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Abstract The paper presents an innovative approach to

modelling the causal relationships of human errors in rail

crack incidents (RCI) from a managerial perspective.

A Bayesian belief network is developed to model RCI by

considering the human errors of designers, manufactures,

operators and maintainers (DMOM) and the causal rela-

tionships involved. A set of dependent variables whose

combinations express the relevant functions performed by

each DMOM participant is used to model the causal rela-

tionships. A total of 14 RCI on Hong Kong’s mass transit

railway (MTR) from 2008 to 2011 are used to illustrate the

application of the model. Bayesian inference is used to

conduct an importance analysis to assess the impact of the

participants’ errors. Sensitivity analysis is then employed

to gauge the effect the increased probability of occurrence

of human errors on RCI. Finally, strategies for human error

identification and mitigation of RCI are proposed. The

identification of ability of maintainer in the case study as

the most important factor influencing the probability of

RCI implies the priority need to strengthen the mainte-

nance management of the MTR system and that improving

the inspection ability of the maintainer is likely to be an

effective strategy for RCI risk mitigation.

Keywords Bayesian network � Human error � Hong

Kong � Importance analysis � Rail crack incidents �
Sensitivity analysis

1 Background

Subways are one of main modes of urban transport as

they are closely associated with passenger daily trans-

portation [1]. However, they are high risk in terms of

potential loss of destruction of assets and human life. The

main reason for derailment and collision are rail crack

incidents (RCI) [2]. Rail cracks can easily lead to shelling

defects on the surface of rails, causing track irregularity,

derailments and collisions [3]. In Europe, for example,

with an estimated annual cost of repairing rail damage of

300 million Euros, hundreds of broken rails are caused by

rail cracks [4]. Although many precautions are taken to

ensure a reliable and punctual subway service system in

Hong Kong, the number of subway incidents is increas-

ing, with RCI being the most increasing cause of mass

transit rail (MTR) delay incidents, having risen by 200 %

from 2008 to 2010 [5]. In particular, the number of RCI
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occurring in the first 2 months of 2011 was more than the

total number in 2008.

A rail crack is defined by the International Union of

Railways (UIC) as a rail which has one or more gaps of no set

pattern, apparent or not, the progression of which could lead

to a rapid rail breakage, irrespective of the parts of the profile

concerned [5]. There are several causes of RCI. Rail crack

initiation life is very sensitive to hydrostatic stress, which

becomes larger when the wheel load and fiction coefficient

increase [7]. Axle load, crack location, crack size and rail

metallographic have also been studied to analyse their effects

on fatigue crack growth by fracture mechanics [7]. A rail

crack growth model has been established, the effects of nine

operational environment factors compared, and three fac-

tors—thermal tension, track curvature and residual stress-

identified as having the most impact [8].

Human errors (HE) play a major part in RCI. For example,

welds are the most vulnerable component in the rail [5] and

can easily become defective by HE made by designers,

manufactures, operators or maintainers (DMOM). That is,

design deficiencies caused by the designer, defective weld

joints caused by the manufacturer, excessive speed or loads

caused by the operator, and rail corrosion caused by poor

inspection and maintenance. Previous studies indicate that

these skill-based HE can occur at any time [9]. In their

respective working contexts, the DMOM are often involved in

a sequence of events leading to an incident or accident [10]—

poor inspection and maintenance being only the final act of a

long and complex chain of organisational and systemic errors.

Although there has been a large amount of research on

the identification of casual factors in the field of rail crack

management and prevention, most has been based on lab-

oratory test experiments and field tests from a technical

perspective. However, although abnormal or unsafe states

of material and machinery are the immediate factors for

RCI, the DMOM HE mentioned above are the root causes

of the incidents. Assessing the impact of HE is difficult

with traditional technical approaches, which are focused

more on providing an identification or prediction tool based

on laboratory test experiments and field tests of special

cases [11, 12]. As a result, no empirical studies have yet

been conducted to assess the impact of HE on RCI from a

management perspective.

