
Successful industrial design gracefully unites esthetics and function
at minimum cost. However, designers face specialproblems when

they apply their skills to interactive computer systems.

Human Factors
Experiments in
Designing
Interactive Systems
Ben Shneiderman
University of Maryland

Providing useful tools for computer users with a
wide range of experience, problems, skills, and expec-
tations is a challenge to scientific competence,
engineering ingenuity, and artistic elegance. System
developers are increasingly aware that ad hoc design
processes, based on intuition and limited experience,
may have been adequate for early programming
languages and applications but are insufficient for in-
teractive systems which will be used by millions of
diverse people. Regular users quickly pass through
the gadget fascination stage and become demanding
users who expect the system to help them in perfor-
mance of their work. Clearly, therefore, interactive
computer-based consumer products for home, per-
sonal, or office applications require increasing levels
of design effort.
Unfortunately, it is not possible to offer an algo-

rithm for optimal or even satisfactory design. In-
teractive system designers, like architects or in-
dustrial designers, seek a workable compromise be-
tween conflicting design goals. Systems should be
simple but powerful, easy to learn but appealing to
experienced users, and facilitate error handling but
allow freedom of expression. All of this should be ac-
complished in the shortest possible development
time, costs should be kept low, and future modifica-
tion should be simple. Finding a smooth path
through these conflicting goals is a challenge.
Henry Dreyfuss,' a leading industrial designer

responsible for plane, train, and boat interiors as well
as dozens of familiar consumer items, provides useful
guidance. He devotes a full chapter to the experience
of designing the 500-Type Telephone, the standard
rotary dial desk model. Measurements of 2000
human faces were used to determine the spacing be-
tween the mouth and ear pieces. After consultation
with Bell System engineers about the layout of elec-
tronic components, 2500 sketches for possible
designs were made. Numerous variations ofthe hand-

grip were considered until the familiar rounded-off
rectangular cross section was adopted. Variations on
dial and faceplate were tested until a 4¼/4-inch
diameter faceplate was selected to replace the older
3-inch version. Placement of the letters and numbers
was studied, the angle of the dial was adjusted to
reduce glare, and the cradle was modified to minimize
the receiver-off-the-hook problem. Accurate layout
drawings were made for all the variations, and finally
clay and plaster models were built to compare the
leading designs. Then testing began.
This process contrasts sharply with most interac-

tive system development experiences where designs
are hastily proposed and evaluated informally. Alter-
native command structures, error handling pro-
cedures, or screen formats rarely getimplemented for
pilot testing purposes. Dreyfuss spends another en-
tire chapter emphasizing the importance of testing.
Tests and pilot studies should be more than the infor-
mal, biased opinion of a colleague. A pilot test should
involve actual users for sufficient time periods to get
past initial learning problems and novelty. Conflict-
ing designs should be evaluated in carefully con-
trolled experimental conditions. Though ex-
periments provide no guarantee of quality, they are
far better than informal guesswork. The process of
developing an experimental comparison can itself be
productive, often providing worthwhile insights.
Statistical performance data and informal subjective
commentary from participants can be valuable in
fine-tuning proposed procedures. Experimental
research can lead to fundamental insights which
transcend specific systems. Nickerson,2 Bennett,3
Martin,4 and Miller and Thomas5 provide broad-
ranging reviews of issues and references for
designers and researchers of interactive systems.
Shneiderman6 covers related work in data-base
facilities, and other articles in this issue focus on pro-
gramming language usage.

0018-9162/79/1200-0009$00.75 © 1979 JEEE 9December 1979

Goals for interactive system designers

The diversity of situations in which interactive
systems may be used makes it difficult to prescribe a
universal set of goals. The attempts of several system
designers to define goals are shown in Figures 1
through 8.
Foley and Wallace15 make their recommendations

by enumerating five problem areas: boredom (im-
proper pacing), panic (unexpectedly long delays),
frustration (inability to convey intentions or inflexi-
ble and unforgiving system), confusion (excessive
detail or lack of structure), and discomfort (inap-
propriate physical environment).
The best detailed guide for design of interactive

display systems was developed by Engel and Gran-
da.16 They make specific suggestions about display
formats, frame contents, command language, recov-
ery procedures, user entry techniques, general prin-
ciples, and response time requirements.
Unfortunately, these lists are only crude gnides to

the designer. The entries are not independent and
sometimes are in conflict. The lists contain contradic-
tory recommendations and are certainly incomplete.
Finally, these design goals are largely unmeasurable.
Can we assign a numerical value to the simplicity,

stability, responsiveness, variety, etc., of a system?
Howcanwe compare the simplicity oftwo designpro-
posals? How do we'know what has been left out of the
system design?
Experimental research can help to resolve some of

these issues and refine our capacity to measure
system quality. Stin, some aspects of designing will
remain an art or intuitive science where esthetics and
contemporary style determine success.
The remainder of this paper presents several

human factors issues in designing interactive
systems. The discussion is independent of hardware-
related concerns such as the design of keyboards,
displays, cursor controls, audio output, speech
recognition, graphics systems, and customized
devices, and software-related topics such as natural
language front-ends, menu selection, command
languages, data-base query facilities, and editors.
The emphasis is on general problems and basic ex-
perimental results.

