation pattern and current emotion stagefor each image, and placing the pair in a training bu�er. Once the training bu�er was �lledwith the pairs, a training exemplar was randomly selected from the training bu�er for eachiteration of weight training. This technique solved the retention problems of the networkduring training.10 The Analysis of Network Output10.1 The Absolute Analysis of the Emotion Tuned NetworkIn this subsection we focus on the interpretation of the output vector from an emotiontuned network. This analysis level will be called the absolute analysis. Neural networks willalways produce an output result, which in some cases is bene�cial because this allows forinterpolation. It is not desired, however, for the network to interpolate in regions of the inputspace where it did not specialize; outputs as a result of inputs from these regions can beunreliable. In order to discard unreliable results we need a measure of network con�dence forthe generation of an output vector. This con�dence measure can then be used to determinewhether to use the information provided by the network or not, or in a more continuous20



approach, how much to weigh the results of the network. It also provides us with a relativemeans of comparison between networks to determine which network is the most con�dent.We made use of a technique called Output Appearance Reliability Estimation (OARE) toprovide this con�dence measure [19]. This technique of determining network reliability isbased on comparing the shape of the network generated output distribution with the idealshape of the training vector distribution; the farther the actual distribution is from the idealdistribution the less reliable the network is. As previously discussed, the output vector inthis application was trained to generate a Gaussian output distribution.Hypothetically, if a network has learned to recognize the stages of an emotion with 100%accuracy, then over the sequence of input images, every stage of the emotion will be turnedon in sequential order; thus, we are not only concerned with how many and which stagesturned on but also with the order in which they turned on. We use three scoring measuresto interpret the neural network output:� Stage count: This measure determines the number of stages that turn on during anemotion sequence. Each time a stage is turned on, the Gaussian distribution shouldbe centered on the output unit corresponding to that stage. Figure 13 shows the idealoutput activation distribution over the output units for each iteration of a perfectlylearned input sequence. Every stage of the emotion will be the center of the Gaussian
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Figure 13: The Gaussian weighted output vectordistribution. We can maintain a counter for each stage that is incremented wheneverthat stage occurs at the peak of the Gaussian. Ideally, at the end of an emotionsequence every stage counter should be at least one, and the sum of the stage countersshould equal the number of images in the input sequence. Note that in this hypotheticalsituation, the output distributions for each stage are perfect Gaussians; this will notbe true for an actual network. We want to determine passage through a stage, butwe do not want to increment a stage counter if the network con�dence is low. First,we determine at which stage the approximate peak occurs. We �nd the approximatepeak by scanning the output vector for the maximum activation. In order to determineif we increment a stage counter, a con�dence measure is determined for every outputgeneration, and if the iteration con�dence is greater than a threshold, we incrementthe stage counter. 21



� Transition ratio: This measure relates to the sequential ordering of the stage activa-tions. We previously discussed the use of decay constants in an emotion tuned networkto help the network learn these temporal relations. The decay constants should mini-mize high activations for motions that do not occur in the correct order for a specializedemotion network. A network with decay constants, however, can be fooled. An incor-rect lengthy motion sequence can register a large activation, and will therefore turn onseveral stages. In observing the output patterns over time for emotion sequences thatdid not match the specialization of the network, we noticed that several stages wouldoften turn on, but the ordering was incorrect; later stages turned on before earlierstages. This was a sign that the network was not viewing an emotion that it was tunedfor. In this second measure we rewarded forward stage transitions, penalized reversestage transitions, and minimally penalized no-stage transitions. The reward or penaltywas added to a running sum, called the transition score, throughout the emotion se-quence. The transition score was then normalized by the number of iterations in thesequence to get the average transitions per iteration, and this was called the transitionratio which was used in the interpretation rules.� Average stage con�dence: The �rst metrics only make use of high con�dence andweakness and do not utilize occurrences of low con�dences. It may be possible forseveral stages to turn on with very high con�dence, and the rest to have extremely lowcon�dence|so low, in fact, that it is probable that the input emotion is not the emotionthe network is tuned for. In order to utilize low con�dence a second con�dence measureis calculated. This score is determined by summing all of the iteration con�dencesdetermined throughout the sequence, and dividing by the number of iterations to getthe average con�dence per iteration. For trials on subjects not in the training set, thestage score and transition ratio are often not as revealing as for trials on subjects in thetraining set for the same emotion. At this point we can look at the average con�denceto gain some insight as to whether the network is really seeing the emotion it is tunedfor.There are various ways to use the above measures to interpret the network response. Oneapproach is to use a rule set, and a second approach is to use a neural network to interpret theresults. We found it necessary to tune the output interpretation rules by varying thresholdsin the rules. There are four possible outcomes of the rule set for the interpretation of thenetwork output: 1) a hit, 2) a miss, 3) a false alarm, and 4) a correct negative. By tuning therules it was possible to vary the conservativeness of the system. By making the thresholdshigh, the rules became strict, reducing the number of false alarms, but increasing the numberof misses. By making the thresholds low, thus, making the rules less strict, the number ofhits increased, but so did the number of false alarms. We tuned the interpretation rules untilthe responses were close to optimal for a model of unit cost and rewards for incorrect andcorrect decisions, respectively.10.2 The Relative Analysis of the Emotion Tuned NetworksIn the previous subsection we identi�ed several measures to interpret the individual emotion-tuned network response. These same measures can be used in a relative comparison between22