To do this involves the development of a complex

model to represent the relationships between the human

participants involved as each is dynamically affected by the

others both directly and indirectly. Fault tree analysis

(FTA) can be used for this purpose through providing an

understanding of the logic leading to an unwanted event

through a top to down deductive failure analysis in which

Boolean logic combined a series of lower-level events are

used to analysis the undesired state of a system. Although

the method has been used in the identification of the main

parties in the maritime transport system and their critical

activities [10], FTA’s weakness is that it cannot be used to

describe the causal relationships among participants and

make inferences concerning the probability of events

occurring.

Bayesian belief networks (BBN), on the other hand,

have been successfully used to integrate the analysis of

human and hardware failure in studying the possible

association of HE with fire incidents in subway operation

[13] and evaluating the effects of organisational factors in

railway operation on signal-passed-at-danger incidents

[14]. Both these applications of BBN in railway risk

management demonstrate an efficient way of understand-

ing how HE and organisational failure contribute to railway

incidents. In doing this, BBN is able to identify possible

configurations of events leading to an incident and under-

stand the interactions of the factors involved [10]. BBN

represents formalism in the risk analysis domain due to its

ability to deal with probabilistic data and model the

interdependencies of events by the use of arrow and con-

ditional probabilities [15]. It is also one of the simplest

approaches in sensitivity analysis and works well even

when the number of factors is relatively small [10].

Hence, the primary purpose of this paper is to assess the

impact of HE from DMOM on RCI and provide a means of

identifying their sources. The BBN approach is used to aid

this process and is described in the following section prior

to an illustrative application in the form of a case study of

14 recent MTR RCI in Hong Kong.

2 Research Methodology—The Bayesian Network
Approach

The term ‘‘Bayesian Network’’ (BN) was coined by Pearl

in 1985 [16], which is a directed acyclic graphical model or

belief network. A set of random variables and their con-

ditional dependencies of this probabilistic graphical model

was represented by a directed acyclic graph (DAG). The

probabilistic relationships can be represented by BN. The

network can be used to compute the probabilities of the

presence of various faults once the symptoms involved

given. The nodes represent variables and are conditionally

independent of each other. The edges represent conditional

dependencies, each node being associated with a proba-

bility function that takes as input a particular set of values

for the node’s parent variables and gives the probability of

the variable represented by the node. The corresponding

states are reflected by a conditional probability table (CPT)

as exemplified in Fig. 1.

In the discrete case, Bayes’ theorem relates to the con-

ditional and marginal probability of events X and Y, pro-

vided the posterior probability of Y does not equal zero:
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PðY jXÞ ¼ PðXjYÞ � PðYÞ
PðXÞ : ð1Þ

In Bayes’ theorem, each probability has a conventional

name:

• P(X) is the prior probability of occurrence of X

provided by statistical analysis of historical data,

assessment of experts or predictive model based on

past data if it does not have parent nodes;

• P(Y) is the marginal probability ignoring the states of

X, estimated by Bayesian theory;

• P(Y|X) is the distribution of occurrence of Y given the

occurrence of X; and

• P(X|Y) is the distribution of occurrence of X given the

occurrence of Y; the value of P(X|Y) can be translated

into ‘‘given a rail crack incident, what is the likelihood

that it has occurred due to HE of the designer,

manufacturer, operator or maintainer?’’

3 Case Study: Hong Kong MTR Rail Crack
Incidents

The BN approach is applied to a set of RCI that occurred

on Hong Kong’s MTR system over the 2008 to 2011 per-

iod. This aims to (1) identify the participants among the

DMOM contributing most to the RCI by human error, and

(2) provide effective strategies for the risk management of

the RCI by sensitivity analysis. Although the size of the

sample data is small because rail crack is an unusual

incident happened in MTR, human error risk analysis of

this type incident is still interested by government, man-

ager and passenger.

The case study is carried out is three steps comprising

incident analysis, qualitative model formulation and sen-

sitivity analysis [17]. The background of the collected

incidents is introduced in the Incident Analysis step; a

qualitative model formulation is established based on

functions in the DMOM analysis and relationship analysis

among these functions in the second step and an impor-

tance model and sensitivity analysis model are presented in

the last step.

3.1 General Description of the RCI

The primary causes of the RCI are summarised in Table 1.