Attitude and anxiety

Several studies have demonstrated that user at-
titudes can dramatically affect learning and perfor-
mance with interactive systems. Walther and
O'Neil,17 for example, showed that novices with
negative attitudes towards computers learned
editing tasks more slowly and made more errors.
Anxiety, generated by fear of failure, may reduce
short-term memory capacity and inhibit perfor-
mance. If users are insecure about their ability to use

COMPUTER

First principle: Know the user

Minimize memorization
Selection not entry
Names not numbers
Predictable behavior
Access to system information

Optimized operations
Rapid execution of common operations
Display inertia
Muscle memory
Reorganize command parameters

Engineer for errors
Good error messages
Engineer out the common errors
Reversible actions
Redundancy
Data structure integrity

Figure 1. User engineering principles for interac-
tive systems (W. J. Hansen, 1971).' Hansen's First
Principle should be the motto of every designer:
Know the User. No qualifier or explanation is
necessary. Hansen's sensitivity to human short-
term memory limitations leads to his second
category: minimizing memorization. Under "op-
timization of operations," Hansen includes
"display inertia," suggesting that when operations
are applied, as little of the display'should be
changed as possible. This approach reduces
disruptive movement and highlights the impact of
the last operation. "Muscle memory" refers to the
idea that users develop the feel for frequently used
keypresses. Hansen recognizes the importance of
engineering for errors by providing good error
messages, reversible actions, and revisions to
engineer out common errors.

1. Provide a program action for every possible type of
user input.

2. Minimize the need for the user to learn about the
computer system.

3. Provide a large number of explicit diagnostics,
along with extensive on-line user assistance.

4. Provide program shortcuts for knowledgeable
users.

5. Allow the user to express the same message in
more than one way.

Figure 2. The design of idiot-proof interactive pro-
grams (A. I. Wasserman, 1973).8 Wasserman's five
design principles are reasonable, but the second
and fifth ones may need qualification. Although it
is usually good to minimize the user's need to learn
about the computer system, restricting access to
those who have acquired a certain knowledge level
may sometimes be agood idea. The qualifying test,
which works well for driver's licensing and college
entrance, may be useful for complex and powerful
systems. Naive users should be prevented from us-
ing a system which is too hard for them and would
produce an unpleasant experience. Wasserman's
fifth principle may not always be good advice.
Novices will prefer and do better with a system
which has few choices and permits only limited
forms of expression.

10

the system, worried about destroying files or the
computer itself, overwhelmed by volumes of details
or pressured to work rapidly, their anxiety will lower
performance. Programmers who must meet a dead-
line tend to make more errors as they frantically
patch programs in a manic attempt to finish. Of
course, mild pressure can act as a motivator, but if
the pressure becomes too strong the resultant high
levels of anxiety interfere with competent work.
In designing a system for novices, every attempt

should be made to make the user at ease, without be-
ing patronizing or too obvious. A message telling
users not to be nervous is a bad idea. Users will feel
best if the instructions are lucid, in familiar terms,
and easy to follow. They should be given simple tasks
and gain the confidence that comes with successful
use of any tool or machine. Diagnostic messages
should be understandable, nonthreatening, and low-
key. If the imput is incorrect, avoid blaring phrases
such as "ERROR 435-NUMBERS ARE ILLE-
GAL" and merely state what is necessary to make
things right-e.g., "MONTHS ARE ENTERED BY
NAME." Try to avoid meaningless,~condemning

December 1979

Simple: project a "natural,'' uncomplicated "virtual'' image of the
system.
Responsive: respond quickly and meaningfully to user commands.

User-controlled: all actions are initiated and controlled by the user.

Flexible: flexibility in command structures and tolerance of errors.

Stable: able to detect user difficulties and assist him in returning to
correct dialogue; never ''dead ending'' the user (i.e., offering no
recourse).
Protective: protect the user from costly mistakes or accidents (e.g.,
overwriting a file).
Self-documenting: the commands and system responses are self-
explanatory and documentation, explanations, or tutorial material are
part of the environment.
Reliable: not conducive to undetected errors in man-computer com-
munication.
User-modifiable: sophisticated users are able to personalize their en-
vironment.

Figure 5. Interface design for time-sharing systems (D. R.
Cheriton, 1976).11 Cheriton's thorough list provides good guide-
lines for interactive system designers.

1. Know the user population.

2. Respond consistently and clearly.

3. Carry forward a representation of the user's
knowledge basis.

4. Adapt wordiness to user needs.

5. Provide the users 'with every opportunity to correct
their own errors.

6. Promote the personal worth of the individual user.

Figure 3. Design guidelines for interactive systems
(R. W. Pew and A. M. Rollins, 1975).9 Pew and
Rollins echo Hansen's motto and add some of their
own besides. Guideline No. 4, above, was probably
intended to mean "adapt the messages to the
user's level of syntactic and semantic knowledge."