di�erent emotion tuned networks to determine the emotion of a subject in an emotion se-quence. In the relative analysis, a network that experienced ambiguous results in the absoluteanalysis may score relatively higher than the other emotion networks, resolving the ambi-guity. It is important to recognize that it is possible that no emotion is being conveyedthrough facial feature motion, and the relative analysis should be able to detect this. Ifno emotion network responds beyond a minimum threshold of response, then the relativeanalysis response will be for a null emotion.11 Experiments and ResultsFor our preliminary experiments, we only trained two emotion networks; one for the \smile"emotion, and another for the \surprise" emotion. The test stage included image sequencesof \smile", \surprise", and \anger" emotions.Our database of image sequences includes 32 di�erent faces (see Figure 14). For eachface several expressions were recorded each lasting between 15 and 120 frames of 120 � 160pixels (at 30 frames per second), some expressions recurring. We requested each subject todisplay the emotions in front of the video camera while minimizing his/her head motion.Nevertheless, subjects inevitably moved their heads during a facial expression. As a result,the optical ow at facial regions was sometimes overwhelmedby the overall head rigid motion.Our facial expression system detects such rigid motion easily (all face regions move in onedirection, an event unlikely to be found in a facial expression) and marks the respectiveframes as unusable for analysis.Before we discuss the methodology and results we de�ne the terminology used. The termfamiliar-face indicates that the face used is that of a person that the system has seen inthe training session. For such a face there can be two types of sequences, familiar- andunfamiliar-sequences. The former denotes those image sequences that were used in thetraining, and the latter indicates these sequences of the familiar-face that are new to thesystem.11.1 Absolute AnalysisIn order to evaluate the performance of the neural network architecture, we conducted exper-iments that measure the network's retention, extrapolation, and rejection ability. Retentionrefers to the ability of the network to perform successfully on familiar sequences. Extrapo-lation refers to the ability of the network to perform successfully on sequences of unfamiliarfaces. Rejection refers to the ability of the network to reject a sequence that did not expressthe emotion that the network was tuned for.To measure the performance of the system relative to the above criteria we divided theexperiments into four categories. The �rst category encompassed familiar sequences, andit measured the network's retention ability. In the second category, unfamiliar faces weretested in order to measure the extrapolation ability. The third category included unfamiliarsequences of familiar faces and it measured a smaller increment of extrapolation than thesecond category. The fourth category included sequences of emotions that the tuned network23



Figure 14: Thirty-two faces used in experiments24



did not specialize in (these can be for any type of emotion and face) and it measures therejection rate of the network.For the \smile" and \surprise" emotions, we trained two networks that only di�ered inreceptive �eld width, and we tested each network using the four test categories. Each net-work was trained for 100,000 iterations, and the receptive �eld widths for SMILENET 1 andSURPNET 1 were larger than the receptive �eld widths for SMILENET 2 and SURPNET2 (see Table 2). The \smile" and \surprise" networks were trained with 20 and 14 subjects,respectively. The output vector for each network represented 40 stages of an emotion. Weused the criterion of at least seven stages being turned on to signify that the network recog-nized the emotion of a sequence, and we used an iteration con�dence threshold of 0.155 toincrement a stage counter for a frame of the sequence. Table 3 shows the results from theabsolute analysis.Table 2: The relative receptive �eld width settings for the experimental analysisnetwork mouth rf widths eyebrow rf widthsSMILENET 1 1 1SURPNET 1 1 1SMILENET 2 .694 .563SURPNET 2 .694 .563Table 3: The results of the absolute analysisnetwork familiar seq. unfamiliar face unfamiliar seq. foreign expressionSMILENET 1 16/20=80% 2/4=50% 7/7=100% 29/41=71%SURPNET 1 13/14=93% 5/6=83% 3/3=100% 39/52=75%SMILENET 2 16/20=80% 2/4=50% 4/7=57% 32/41=78%SURPNET 2 13/14=93% 2/6=33% 3/3=100% 46/53=87%In Table 4 we further break down category 4 to show that \anger" sequences were rejecteddi�erently than \smile" and \surprise" sequences. The \surprise" and \smile" rejection ratesonly apply to a network if it was trained for the alternate emotion from the test sequence.The results indicate that the retention rates are higher than the extrapolation rates.Category 3 success rates are higher than category 2 rates, since category 3 represents asmaller increment of extrapolation from the training set than does category 2. In the absoluteanalysis we found that the \surprise" networks performed better overall than the \smile"networks because of larger detectable motion.In Table 4 the rejection rates for \surprise" were better than those for \smile" for thethree emotions. For the \smile" and \surprise" networks with the same receptive �eldwidths, the \surprise" network had a much higher rejection rate of the \smile" emotionthan the \smile" network had of the \surprise" emotion. The larger detectable motion of25



Table 4: The further breakdown of category 4network anger surprise smileSMILENET 1 16/18=89% 13/23=57% {SURPNET 1 17/18=94% { 22/31=71%SMILENET 2 16/18=89% 16/23=70% {SURPNET 2 18/18=100% { 28/31=90%the \surprise" emotion improved performance for all four test categories, thus improvingretention, extrapolation and rejection of the \surprise" networks over the correspondingwidth size \smile" networks.Also from Table 3 and Table 4 we can see that larger receptive �eld widths enhancedextrapolation abilities of the networks (categories 2 and 3), but at the same time reducedthe retention and rejection rates (categories 1 and 4). Since one of the main goals of this re-search was to determine if a network could learn the commonalities of an emotion over a widepopulation from a small sample set, wider receptive �eld widths are better suited for our ap-plication. Wider receptive �elds respond to larger regions of the input space surrounding thereceptive �eld center. On one hand, if the receptive �elds widths for a network are too large,thus over-generalizing, then all the receptive �elds will respond with equally large activations,and the categorizing ability of the network is lost. On the other hand, if the receptive �eldwidths are too small, the receptive �elds will respond crisply to training patterns, but willhave negligible responses to test patterns that only vary slightly from the training patterns,thus possessing no generalization ability. Therefore a retention/extrapolation trade-o� existsbetween large and small receptive �eld widths.11.2 Relative AnalysisSince it was our intention to teach a network extrapolation instead of retention, we focusedour relative analysis on networks SMILENET 1 and SURPNET 1, which had better extrap-olation performance because of their relatively larger receptive �eld widths. The relativeanalysis is dependent on the results of the absolute analysis. Similarly, in the relative anal-ysis we de�ned four test categories to measure retention, extrapolation and rejection. The�rst category tests familiar sequences of \smile" or \surprise". The second category testssequences of unfamiliar faces. The third category tests unfamiliar sequences of familiar facesin at least one of the two training sets. The fourth category tests expression sequences for-eign to both networks. Since we trained on the \smile" and \surprise" emotions, the onlyemotion sequences in the fourth category were those of \anger".In the relative analysis, we compare the responses of the two networks; the thresholdingis done in the earlier absolute stage of analysis. In the case of two networks, we have fourpossible combinations of outputs: Yes/Yes, No/Yes, Yes/No, and No/No (where a \Yes"signi�es that a network recognizes a sequence as its specialization emotion, and a \No"signi�es the network did not recognize the emotion). The Yes/No and No/Yes responses arestraightforward, in that the relative emotion response is taken as the emotion of the network26



that responded with a \Yes". The No/No relative response also represents a clear answer thatneither network recognizes the emotion of the sequence. The Yes/Yes response is ambiguous,however, and is resolved by the relative analysis. To resolve the Yes/Yes ambiguity, theabsolute output statistics of each network for the ambiguous sequence are compared. Weused the number of stages turned on as the comparison statistic. The network that had thehighest number of stages turned on was declared the winning network, and the resultantemotion was determined to be the specialization emotion of that network. The Yes/Yesambiguous response was possible in test categories 1, 2, and 3; thus, the relative ambiguityresolution was expected to improve the performance for these three categories. Table 5shows the resulting accuracies from the relative analysis after the ambiguity resolution forcategories 1, 2 and 3. Table 5: The results of the relative analysisfamiliar seq. unfamiliar face unfamiliar seq. foreign expression30/34=88% 11/15=73% 11/12=92% 14/18=77%In order to compare the absolute and relative analyses, the absolute performances for theSMILENET 1 and the SURPNET 1 are combined into one performance measure based ona weighted average of the number of test cases for each network in each test set category,except category 4, since it does not apply. Table 6 shows the combined results from theabsolute analysis compared with the results from the relative analysis for each category.The results show an expected slight performance improvement for categories 1 and 2, and anTable 6: Comparison of the absolute results with the relative resultsanalysis familiar seq. unfamiliar face unfamiliar seq.absolute 85% 70% 100%relative 88% 73% 92%unexpected slight reduction in performance for category 3 between the absolute and relativeanalysis. The reduction in performance for category 3 was caused by the incorrect networkhaving a higher score than the correct network.12 ConclusionIn this paper, we developed a radial basis function network based human emotion detectionsystem. By training the network, it was able to learn the correlations between facial featuremotion patterns and speci�c emotions. In order to capture the temporal relations thatare important to emotion detection, several enhancements were made to the underlyingnetwork architecture. In order to make the problem more tractable, the emotion detectionproblem was divided into several levels, which mapped directly back to the overall network27



architecture. The high level decomposition was by emotion, the mid level decompositionwas by facial feature, and the low level decomposition was by motion direction sensitivity.For our preliminary experiments, of the six universal human emotions, we trained networksto recognize the \smile" and \surprise" emotions. Our experiments tested each network'sretention, extrapolation, and rejection abilities. The analysis of the experimental resultswere conducted by absolute and and relative terms. The purpose of the relative mode was toimprove overall emotion detection over the absolute mode by comparing all network outputsand picking a winner.From our experiments, we found, as one might expect, that networks tuned better onemotions that involved more motion. The larger the motions and the more sources of motionin the image, the more sources of discrimination between emotions. We also found that atrade-o� existed between large and small receptive �eld widths. Large widths improvedextrapolation, while degrading retention and rejection, while small widths had the oppositee�ect. Since our focus was to learn generalities, we used relatively large receptive �eld widths.We encountered several problems in these preliminary experiments due to subject rigidmotions and subject orientation. The neural network learns to correlate motions in certainparts of the image retina with speci�c emotions. When these motion patterns are o�setby rigid motion, they do not register properly with the neural network. The problems dueto varying subject orientations can be handled algorithmically or through neural networktraining. Algorithmically, the image can be adjusted based on facial feature locations andthe assumption of facial symmetry. A second approach is to include varying orientations ofsubjects in the training set, and allow the network to learn these variations.References[1] M. Abdel-Mottaleb, R. Chellappa, and A. Rosenfeld, \Binocular motion stereo usingMAP estimation", Procceedings of the IEEE Conference on Computer Vision and Pat-tern Recognition, 321{327, 1993.[2] J.N. Bassili, \Emotion recognition: The role of facial movement and the relative impor-tance of upper and lower areas of the face", Journal of Personality and Social Psychol-ogy, Vol. 37, 2049{2059, 1979.[3] V. Bruce, Recognizing Faces, Lawrence Erlbaum Assoc., London, 1988.[4] C. Darwin, The Expression of Emotions in Man and Animals, John Murray, 1872,reprinted by University of Chicago Press, 1965.[5] P. Ekman and W. Friesen, Unmasking the Face, Prentice-Hall, 1975.[6] P. Ekman and W. Friesen, The Facial Action Coding System, Consulting PsychologistsPress, San Francisco, CA, 1978.[7] E.B. Goldstein, Sensation and Perception, Wadsworth Publishing Co., 1989.[8] W.E.L. Grimson, B.K.P. Horn and T. Poggio, \Progress in image understanding atMIT", Proceedings of the DARPA Image Understanding Workshop, 1992.28
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