All the data used in the research were collected from rail

investigation reports on the website of the Hong Kong

legislation council and contain 14 RCI. Of these, two

occurred in 2008, six in 2010, and three in 1 month in

2011. Only 30 % of RCI were found during general

maintenance check-up.

It is also noted that, although RCI on the MTR that lead

to isolated transverse fractures are less likely to cause train

derailments, transverse fractures cause many other costs in

inspections, train delays, remedial treatments, pre-treat-

ments, derailments and loss of business confidence and

customer support [18].

3.2 Qualitative Model Formulation and the BN

Mode

At this stage, a qualitative model formulation is first

established based on literature review and consultation

with MTR operators, engineers and maintenance staff.

Researchers have focused mainly on identifying the

P( XP( X22  X X11)) P(P( X X11=F) P(=F) P( X X11=T)=T)
F 0.5 0.5F 0.5 0.5
T 0.9 0.1T 0.9 0.1
(b2)(b2)

P(P( X X11=F) P(=F) P( X X11=T)=T)
0.4 0.60.4 0.6
(b1)(b1)

P( XP( X33  X X11)) P(P( X X11=F) P(=F) P( X X11=T)=T)
F 0.8 0.2F 0.8 0.2
T 0.2 0.8T 0.2 0.8

F TF T
F  F 1 0F  F 1 0
T  F 0.1 0.9T  F 0.1 0.9
F  T 0.1 0.9F  T 0.1 0.9
T  T 0.01 0.99T  T 0.01 0.99

XX22   X   X33 P(YP(Y  X X22, X, X33))

XX22 XX33

Y Y 

XX11

Fig. 1 Typical Bayesian

network and conditional

probability table
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technical causal factors related to RCI, such as axle load,

vehicle speed and traffic density [6]. However, an accident

or incident is a consequence of a sequence of HE and

associated unsafe behaviour [19]. The technical causal

factors identified and classified are used to match the HE of

DMOM with the technical failure in the RCI report [6].

Jeong’s functions allow a better understanding and

clarification to be obtained of the duties of the four DMOM

participants. By analysing the MTR RCI, it is found that

most incidents are caused not by HE but by a causal

sequence [20]. For example, if corrosion is the direct rea-

son for rail degradation, it may be that the problem should

have been considered by the designer and therefore the

designer’s ignorance of the problem is the indirect reason

for corrosion. Daily maintenance inspection also determi-

nes the occurrence or not of RCI.

As there are many indirect reasons for RCI, translating

all the cause–effect relationships involved into BBN would

require a great amount of incident cases to analyse.

Therefore, in view of the small number of samples col-

lected, both direct and indirect reasons are categorised into

four broad categories denoting the different participants

involved, namely Designer (Des), Manufacturer (Man),

Operator (Ope) and Maintainer (Mai) for establishing a

qualitative model. Hence, there are four causal nodes in the

BN model. Also, two symptom nodes are needed depend-

ing on whether there is a material defect-related stress

concentration (MatSC) or non-material defect stress con-

centration (Non-MatSC). A qualitative model established

by FullBNT in MATLAB is shown in Fig. 2 (the computer

program is provided in Appendix), in which the relation-

ships between variables are represented by the arcs in the

BN.

3.3 Importance and Sensitivity Analysis

3.3.1 Prior and Conditional Probabilities

There are two ways of assessing the prior and conditional

probabilities: objective-based prior probabilities and sub-

jective-based prior probabilities, which should be used

depending on whether the probability distribution of the

occurrence of the factors can be obtained from the data.

The objective-based prior probabilities magnify the

uncertainty of the occurrence of the events. Therefore, as

the RCI cases being analysed are collected from the

Table 1 Root causes of RCI

Case Root causes of RCI Date

1 Defective weld joint by manufacturer 19 Jan 2008

2 Poor-quality welding materials 19 Mar 2008

3 Defective weld joint by manufacturer 19 Jan 2009

4 Impurities inside rail head 18 Nov 2009

5 Corrosion at the rail foot 24 Nov 2009

6 Defective weld joint by manufacturer 25 Jan 2010

7 Defective weld joint by manufacturer 13 Feb 2010

8 Weak weld joint (welded on site) 10 Mar 2010

9 Weak weld joint (welded on site) 15 Jul 2010

10 Design deficiency 24 Jul 2010

11 Weak weld joint (welded on site) 1 Nov 2010

12 Steel plate fastening bolt broken and replaced by a smaller

diameter temporary bolt

13 Jan 2011

13 Steel cable protection pipe in contact with the underside of the rail.

As rails serve as a conductor for electrical current, there was

intermittent electrical discharge that led to arcing. Heat

generated from the arcing caused local melting of the pipe and

underside of the rail at the point of contact

19 Jan 2011

14 The cross section of welds is slightly larger than that of the rails,

and the underside of welds is compressed more into the rubber

padding when trains pass over. The concerned weld was located

on a curved section of rail and took on the heavier load of trains

passing over it, creating a higher stress concentration (SC) point

that developed into a crack at the bottom of the rail, which

ultimately led to breakage

10 Feb 2011
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Legislation Council in Hong Kong, the prior and condi-

tional probability analyses are conducted based on the

subjective method.

The prior probability is defined as the frequency or

count of the occurrences of the cause and symptom events

within the collected samples, and P(X) equals the number

of HE divided by the number of RCI. There are two pos-

sible values for each event (H = occurs, N = does not

occur). The prior probabilities of HE of designers (Des-

HE) and manufacturers (Man-HE) are the occurrence fre-

quencies of Des-HE and Man-HE before the evidence is

taken into account. The prior probability distribution is a

necessary input in calculating the marginal probability and

posterior probability. As is shown in Table 2, the prior

probability of node Des-HE is obviously lower than node

Man-HE, which means that the probability of Des-HE is

less than that of Man-HE. Because there is not enough

case, the paper had to use the same case for prior proba-

bility and BN model analysis.

The conditional probability is the probability of event X,

given the occurrence of another event Y and is written in

the form of P(X|Y). The HE of the operator (Ope-HE) is

induced not only by the knowledge and skill of the oper-

ators but also by the Des-HE or Man-HE. According to the

relationships in the collected cases, the conditional proba-

bilities of Ope-HE P(Ope-HE|Des-HE) are equal to the

joint probabilities of Ope-HE and Des-HE P(Des-HE,Ope-

HE) divided by the probabilities of the Des-HE. The con-

ditional probabilities of the HE of maintainer (Mai-HE)

given the occurrence of Ope-HE, P(Mai-HE|Ope-HE) is

calculated by the same approach (see Table 3).

P(Ope-HE = H|Des-HE = H) = 0.3333 means that the

occurrence probability of Ope-HE is 0.333 when Des-HE

occurs. When Des-HE does not occur, the occurrence

probability of Ope-HE is 0.182. Therefore, we conclude

that the occurrence of Ope-HE is induced not only by Des-

HE but also by other events. Consider Mai-HE, which

definitely occurs once Ope-HE occurs, because the P(Mai-

HE = H|Ope-HE = H) equals 100 %. Now we cannot say

that Mai-HE is caused by Ope-HE, because it also has a

probability of 0.455 when Ope-HE does not occur. The

same interpretation can be used for Non-MatSC, MatSC

and RCI (see Tables 4 and 5).

3.3.2 Importance Analysis Based on Bayesian Inference

In order to identify which participant has the most effect on

the occurrence of RCI, an importance analysis is conducted

by Bayesian inference. The marginal probability of HE of

operator O-HE is

P O� HEð Þ ¼ P Man� HE ¼ H;Ope� HE ¼ Hð Þ
þ P Man� HE ¼ N;Ope� HE ¼ Hð Þ
þ P Man� HE ¼ H;Ope� HE ¼ Nð Þ
þ P Man� HE ¼ N;Ope� HE ¼ Nð Þ:

ð2Þ

This is used to calculate the marginal probabilities of

causal nodes before the Bayesian inference. The joint

probabilities are given by

P Man� HE;Ope� HEð Þ ¼ PðMan� HEÞ
� P Man� HEjOpe� HEð Þ

ð3Þ

and hence,

P O� HEð Þ ¼
X

PðMan� HEÞ
� P Man� HEjOpe� HEð Þ: ð4Þ

The same kind of analysis can also be carried out for the

marginal probabilities of Mai-HE, Non-MatSC, MatSC

and RCI as shown in Table 6, which provides the initial

risk information involved.

This shows Mai-HE to be the highest risk (57.14 %),

followed by Man-HE (50 %) occurrence probability, while

D-HE and O-HE are much lower, with the risk of defects

falling between the two groups. While this suggests that

Mai-HE and Man-HE might contribute more in leading to

an incident, this is not necessarily the case. This is deter-

mined by the importance of the causal event—defined as

the contribution of the event to the incident as represented

by the posterior probability in BBN [21], where posterior

probability P(X|Y) means that ‘‘given a result event Y,

MatSC 

Ope-HE 

Mai-HE 

Non-Mat

RC 

Des-HE 

Man-HE 

Fig. 2 Qualitative model formulation and the Bayesian network

model

Table 2 Prior probabilities of nodes Des-HE and Man-HE

State/value P(Des-HE) P(Man-HE)

H 0.21 0.50

N 0.79 0.50
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what is the likelihood that it is induced by causal event X?’’

The posterior probability of Des-HE, given the occurrence

probability of a rail crack (RCI), is calculated by

I Des� HEð Þ ¼ P Des� HEjRCIð Þ ¼ PðDes� HE;RCIÞ
PðRCIÞ ;

ð5Þ

where P(RCI) is the marginal probability of RCI; P(Des-

HE; RCI)/P(RCI) is the posterior probability given that a

RCI occurred and P(Des-HE; RCI) is the joint probability

that Des-HE and RCI occur together. We define P(Des-HE|

RCI) as the importance of Des-HE on the basis of its

influence on RCI. The calculation results are shown in

Table 7, which are provided by FullBNT in MATLAB (the

computer program is in Appendix).

Here, the importance degree of Non-MatSC is higher

than MatSC. In other words, non-material defect-caused

stress has a higher contribution to RCI than material defect-

caused stress. In terms of the causal events, Mai-HE and

Man-HE have the same probability of occurrence.

Table 3 Conditional

probabilities of nodes Ope-HE

and Mai-HE

State/value P(Ope-HE = H|Man-HE) P(Ope-HE = N|Man-HE)

Man-HE = H 0.33 0.67

Man-HE = N 0.18 0.82

State/value P(Mai-HE = H|Ope-HE) P(Mai-HE = H|Ope-HE)

Ope-HE = H 1.00 0.00

Ope-HE = N 0.46 0.55

Table 4 Conditional probabilities of Non-MatSC

Des-HE Man-HE Mai-HE P(Non-MatSC = H| Des-HE, Man-HE, Mai-HE) P(Non-MatSC = N| Des-HE, Man-HE, Mai-HE)

H N N 1.0 0.0

N H N 0.2 0.8

H N H 1.0 0.0

N H H 1.0 0.0

H H H 1.0 0.0

Table 5 Conditional

probabilities of MatSC and RCI
Man-HE Mai-HE P(MatSC = H|Man-HE, Mai-HE) P(MatSC = N|Man-HE, Mai-HE)

H N 0.8 0.2

N H 0.8 0.2

H H 0.0 1.0

Non-MatSC MatSC P(RC = H|Non-MatSC, MatSC) P(RC = N|Non-MatSC, MatSC)

H N 1.0 0.0

N H 1.0 0.0

Table 6 Marginal probabilities

der Code Description Marginal probability %

1 Non-MatSCa Non-material defect-caused stress 42.65

2 MatSCa Material defect-caused stress 40.95

1 M-HE(Mai) Human errors and technical mistakes in maintenance stage 57.14

2 M-HE(Man) Human errors and technical mistakes in manufacture stage 50.00

3 D- HE Human errors and technical mistakes in design stage 21.43

3 O-HE Human errors and technical mistakes in operation stage 21.43

a symptom event, which is the hypothetical node
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However, Mai-HE is more important than Man-HE due to

its higher contribution to RCI. Therefore, when comparing

the HE of the designer and operator, although their prob-

ability of occurrence is the same, importance analysis

indicates that the human error of the operator has more

impact than that of the designer. That is to say, although

they have the same probability of occurrence, their impacts

on RCI are different.