Simplicity
Few keywords
Simplicity of input
Short commands
Simple commands

Clarity
Hierarchical structure (commands and subcommands)
Functional separation of commands
Homogeneity (same structure for all commands)
Problem orientation

Uniqueness
Determinism-every command is fully determined by its

operands and preset options
No undefined states

Comfortable language
Powerful commands
Flexibility
Short dialogue
Data structures can be displayed and utilized for searching and

browsing
Other comfort

Input comfort: rereading or previous input or output after correc-
tions have been made; menu technique

Dialogue can be interrupted at any time
Clear, short, understandable system messages

Evidence and reusability
Evidence of the system state
Acknowledgment of executed commands
Help functions
Former commands and output reusable for input
Saving commands for later execution

Stability
Clear messages on severe input errors
Error correction on slight errors
Uniform error handling
No compulsion to continue the dialogue in a fixed way

Data security

Figure 6. Design criteria for documentation retrieval languages
(F. Gebhardt and 1. Stellmacher, 1978).12

Introduce through experience

Immediate feedback

Use the user's model

Consistency and uniformity

Avoid acausality

Query-in-depth (tutorial aids)

Sequential-parallel tradeoff
(allow choice of entry patterns)

Observability and controllability

Figure 4. Guidelines for designing interactive sys-
tems (Brian R. Gaines and Peter V. Facey, 1975).10
Gaines and Facey emphasize the importance of the
user being in control of the terminal, the pace of the
interaction, the tutorial aids, and the execution pro-
cess.

1 1

messages such as "SYNTAX ERROR" and give
helpful, informative statements such as "UN-
MATCHED RIGHT PARENTHESIS." Construc-
tive messages and positive reinforcement produce
faster learning and increase user acceptance.

Control

A driving force in human behavior is the desire to
control. Some individuals have powerful needs to at-
tain and maintain control of their total environment;
others are less strongly motivated in this direction
and are more accepting of their fate. With respect to
using computers, the desire for control apparently in-
creases with experience. Novice terminal users and
children are perfectly willing to foliow the computer's
instructions and accept the computer as the control-
ling agent in the interaction. With experience and
maturity, users resent the computer's dominance

and prefer to use the computer as a tool. These users
perceive the computer as merely an aid in ac-
complishing their own job or personal objectives and
resent messages which suggest that the computer is
in charge.
The Library of Congress recognized this distinc-

tion in changing the prompting message from the
authoritarian "ENTER NEXT COMMAND" to the
servile "READYFORNEXTCOMMAND." A large
bank offers a banking terminal which displays the
message "HOWCAN I HELPYOU?" This is appeal-
ing at first glance, but after some use, this come-on
becomes annoying. The illusion that the machine is
just like a human teller is perceived as a deception
and the user begins to wonder about other ways in
which the bank has been deceptive. The attempt to
dominate the interaction, by implying that the ter-
minal will help the user by emphasizing the "I,"
violates common rules of courtesy. If a starting
message is used at all, it probably should focus on the
customer-for example, "WHATDO YOU NEED?"
followed by a list of available operations. In any case
the user should initiate the operation by hitting a but-
ton labeled "START," thus reinforcing the idea that
the user is in control of the machine.
Early computer-assisted instruction systems

heaped praise on the student and "wisely" guided the
student through the material at a computer-selected
pace,; more recent systems merely display perfor-
mance scores and provide an environment where the
student chooses the path and pace. Only children ap-
preciate praise from a computer; most people achieve
internal satisfaction if their performance is satisfac-
tory. Instead of the lengthy "VERY GOOD, YOU
GOTTHE RIGHTANSWER," the simple display of
"+ +" signals a correct answer to a problem.
Reinforcement for these ideas comes from Jerome

Ginsburg of the Equitable Life Assurance Society,
who prepared an in-house set of guidelines for
developing interactive applications systems. He
makes the powerful claim that

Nothing can contribute more to satisfactory system per-
formance than the conviction on the part of the terminal
operators that they are in control of the system and not
the system in control of them. Equally, nothing can be
more damaging to satisfactory system operation,
regardless of how well all other aspects of the implemen-
tation have been handled, than the operator's conviction
that the terminal and thus the system are in control, have
"a mind of their own," or are tugging against rather than
observing the operator's wishes.

Being in control is one of the satisfying com-
ponents of time-sharing and of programming in
general. Systems which are designed to enhance user
control are preferred. One explanation of why word
processing systems have come into widespread use in
only the last few years is that mini and microcom-
puters give users a powerful feeling of being in con-
trol compared to the time-shared usage of a large
machine. Files kept on floppy disks are tangible when
compared to disk files on an unseen remote machine.
Although failures, loss of files, and faulty disks prob-
ably occur more often on the stand-alone minis and

COMPUTER

Forgiveness-ease in repairing errors

Segmentation-layered approach

Variety-choice of style

Escape-break out of danger

Guidance-direction and learning

Leverage-flexible, powerful features

Figure 7. Humanimachine interface design criteria
in a computerized conferencing environment (M.
W.- Turoff, J. L. Whitescarver, and S. R. Hiltz,
1978)-13

Use terse ''natural'" language, avoid codes, allow ab-
breviations.

Use short entries to facilitate error correction and main-
tain tempo.

Allow user choice of single or multiple entries.

Maintain "social element" to the communication.

Permit user to control length of cues or error messages.

Error messages should be polite, meaningful, and infor-
mative.

Give help when requested or when users are in difficulty.

Simple, logically consistent command language.

Control over all aspects of the system must appear to
belong to the user.

Avoid redundancy in dialogue.

Adapt to the user's ability.

Keep exchange rate in user's stress-free range; user
can control rate.

Figure 8. Ground rules fora "well-behaved" system
(T. C. S. Kennedy, 1974).14 This list is based on ex-
perimental studies with data entry.

12

micros than on larger systems, the users of minis and
micros have the satisfaction of controlling their own
destiny.

Closure

One of the byproducts of the limitation on human
short-term memory is that there is great relief when
information no longer needs to be retained. This pro-
duces a powerful desire to complete a task, reduce our
memory load, and gain relief. Closure is the comple-
tion of a task leading to relief. Since terminal users
strive for closure in their work, interactions should be
defined in sections so completion can be attained and
information released. Every time a user completes
editing a line or ends an editing session with an EXIT
or SAVE command, there is relief associated with
completion and attaining closure.
The pressure for closure means that users, especial-

ly novices, may prefer multiple small operations to a
single large operation. Not only can they monitor
progress and.ensure that all is going well, but they
can release the details of coping with early portions of
the task. One informal study shQwed that users
preferred three separate menu lists. rather than three
menus on the screen at once. Although more typing
and more interactions were required for the three
separate menus, the users preferred doing one small
thing at a time. With three menus at a time, the infor-
mation about the first menu decision must be main-
tained until the system acknowledges or the
RETURN key is hit. Similarly, word processor users
may make three separate changes on adjacent words,
when one large change command could have ac-
complished the same results with fewer keystrokes.

Response time

Most designers recognize that a simple limit on
response time, the time it takes for the system to re-
spond to a command (e.g., two seconds), is an
unreasonably crude specification. Some systems
have design specifications of two-second response
time for 90 percent of the commands and 10-second
response time for the remaining 10 percent. A more
informed view is that the acceptable response time is
a function of the command type. Users are not
disturbed to wait several seconds for the loading of a
file or large program, but expect immediate response
to editing commands or emergency requests. R. B.
Miller'8 provides a list of 17 command types and
reasonable response times (Table 1).Wemay disagree
with specific entries or suggest new entries, but the
idea of having different response times seems accep-
table. In fact, one possible approach is to guarantee
that more complex and expensive commands require
longer waits. This will tend to make users favor
faster, cheaper commands.
A contrasting design goal is to minimize the

variance of response time. It has been confirmed by
experiment'9 that increasing the variability of

response time generates poorer performance (Figure
9) and lower user satisfaction (Figure 10). Users may
prefer a system which always responds in 4.0 seconds
to one which varies from 1.0 to 6.0 seconds, even

through the average in the second case is 3.5. Ap-
parently users can devote 3.9 seconds to planning if
they are sure that the time is available. If attention
has to be maintained on the screen, users will not use
the response time for planning work. Some users even

report surprise and disruption if thb response is too
prompt. Holding responses to minimize response
time variance may actually improve user perfor-
mance and satisfaction. For extremely long response
times-i.e., more than 15 seconds-the user should be
informed of the time required. One graphics system
shows a clock hand ticking backwards counting off
the seconds until the system will respond. Even if the
response is ready earlier, the system continues its
countdown to zero.

Table 1.
System response times as function of user activity (R. B. Miller, 1968).18

USER ACTIVITY

CONTROL ACTIVATION (FOR EXAMPLE,
KEYBOARD ENTRY)

SYSTEM ACTIVATION (SYSTEM
INITIALIZATION)

REQUEST FOR GIVEN SERVICE:
SIMPLE
COM PLEX
LOADING AND RESTART

ERROR FEEDBACK (FOLLOWING
COMPLETION OF INPUT)

RESPONSE TO ID

INFORMATION ON NEXT PROCEDURE

RESPONSE TO SIMPLE INQUIRY FROM LIST

RESPONSE TO SIMPLE STATUS INQUIRY

RESPONSE TO COMPLEX INQUIRY IN
TABLE FORM

REQUEST FOR NEXT PAGE

RESPONSE TO "EXECUTE PROBLEM"

LIGHT PEN ENTRIES

DRAWINGS WITH LIGHT PENS

RESPONSE TO COMPLEX INQUIRY IN
GRAPHIC FORM

RESPONSE TO DYNAMIC MODELING

RESPONSE TO GRAPHIC MANIPULATION

RESPONSE TO USER INTERVENTION IN
AUTOMATIC PROCESS

"'MAXIMUM" RESPONSE TIME
(SECONDS)

0.1

3.0

2.0
5.0

15.0-60.0

2.0-4.0

-2.0

< 5.0

2.0

2.0

2.0-4.0

0.5-1.0

<15.0

1.0

0.1

2.0-10.0

2.0

4.0

December 1979 13

Installers of time-sharing systems report user
dissatisfaction in two situations where response time
variance is a factor. In the first case, when anew time-
sharing system is installed and the workload is light,
response times are low and users are pleased. As the
load increases, the response time will deteriorate to
normal levels and produce dissatisfaction. By slow-

Figure 9. Graph of time to complete tasks vs. output
variability for low volume and high volume. (L. H. Miller,
1 977)-'9

Figure 10. Graph of average response to post-test ques-
tionnaire vs. output variability for 1200 and 2400 baud
(L. H. Miller, 1977).'9

ing down the system when it is first installed, the
change is eliminated and users seem content. A sec-
ond case occurs when the load on a time-sharing
system varies substantially during the day. Users
become aware of the fast and slow periods and try to
cram their work into the fast periods. Although this
approach does help to balance the load, users tend to
make errors while working quickly to beat the crowd.
Anxiety is increased, complaints increase, and pro-
grammers or terminal users may even be unwilling to
work during the slow periods. By eliminating the
variance in response time, service is perceived to be
more reliable and one source of anxiety can be re-
duced.
In summary, response time is an intriguing issue

whose complexities have not yet been unraveled. We
are left with several conflicting design goals:

* Response time should be reduced under all condi-
tions.

* Response time should match the complexity and
cost of the command.

* Variance of response time should be reduced
even at the expense of some increase in mean
response time.

* System performance should not vary over time.

In an experiment studying the effect of system
response time on performance in a multi-parameter
optimization task, solution time increased signifi-
cantly with system response time.20 Subjects
modified five parameters with light pen touches till a
curve matched requirements. Each of the 30 subjects
performed the task with fixed system response times
of 0.16, 0.72, and 1.49 seconds. Figure 11 shows that
decreasing the response time from 1.49 to 0.72
seconds reduces the solution time for this task.

Figure 11. Solution time (T) versus System Response
Time 2SRT) for 30 subjects (Goodman and Spence,
1 978).2

COMPUTER14

Grossberg, Wiesen, and Yntema2l studied four
subjects performing 36 interactive tasks involving
calculations on numeric arrays. Response times were
varied from 1 to 4 to 16 to 64 seconds. As the response
time increased subjects became more cautious, used
fewer commands, and took longer time between com-

mands, but the total time consumed showed surpris-
ing invariance with respect to the response time in-
crease. The subjects changed their working style as

the response time increased by becoming more

cautious and by making heavier use of hard copy

printouts. The difference in results between this ex-

periment and the previous one may be a product of
the available commands, required tasks, or subject
experience.

A related aspect of response time is the thought
time of the terminal user. For complex decision-
making, there is some evidence that locking the ter-
minal for a short period, say 25 seconds in one pilot
study, may improve user performance on the decision
and increase user satisfaction. An open keyboard and
partial attention to the display can distract the users
and interfere with problem-solving while increasing

anxiety. The illusion of "dialog" may compel users to
keep their end of the "conversation" going. A
decision-making study22 with longer lockout times (5
and 8 minutes) revealed that subjects with no lockout
used twice as much computer time and, as might be
expected, the lockout groups expressed dissatisfac-
tion with restricted access. The high variance in per-

formance of the -20 subjects made it impossible to
assess the impact of lockout, although the highest
performance mean was achieved by the 5-minute
lockout group. Possibly if users perceive the com-

puter as a tool, they may be more willing to take their
time and reflect on decisions. If users feel they are in-

volved in a "dialog" in which they must respond
promptly, anxiety and poorer performance may

result. Maybe we should replace the term "dialog"
with "utilog" conveying the impression that the user
is utilizing the system as a tool.

Time-sharing vs. batch processing

As technological developments allowed program-

mers to use interactive terminals for preparing and
executing their programs, a controversy arose over

the relative merits of interactive usage and tradi-
tional batch submittal. Adherents of time-sharing
argued that waiting for processing by batch-oriented
computer systems was annoying, disruptive, and
time-consuming. Others felt that time-sharing en-

couraged sloppy and hasty programming, which in
turn led to more errors and poorer quality work.
Two of the earliest studies comparing on-line and

off-line processing were by Schatzoff, Tsao, and
Wiig29 and Gold.23 The former study showed a 50 per-

cent higher total cost for time-sharing, and a

50-percent greater elapsed time for batch, withno dif-
ference in computer time. More compilations were

made on-line, suggesting less time is spent in desk
checking. According to Gold,24 the "user's attitude

appears to be one of the variables which may in-
fluence the user's immediate behavior and usage of
computer systems." Both studies agreed that some
performance variations may be attributable to pro-
grammer and problem differences.
Smith25 examined the effects ofconventional batch

versus instant batch (less than 5 minutes). With
respect to elapsed time (time from the start of a prob-
lem to its completion) and student reaction, instant
surpassed conventional.
Summarizing five studies comparing on-line to off-

line problem solving (including the two mentioned
above), Sackman26'27 stated that time-sharing had a
20-percent advantage over batch in hours used,
whereas batch surpassed time-sharing with a
40-percent advantage in CPU time. In regard to cost,
neither mode outperformed the other. Sackman sug-
gested that "the comparison ... is becoming academic
as the contest converges toward interactive time-
sharing and fast or even instant batch." These
studies need to be reevaluated and redone since hard-
ware speeds and software capabilities have changed
substantially in the last decade.
As a result of experimentation with junior college

students, the use of time-sharing was recommended
to alleviate the high drop-out rate from the introduc-
tory computer science courses.28 The immediate feed-
back of time-sharing was seen as positively reinforc-
ing.
The decrease in literature comparing the two

modes of program development and the increase in
articles on time-sharing systems give the illusion
that the controversy has ended and the superiority of
on-line processing is accepted. But some managers
and researchers suggest that time-sharing mode en-
courages hasty program development and increases
the number of errors. They feel that the slower turn-
around of batch processing produces more careful
program design and thorough desk debugging.
In a related application of interactive systems, J.

V. Hansen29 investigated performance differences
for two management decision-making tasks. using
time-sharing and batch approaches. Both problems,
stochastic capital budgeting and product demand
forecasting, were not solvable by a mathematical
algorithm. Instead, they required heuristic ap-
proaches where feedback from each interaction
would suggest new decision rules. The results (Table
2) demonstrate that in this environment time-sharing

Table 2.
Decision-making performance averages using time-sharing

and batch modes (J. V. Hansen, 1976).29

GROUP A GROUP B
(BATCH/ON-LINE) (ON-LINE/BATCH)

(5 SUBJECTS) (5 SUBJECTS)

PROBLEM 1 82.0 88.4
(CAPITAL BUDGETING) (BATCH) (ON-LINE)

PROBLEM 2
(PRODUCT DEMAND 90.6 84.6

FORECAST) (ON-LINE) (BATCH)

15December 1979

access significantly improved the quality of the deci-
sions.
In short, the experimental results suggest that a

good time-sharing system is better than a bad batch
system. Correcting minor errors quickly in time-
sharing mode speeds productivity and reduces irrita-
tion. For more fundamental work, some program-
mers may abuse the rapid access of time-sharing,
make hasty patches, and produce poor code.
In all the experimental results, the influence of in-

dividual differences apparently played a major role.
The high variance in performance and conflicting
anecdotal evidence suggests that unmeasured factors
such as personalitymay influence preference and per-
formance. Whether or not a programmer wants to use
interactive equipment may be an important con-
sideration. Merely because many programmers,
perhaps even a majority, prefer interactive mode
does not mean that all programmers should utilize
that mode. Those individuals who feel more secure
with a deck ofkeypunch cards arejust as necessary to
an organization.
Many variables enter into a programmer's

preference for a particular computer communication
alternative. In an effort to identify specific personali-
ty traits influencing preference, Lee and Shneider-
man30 studied locus of control and assertiveness.
Locus of control focuses on the perception in-

dividuals have of their influence over events. Inter-
nally controlled individuals perceive an event as con-
tingent upon their own action, whereas externally
controlled people perceive a reinforcement for an ac-
tion as being more a result of luck, chance, or fate;
under the control of other powerful people; or un-
predictable.
Assertive behavior "allows an individual expres-

sion in a manner that fully communicates his per-
sonal desires without infringing upon the right of
others."31 Assertive individuals can state their feel-
ings; nonassertive people have difficulty doing so.

Table 3.
Preference scores and personality factors (Lee and

Shneiderman, 1978).3

TIME
BATCH SHARING TOTAL

0 1 2 3 4 MEAN OBSERVATIONS

LOCUS
DIMENSION:

INTERNAL 0 0 2 2 2 3.0 6

EXTERNAL 0 0 8 4 0 2.3 12
18

ASSERTIVENESS
DIMENSION:

LOW 0 0 5 3 0 2.4 8

HIGH 0 0 5 3 2 2.7 10
18

Manyprogrammers learneduse ofkeypunch equip-
ment before being introduced to time-sharing. It
would be less anxiety provoking for them to remain
with a mode of program entry which is familiar-i.e.,
keypunch-than to attempt on-line communication
with its many problems-e.g., signing on or possible
loss of an editing session. It seems that individuals
who view themselves as more effective and powerful,
or internally controlled, would master on-line interac-
tion with the computer, while those who see them-
selves as less powerful and not very independent or

effective, or externally controlled, would continue to
process by batch.

Likewise, more assertive programmers would not
let the intimidating terminal inhibit them from learn-
ing and using interactive equipment. They would be
able to ask for help when needed, thus promoting
their learning process. The nonassertive individual
might look for a means ofprogram entry which allows
least contact with others, including avoidance of
equipment which could require a great deal of help
and guidance during the familiarization stage.
Weinberg32 conjectures that "humble programmers

perform better in batch environments and assertive
ones will be more likely to shine on-line."
Subjects for our exploratory study were program-

mers from a Control Data Corporation installation,
which allows the choice of either card or terminal en-

try. Three questionnaires, one to measure locus of
control, one to ascertain assertiveness, and another
to determine on-line or off-line preference were

distributed via interoffice mail.
When the 18 responses were groupedby preference

scores (Table 3), the batch group did not differ
significantly from the interactive group on either per-
sonality dimension: locus of control or assertlveness.
However, when the sample was grouped by internal
locus/high assertive and external locus/low assertive
(Table 4), there was a significant difference in mean
preference scores. Confirming studies need to be car-

ried out with more subjects in a wide variety of pro-

gramming environments.
Although our findings in this exploratory study

showed mixed results, the import lies in the attempt
to identify variables entering into a programmer's

preference for either batch or time-sharing. If pro-

grammers are allowed to use the mode they prefer,
their performance and job attitude could improve. If

Table 4.
Average preference scores for personality groups (Lee

and Shnelderman, 1978).30

INTERNAL LOCUS/ EXTERNAL LOCUS/
HIGH ASSERTIVE LOW ASSERTIVE

M EAN
PREFERENCE 3.34 2.54
SCORE

VARIANCE 0.399 .0.108

NUMBER OF
SUBJECTS (TOTAL 4 6
NUMBER WAS 18)

16 COMPUTER

preference is affected by the type of task, the
availability of different modes may again improve
performance. When recruiting programmers for a
time-sharing environment, managers may find that
those who desire to work on-line will produce better
products in that environment than those who prefer
working in a batch environment.

Text editor usage

A rapidly growing mode of computer use is by way
of text editors, document preparation systems, and
word-processing equipment. These tools allow users
to construct files containing programs, alphanumeric
data, correspondence, or general textual information.
The diversity ofuser experience and the range ofuser
patterns is enormous. Sophisticated frequent users
differ from infrequent users, who are all very dif-
ferent from novice users. The variety ofhardware and
software environments further increases the choices
for text editor designers and users.
Experimental comparisons of text editors are pro-

viding information about usage patterns, suggesting
directions for development projects, and aiding
development of a cognitive model. Walther and
O'Neil17 report on an experiment with 69 undergrad-
uate computer science students: 41 percent hadnever
used an on-line system, 38 percent had some ex-
perience, and 22 percent had much experience. The
three experimental factors were flexibility (one ver-
sion of the editor was inflexible; the second version
permitted abbreviations, default values, user
declaration of synonyms, a variety of delimiters, and
other features), display device (cathode ray tube and
impact teletype, both at 10 cps), and attitude (three
subjective tests indicating attitude towards com-
puters and anxiety). The subjects performed 18 cor-
rections to a text file while errors were tabulated and
timing data was collected. Experienced users worked
faster with the flexible version, but inexperienced
users were overwhelmed by the flexible version. The
inexpenenced users made fewer errors and worked
faster with the inflexible version. The impact
teletype users worked faster and made fewer errors,
suggesting that the feedback from the impact may
facilitate performance. Those with negative at-
titudes made more errors. Walther and O'Neil offer
interaction effects, conjectures, potential design
rules, and research directions.
Sondheimer33 describes an experiment with more

than 60 professional programmer users of a text
editor. With active participation of the subjects, five
features were chosen for addition to the text editor.
Announcements, documentation, and training were
provided, but after some initial testing, usage of the
features dropped off substantially. Sondheimer con-
cludes that "the results of the experiment seem to in-
dicate the persistence of individual usage habits."
This experiment has implications which go beyond
theuse of text editors, but it does emphasize that text
editing is a skill which is deeply ingrained in the
user's mind and difficult to change. Sondheimer con-

jectures that novice users of the text editor would
more frequently employ the newly added features.
Card34 and Card, Moran, and Newell3536 provide

detailed reports on text editor experiments and offer
cognitive models of human performance. Their ex-
periments emphasize in-depth study of a limited
number of highly trained subjects. Subjects per-
formed manuscript editing tasks with a variety of
line and display editors while precise timing
measurements were made automatically. Text
editing is characterized as a "routine cognitive skill"
which "occurs in situations that are familiar and
repetitive, and which people master with practice and
training, but where the va,riability in the task, plus
the induced variability arising from error, keeps the
task from becoming completely routine and requires
cognitive involvement. '35 A cognitive model based
on goals, operators, methods, and selection rules
(GOMS model) is proposed and is claimed to repre-
sent the performance of expert users. User style in
locating a line (by jumping ahead a given number of
lines or by locating a character string) and correcting
text (by substitution or by subcommands for modify-
ing characters in a line) was compared among sub-
jects with the goal of predicting behavior in future
situations.
Card, Moran, and Newell35 use data from 28 sub-

jects, on 10 systems, and over 14 task types to sup-
port the keystroke model of editor usage, suggesting
that task performance time can be predicted from a
unit task analysis and the number of keystrokes re-
quired. This model has strict requirements: "The
user must be an expert; the task must be a routine
unit task; the method must be specified in detail; and
the performance must be error-free. " The timing data
from a variety of users and systems reveals impor-
tant differences, such as the speed advantage of
display editors over line editors (about twice as fast).
The timing data from Card33 demonstrates the clear
speed and accuracy advantages of a mouse for selec-
ting text, when compared with a joystick, step keys,
or text keys.

Error handling

The error-checking and handling components of an
on-line system may occupy the majority of the pro-
gramming effort. Well-designed diagnostic facilities
and error messages can make a system appealing.
When user entries do not conform to expectations,
diagnostic messages should guide the user in enter-
ing correct commands. Messages should be brief,
without negative tones, and should be constructive.
Avoid ringing bells and bold messages which may
embarrass the user. Instead of meaningless
messages like "ILLEGAL SYNTAX," try to in-
dicate where the error occurred andwhatmay be done
to set it right. If possible, allow users to modify the in-
correct command rather than forcing complete reen-
try. Command and programming languages should
be designed so that a common error will not be inter-
preted as a valid command.

December 1979 17

Error messages should be included in the system
documentation, so that users know what to expect
and so that designers cannot hide sloppy work in the
system code.
The system should permit easy monitoring of error

patterns so that system design can be modified in
response to frequent errors. Simple tallies of error oc-
currences may suggest modifications of error
messages, changes to command languages, or im-
proved training procedures.
An intriguing issue in error handling is whether the

error message should be issued immediately or when
the end-of-line code (usually ENTER or RETURN
key) is hit. A nicely designed study37 suggests that
human performance improves if errors are issued im-
mediately and that the disruption of user, thought
processes by immediate interruption is not a serious
impediment. Seventy undergraduate subjects in this
experiment had to list 25 of'the 50 states in the USA
and list 20 permutations of "abcde" such that "c" oc-
curs somewhere before the "d. " The results of the per-
mutation task strongly favor immediate interrup-
tion, but the results of the states task were mixed
(Table 5). A powerful advantage of immediate inter-
ruption is that changes can be made simply by replac-
ing the incorrect character.
A central problem in handling errors is providing

the user with the right kind of information. Ex-
perienced frequent users need only an indication that
an error has occurred, such as a locked keyboard, a
light, or a special character. As soon as the error has
been brought to their attention, they will probably
recognize it and be prepared to make an immediate
correction. Typical users familiar with the operations
or semantics of the domain merely require a brief note
to remind them of proper syntax or list of available
options. Novice users whose semantic knowledge is
shallow need more than prompting on syntax; they
need explanations of possible commands and the re-
quired syntax. Since even experts may forget or be
novices with respect to some portions of a system, a
simple scheme based on recording user experience
levels is unworkable. Probably the best approach is to
give control to the user and provide options-maybe
"?"for a brief prompt about syntax, a second"?" for

Table 5.
Average performance results to error correction styles (Segal, 1975).37

STATES TASK PERMUTATION TASK

ERROR CORRECTION METHOD
IMMEDIATE END IMMEDIATE END

PERCENT ERROR
KEYPRESSES 2.55 1.99 4.54 4.48

TOTAL TIME
(SECONDS) 234.0 300.0 408.8 546.4

TWO CONSECUTIVE
RESPONSES IN 1.17 1.17 1.00 2.77
ERROR

NUMBER OF
RESPONSES IN 4.29 3.77 4.46 4.83
ERROR

a brief prompt about semantics, and a third"?" for a
more detailed explanation. Users could strike "??" or
"???" initially to get complete information right away.
This question mark scheme is a simple approach to

what are generally referred to as "HELP" systems.
Typing "HELP" or merely "H" the user can get
some information; "HELP FILES," "HELP
EDIT," "HELP FORTRAN," etc., may invoke more
extensive topic-oriented HELP facilities. "HELP
HELP" should provide information about available
facilities. The PLATO instructional system offers a
special HELP key which offers appropriate guidance
for the material currently on the screen.

Practitioner's summary

Do not violate the bounds of human performance
imposed by limited short-term memory capacity.
Design interactions in a modular fashion so that
closure can be obtained providing satisfaction and
relief for users. Be sensitive to user anxiety and
desire for control. Provide novice users with the
satisfaction of accomplishment and a sense of
mastery, but avoid patronizing comments. Consider
response time'requirements as part of the design, not
as an uncontrollable aspect of system performance.
Respect user preferences in choice of batch or in-

teractive program development. Accept the per-
sonality and cognitive style differences among in-
dividuals and do not attempt to make everyone
behave as you do.
Devote substantial energy to error design. Make

messages constructive and give guidance for using
the system in a courteous nonthreatening way.
Prepare all messages as part of the system design and
make them available in user manuals. Give users con-
trol over what kind of and how much information
they wish at every point in the interaction. Do not re-
quire them to identify themselves at the start as
novices. HELP facilities should be available for every
command.
Respect and nurture the user community. Listen to

their gripes with sympathy and be willing to modify
your system to accommodate their requests. Remem-
ber, the goal is not to create a computerized system,
but to serve the user.

Acknowledgments

This article was adapted from portions of the forth-
coming book, Software Psychology: Human Factors
in Computer and Information Systems (Winthrop
Publishers). The support for computer resources was
provided by the University of Maryland Computer
Science Center. Helpfulcomments on earlier drafts of
this paper were provided byJim Foley, John Gannon,
Tom Love, G. Michael Schneider, John C. Thomas,
Jr., and Jerry Weinberg.

References

1. Henry Dreyfuss, Designing for People, Simon and
Schuster, New York, 1955.

COMPUTER18

2. R. S. Nickerson, "Man-Computer Interaction: A
Challenge for Human Factors Research," IEEE
Trans. Man-Machine Studies, MMS-10, 1969, p. 164.

3. J. L. Bennett, "The User Interface in Interactive
Systems," in C. Cuadra(ed.), Annual Review ofInfor-
mation Science and Technology, Vol. 7, American
Society for Information Science, Washington, D.C.,
1972, pp. 159-196.

4. J. Martin, Design of Man-Computer Dialogues,
Prentice-Hall, Englewood Cliffs, N. J., 1973.

5. L. A. Miller and J. C. Thomas, Jr., "Behavioral Issues
in the Use of Interactive Systems," Int'l J. Man-
Machine Studies, Vol.9, 1977, pp. 509-536.

6. B. Shneiderman, "Improving the Human Factor
Aspect of Database Interactions," ACM Trans. on
Database Systems, Vol. 3, No. 4, Dec. 1978, pp.
417-439.

7. W. J. Hansen, "User Engineering Principles for In-
teractive Systems," AFIPS Conf. Proc., Vol. 39,1971
FJCC, AFIPS Press, Montvale, N. J., 1971, pp.
523-532.

8. A. I. Wasserman, "The Design of Idiot-Proof Interac-
tive Systems," AFIPS Conf. Proc., Vol. 42,1973 NCC,
AFIPS Press, Montvale, N. J., 1973, pp. M34-M38.

9. R. W. Pew and A. M. Rollins, "Dialog Specification
Procedure," Bolt Beranek and Newman, Report No.
3129, Revised Ed., Cambridge, Mass., 1975.

10. Brian R. Gaines and Peter V. Facey, "Some Ex-
perience in Interactive System Development and Ap-
plication," Proc. IEEE, