
Human Face Detection in Cluttered Color Images
Using Skin Color and Edge Information

K. Sandeep and A.N. Rajagopalan
Department of Electrical Engineering

Indian Institute of Technology – Madras
Chennai – 600 036, India

sandeepkanumuri@yahoo.co.in
raju@ee.iitm.ernet.in

Abstract

In this paper, we address the problem of face detection in
still images. We propose a fast algorithm for detecting hu-
man faces in color images. The algorithm uses color his-
togram for skin (in the HSV space) in conjunction with edge
information to quickly locate faces in a given image. The
proposed algorithm has been tested on various real images
and its performance is found to be quite satisfactory.

1. Introduction
Face detection is the essential front end of any face recogni-
tion system, which locates and segregates face regions from
cluttered images, either obtained from video or still image.
It also has numerous applications in areas like surveillance
and security control systems, content-based image retrieval,
video conferencing and intelligent human-computer inter-
faces. Most of the current face recognition systems presume
that faces are readily available for processing. However, in
reality, we do not get images with just faces. We need a
system, which will detect, locate and segregate faces in clut-
tered images, so that these segregated faces can be given as
input to face recognition systems. Given an image, the goal
of a face detection algorithm is to identify the location and
scale of all the faces in the image. The task of face detec-
tion is so trivial for the human brain, yet it still remains a
challenging and difficult problem to enable a computer to
do face detection. This is because the human face changes
with respect to internal factors like facial expression, beard
and mustache, glasses etc and it is also affected by exter-
nal factors like scale, lightning conditions, contrast between
face and background and orientation of the face.

A lot of research is going on in the area of human face
detection at present

�
3 � 8 � . Many researchers have proposed

different methods addressing the problem of face detection.
In a recent survey, Hjelmas

�
2� classifies different tech-

niques used in face detection as feature-based and image-

based. The feature-based techniques use edge information,
skin color, motion, symmetry measures, feature analysis,
snakes, deformable templates and point distribution models
(PDMs). Image-based Techniques include neural networks�
1 � , linear subspace methods like eigen faces, fisher faces,

eigen faces with background learning
�
6� and statistical ap-

proaches like support vector machines, higher order statis-
tics

�
5 � . The problem of face detection in still images is

more challenging and difficult when compared to the prob-
lem of face detection in video since motion information can
lead to probable regions where a face could be located.

In prior studies, different human skin colors from dif-
ferent races have been found to fall in a compact region in
color spaces

�
7 � 9� . One can detect skin by making use of

this compactness. However, there are limitations to using
just the skin color. For example, when faces are too close,
the skin regions can get merged. We propose the idea of
using connectivity of skin and edge information to segre-
gate faces that are close and also to separate background
from faces. The advantages of the proposed approach are
demonstrated on real images.

2. Face Dectection
Our face detection system consists of three steps. The first
step is to classify each pixel in the given image as a skin
pixel or a non-skin pixel. The second step is to identify
different skin regions in the skin detected image by using
connectivity analysis. The last step is to decide whether
each of the skin regions identified is a face or not. This is
done using two parameters. They are the height to width
ratio of the skin region and the percentage of skin in the
rectangle defined by the height and width.

2.1 Skin Pixel Classification

Different color spaces used in skin detection previously in-
clude HSV, normalized RGB, YCrCb, YIQ and CIELAB.

According to Zarit et al.
�
10 � , HSV gives the best perfor-

mance for skin pixel detection. We conducted our own ex-
periments independently and converged to the same fact.
Our experiments also showed the superiority of HSV color
space over RGB and YCrCb color spaces. Skin color can
be modeled using a histogram, a single Gaussian or a mix-
ture of Gaussians. Jones and Rehg

�
4 � have demonstrated

that the histogram model is superior to other models. Also,
the histogram is easy to implement and is computationally
efficient.

In the HSV space, H stands for hue component, which
describes the shade of the color, S stands for saturation com-
ponent, which describes how pure the hue (color) is while V
stands for value component, which describes the brightness.
The removal of V component takes care of varying lighting
conditions. H varies from 0 to 1 on a circular scale i.e. the
colors represented by H=0 and H=1 are the same. S varies
from 0 to 1, 1 representing 100 percent purity of the color.
H and S scales are partitioned into 100 levels and the color
histogram is formed using H and S.

In order to train for skin color, we downloaded color im-
ages containing human faces from the Internet and extracted
the skin regions in these images manually. Our training set
contained more than 4,50,000 skin pixels to form the color
histogram in H and S. For each pixel, H and S values are
found and the bin corresponding to these H and S values
in the histogram is incremented by 1. After the training is
completed, the histogram is normalized. The histogram ob-
tained can be seen in 3 dimensions and 2 dimensions in Fig
1(a) and Fig 1(b), respectively. Though it appears that there
are two different regions very much apart with high skin
probability, they both belong to the same region, since H is
cyclic in nature. Also, we can see that the skin color falls
into a very small region in the entire HS space. The height
of a bin in the histogram is proportional to the probability
that the color represented by the bin is a skin color. So we
use a threshold between 0 and 1 to classify any pixel as a
skin pixel or a non-skin pixel. If the threshold value is high,
all the non-skin pixels will be classified correctly but some
of the skin pixels will be classified as non-skin pixels. If the
threshold value is low, all the skin pixels will be classified
correctly whereas some of the non-skin pixels will be clas-
sified as skin pixels. This represents a trade-off between
percentage of skin pixels detected as skin and percentage
of non-skin pixels falsely detected as skin. There is an op-
timum threshold value with which one can detect most of
the skin pixels and reject most of the non-skin pixels. This
threshold is found by experimentation.

Given an image, each pixel in the image is classified as
skin or non-skin using color information. The histogram
is normalized and if the height of the bin corresponding to
the H and S values of a pixel exceeds a threshold called
skinthreshold (obtained empirically), then that pixel is con-

sidered a skin pixel. Otherwise the pixel is considered a
non-skin pixel. A skin detected image is one in which only
the skin pixels are shown. A general image and its skin
detected image can be seen in Fig 2(a) and Fig 2(b), respec-
tively.

2.2 Connectivity Analysis

Using the skin detected image, one knows whether a pixel
is a skin pixel or not, but cannot say anything about whether
a pixel belongs to a face or not. One cannot say anything
about it at the pixel level. We need to go to a higher level
and so we need to categorize the skin pixels into different
groups so that they will represent something meaningful as
a group, for example a face, a hand etc. Since we have to
form meaningful groups of pixels, it makes sense to group
pixels that are connected to each other geometrically. We
group the skin pixels in the image based on a 8-connected
neighborhood i.e. if a skin pixel has got another skin pixel
in any of its 8 neighboring places, then both the pixels be-
long to the same region. At this stage, we have different
regions and we have to classify each of these regions as a
human face or not. This is done by finding the centroid,
height and width of the region as well as the percentage of
skin in the rectangular area defined by the above parameters.
The centroid is found by the average of the coordinates of
all the pixels in that region. For finding height

� The y-coordinate of the centroid is subtracted from the
y-coordinates of all pixels in the region.

� Find the average of all the positive y-coordinates and
negative y-coordinates separately.

� Add the absolute values of both the averages and mul-
tiply by 2. This gives the average height of the region.

Average width can be found similarly by using x-
coordinates. Since the height to width ratio of human faces
falls within a small range on the real axis, using this param-
eter along with percentage of skin in a region, the algorithm
should be able to throw away most of non face skin regions.
So if the height to width ratio falls within the range of well-
known golden ratio �����	��
� ����������� tolerance and if the
percentage of skin is higher than a threshold called percent-
agethreshold, then that region is considered a face region.
The algorithm works with faces of all sizes and does not
assume anything about the scale at which a face appears.
Instead it gives the size of the face detected which will be
useful when the faces detected are sent for further process-
ing by a face recognition system. Fig. 3(a) shows a test
image taken under natural conditions. We applied the skin
color algorithm on this test image and it detects the face as
shown in Fig. 3(b).

The skin color algorithm will not work well in certain
cases. For example, if there are colors in the image which
resemble skin but are not skin pixels, it could cause two
skin regions to be recognized as one because these false
skin pixels will form a connecting path between the two
regions. This could be avoided by using edge information
since some of the false pixels will have a high gradient since
they are at the boundary of the face.

2.3 Using Edge Information

There are many ways to perform edge detection. However,
the most may be grouped into two categories, gradient and
Laplacian. The gradient method detects the edges by look-
ing for the maximum and minimum in the first derivative
of the image. The Laplacian method searches for zero-
crossings in the second derivative of the image to find edges.
Sobel, Prewitt and Roberts operators come under gradi-
ent method while Marrs-Hildreth is a Laplacian method.
Among these, the Sobel operator is fast, detects edges at
finest scales and has smoothing along the edge direction,
which avoids noisy edges. So we used Sobel operator to get
the edge image. Fig. 4(a) and Fig. 4(b) shows a normal
image and its edge image respectively.

We can improve the skin color algorithm by using edge
information and modifying the way we classify skin pixels.
A skin pixel in addition to exceeding the skinthreshold for
histogram should also have a gradient less than a certain
threshold called edgethreshold. Fig. 5(a) and Fig. 5(b)
shows the results of the algorithm using skin color only and
the algorithm using both skin color and edge information
on a test image respectively. We can see that the former
algorithm captures only one face whereas the latter captures
all the faces.

3 Experimental Results

The algorithm is applied on a wide variety of images taken
under different lighting conditions and with different back-
grounds. The images also have areas containing skin from
other parts of the body like hands, and areas with color very
similar to that of skin. These areas get classified as skin and
they form skin regions accordingly. We implemented the
algorithm in MATLAB 5.3 on a Pentium PIII 128MB RAM
Windows NT workstation. For a 320 � 240 image, the total
time taken by the algorithm was 11 seconds. The time taken
will be much less if the algorithm is implemented on C or
C++. The histogram is formed using a training set of over
4,50,000 pixels drawn from various sources on the internet.
The training set contained skin pixels of people belonging
to different races. A few faces used in the training are shown
in Fig. 6(a) to 6(f).

The Proposed Algorithm

Step 1. Convert the input RGB image (rgb(i,j))
into HSV image (hsv(i,j))

Step 2. Get the edge map image (edge(i,j)) from
RGB image using Sobel operator.

Step 3. For each pixel (i,j), get the corresponding
H and S values.

Step 4. If (colorhistogram(H,S) � skinthreshold)
and (edge(i,j) � edgethreshold)
then skin(i,j) = 1 i.e. (i,j) is a skin pixel
else skin(i,j) = 0 i.e. (i,j) is a non-skin pixel

Step 5. Find the different regions in the image
by implementing connectivity analysis using 8-
connected neighborhood.

Step 6. Find height, width, and centroid for each
region and percentage of skin in each region.

Step 7. For each region, if (height/width) or
(width/height) is within the range (Goldenratio
� tolerance) and (percentage of skin � percent-
agethreshold)
then the region is a face,
else it is not a face.

The various thresholds used in the algorithm are shown in
the following table. These thresholds are arrived at after
some experimentation.

Type of threshold Value
SkinThreshold 0.1
EdgeThreshold 125

PercentageThreshold 55
Tolerance 0.65

The various stages in the algorithm is explained using the
boy image (Fig. 7). The initial part of the algorithm classi-
fies each pixel as a skin pixel or a non-skin pixel. Fig. 7(b)
shows the skin detected image. Fig. 7(c) shows the edge im-
age got by using Sobel operator. The remaining part of the
algorithm uses the skin detected image and the edge image,
finds the skin regions and checks the height to width ratio
and percentage of skin in that region. For regions classified
as faces, it uses the height and width of the region to draw a
rectangular box with the region’s centroid as its center. The
final result of the algorithm is shown in Fig. 7(d). Note that
the face has been correctly located and almost at the right
scale.

Some more representative results of the algorithm are
shown in Fig. 8 and the results are self-explanatory. Fig.
8(a) shows a couple with a plain background. The algo-
rithm detects both the faces but gives one false alarm, which
is actually a part of the lady’s hand. Fig. 8(d) has three peo-
ple with a very cluttered background. All the three faces
are detected but it gives three false alarms, two of them rep-
resenting hand regions. Fig. 8(g) and Fig. 8(h) are images
taken in the lab and all the faces are detected. Fig. 8(h) does
not have any false alarms and detects both faces correctly.

Considering the fact that the algorithm was tested on
a wide range of images with different faces, backgrounds
etc., the performance of the algorithm is indeed encourag-
ing. Most of the false alarms are hand regions that have
their height to width ratio falling within the required range
and percentage of skin in these regions will be above the
percentagethreshold since the region is a real skin region.
A good post-processing module is necessary to remove the
few false alarms that occasionally occur.

4. Conclusion
A fast algorithm for face detection based on skin color, con-
nectivity and edge information has been proposed. Though
some false alarms occur, the overall performance of the pro-
posed algorithm is still quite satisfactory. The algorithm is
fast and can be used in real-time applications. The images
on which the algorithm is tested are natural images taken
under uncontrolled conditions and the algorithm does well
on them. The algorithm locates faces but does not give the
exact contour. Some kind of post-processing (such as ex-
traction of eyes) will help to capture the face contour ex-
actly for use by a face recognition system. Detecting faces
that are partly occluded or that are overlapping remains a
challenge to be addressed.

References

[1] R. Feraud, O. J. Bernier, J. Viallet, and M. Collobert. A fast
and accurate face detector based on neural networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
23:42–53, 2001.

[2] E. Hjelmas. Face detection: A Survey. Computer Vision and
Image Understanding, 83:236–274, 2001.

[3] R. L. Hsu, M. A. Mottaleb, and A. K. Jain. Face detection
in color images. IEEE Trans. Pattern Analysis and Machine
Intell., 24:696–706, 2002.

[4] M. J. Jones and J. M. Rehg. Statistical color models with
application to skin detection. Computer vision and Pattern
Recognition, pages 274–280, 1999.

[5] A. N. Rajagopalan, K. Kumar, J. Karlekar, R. Manivasakan,
M. Patil, U. Desai, P. Poonacha, and S. Chaudhuri. Find-
ing faces in photographs. In Proceedings sixth IEEE Int’l
Conference on Computer Vision, pages 640–645, 1998.

[6] R. K. Singh and A. N. Rajagopalan. Background learning
for robust face recognition. In Int’l Conference on Pattern
Recognition, 2002.

[7] J. Yang and A. Waibel. A real-time face tracker. In Proceed-
ings of WACV’96, pages 142–147, 1996.

[8] M. Yang, D. J. Kriegman, and N. Ahuja. Detecting faces in
images: A survey. IEEE Trans. Pattern Analysis and Ma-
chine Intell., 24:34–58, 2002.

[9] T. Yoo and S. Oh. A fast algorithm for tracking human faces
based on chromatic histograms. Pattern Recognition Letters,
20:967–978, 1999.

[10] B. D. Zarit, B. J. Super, and F. K. H. Quek. Comparison
of five color models in skin pixel classification. In ICCV’99
Int’l Workshop on recognition, analysis and tracking of faces
and gestures in Real-Time systems, 1999.

(a) (b)

Figure 1: HS histogram for skin pixels (a) 3D view (b) 2D
view

(a) (b)

Figure 2: Classification of pixels as skin or non-skin (a)
Original Image (b) Skin detected Image

(a) (b)

Figure 3: (a) Test Image (b) Result of skin color algorithm

(a) (b)

Figure 4: Edge detection (a) Test image (b) Edge Image

(a) (b)

Figure 5: Face detection (a) Using skin color only (b) Using both color and edge information

(a) (b) (c) (d) (e) (f)

Figure 6: Different training faces for skin color

(a) (b) (c) (d)

Figure 7: (a) A test image with a boy sitting (b) Skin detected image (c) Edge image (d) Result of the proposed algorithm

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8: More results of the proposed algorithm