As Table 6 shows, the HE of the maintainer provides the

greatest contribution to RCI among the DMOM. This result

coincides with what happens in practice as maintenance

inspection is the last step prior to the occurrence of RCI.

The second important contribution to RCI, human error of

the manufacturer, is due to material defects caused by

welding and rail manufacture. Although the importance of

Man-HE is lower than Mai-HE, it still plays a larger role in

contributing to RCI. Des-HE, in contrast, makes the

smallest contribution.

3.3.3 Sensitivity Analysis

A sensitivity analysis of the RCI is carried out on four

causal factors (Des-HE, Man-HE, Ope-HE and Mai-HE) to

gauge the robustness of the results and understand how

changes in the causal factors influence the probability of

occurrence of RCI. A variance-based method of proba-

bilistic sensitivity analysis is used. The approach is

S Xið Þ ¼ DP RCIð Þ
DP Xið Þ ¼ DP Non � MatSC;MatSC;RCIð Þ

DP Xið Þ

¼ DPðX1;i;X1;iÞ � PðX2;i;X2;iÞ
DP Xið Þ � A;

ð6Þ

where

A ¼ PðX1;i;X1;ijNon�MatSCÞ � PðX1;i;X1;ijMatSCÞ
� PðRCjNon�MatSC;MatSCÞ

ð7Þ

is a constant, X1;i is the set of non-material caused stress,

X1;i 2 is the complementary set of X1;i, X2;i is the set of

material caused stress, X2;i 2 is the complementary set of

X2;i and S Xið Þ is a relative indicator representing the sen-

sitivity of RCI to the probability of HE from the four

participants. This framework provides 4 9 4 experiments

with four causal factors in four states. The S Xið Þ results are

shown in Table 8 for ±20 and ±10 % of the initial P0(Xi)

value.

This shows that RCI are most sensitive to the probability

of Des-HE, with the sensitivity becoming sharper as the

probability of Des-HE increases. It also indicates that Des-

HE, although having the smallest contribution, has the

greatest marginal utility on RCI. Design is the first stage in

the life of a rail so that any defects occurring in this stage

affect the rail state of the following three stages, involving

additional work by the manufacturer, operator and main-

tainer. Therefore, the greatest marginal utility coincides

Table 7 Importance of causal

events
No. Code Description Importance %

1 Non-MatSCa Non-material defect-caused stress 51.38

2 MatSCa Material defect-caused stress 48.62

1 Mai-HE Human errors and technical mistakes in maintenance stage 71.64

2 Man-HE Human errors and technical mistakes in manufacture stage 65.31

3 Ope-HE Human errors and technical mistakes in operation stage 25.85

4 Des-HE Human errors and technical mistakes in design stage 22.42

a symptom event, which is the hypothetical node

0.089219

0.089221

0.089223

0.089225

0.089227

0.089229

0.089231

-20% -10% 10% 20%

S(

Fig. 3 Sensitivity of RCI to Des-HE

0.045000

0.050000

0.055000

0.060000

0.065000

0.070000

-20% -10% 10% 20%

S(

Fig. 4 Sensitivity of RCI to Man-HE
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with the case in practice. The same result applies to Man-

HE but with less sensitivity than Des-HE. Figures 3 and 4

summarise the results.

Unlike the Des-HE and Man-HE, the S Xið Þ of Ope-HE

and Mai-HE decreases as P0 Xið Þ increases as the increase

in probability of Ope-HE and Mai-HE cannot induce more

RCI. As Figs. 5 and 6 show, the Mai-HE is more sensitive

than the Ope-HE. In fact, the contribution of Mai-HE to

RCI is the most of the DMOM, which indicates that the

greatest benefits will be obtained by reducing human

maintenance error.

4 Conclusions

RCI increase as the subway network becomes more complex

and important to community life. In seeking to deliver more

effective strategies for risk mitigation, therefore, it is most

important to identify the major influencing factors involved.

This paper proposes a new method of doing this through the

use of BN in developing better risk identification models of

RCI. This is particularly useful when the HE of different

participants is a crucial issue, as it can deal efficiently with

small samples and clarify the causal relationships between

the associated latent and observed variables/factors. A case

study demonstrates the use of the method for all the RCI

occurring in Hong Kong’s MTR system for the period 2008

to 2011, including the HE of the four participants of

designers, manufactures, operators and maintainers.

The results confirm that, firstly, the maintenance stage is

crucial for RCI risk reduction as mistakes at this stage

contribute over 70 % to RCI. Secondly, factors with a

higher probability of occurrence contribute more in leading

to the incident. Thirdly, RCI is most sensitive to the

designers’ probability of HE. Because design is the first

stage in the life of the rail, any defects that occur in this

stage can induce subsequent mistakes in the following

stages. Fourthly, in contrast with the operation and main-

tenance stages, efforts in improving the design and man-

ufacture stages have a greatest marginality utility.

Importantly, the identification of ability of maintainer in

the case study as the most important factor influencing the

probability of RCI implies the priority need to strengthen

the maintenance management of the MTR system and that

improving the inspection ability of the maintainer is likely

to be an effective strategy for RCI risk mitigation.

However, this study also has its limitations. First, the

qualitative model framework is not sufficiently exhaustive

to reflect the real sequence of causal relationships of RCI.

Because RCI is an unusual incident happened in MTR, the

number of cases is too small to conduct a basic causal

factor analysis. Second, the importance analysis is con-

ducted using a single event (such as rail crack), and so does

not take into account any other events. Third, sensitivity

analysis simply observes the quantitative variation of RCI

risk in terms of four causal factors, and does not consider

the economic impact of RCI or the cost of improvement.

Further studies are needed to address these deficiencies.

Despite all this, the research framework and methodology

is quite general and clearly suitable for use as a support tool

for risk management and decision-making processes in a

wide variety of applications beyond RCI.

Table 8 Sensitivity of RCI to

changes in P0 Xið Þ values
No. Code S(Xi)

-20 % -10 % 10 % 20 %

1 Des-HE 0.089 ? 21.98E-5 0.089 ? 22.28E-5 0.089 ? 22.89E-5 0.089 ? 23.18E-5

2 Mai-HE 0.080 ? 31.29E-5 0.080 - 48.98E-5 0.077 ? 90.48E-5 0.077 ? 10.20E-5

3 Man-HE 0.046 - 9.91E-5 0.046 ? 56.07E-5 0.063 - 11.95E-5 0.068 ? 54.03E-5

4 Ope-HE 0.043 ? 11.05E-5 0.043 ? 2.09E-5 0.043 - 15.82E-5 0.043 - 24.78E-5
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Fig. 5 Sensitivity of RCI to Ope-HE
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Fig. 6 Sensitivity of RCI to Mai-HE

264 Urban Rail Transit (2015) 1(4):257–265

123



Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix

Computer program

N=7;

dag=zeros(N,N);

A=1;B=2;C=3;D=4;E=5;F=6;G=7;

dag(A,[C E])=1;

dag(B,[E F])=1;

dag(C,D)=1;

dag(D,[E,F])=1;

dag(E,G)=1;

dag(F,G)=1;

discrete_nodes=1:N;

node_sizes=2*ones(1,N);

bnet=mk_bnet(dag,node_sizes);

bnet.CPD{1}=tabular_CPD(bnet,A,[0.785714286

0.214285714]);

bnet.CPD{2}=tabular_CPD(bnet,B,[0.5 0.5]);

bnet.CPD{3}=tabular_CPD(bnet,C,[0.818181818

0.666666667 0.181818182 0.333333333]);

bnet.CPD{4}=tabular_CPD(bnet,D,[0.545454545 0

0.454545455 1]);

bnet.CPD{5}=tabular_CPD(bnet,E,[1 0 0.8 1 1 0 0 0 0 1

0.2 0 0 1 1 1]);

bnet.CPD{6}=tabular_CPD(bnet,F,[1 0.2 0.166666667

1 0 0.8 0.833333333 0]);

bnet.CPD{7}=tabular_CPD(bnet,G,[1 0 0 1 0 1 1 0]);

engine=jtree_inf_engine(bnet);

evidence=cell(1,N);

evidence{G}=2;

[engine,loglik]=enter_evidence(engine,evidence);

marg=marginal_nodes(engine,E,F,A,B,C,D);

marg.T
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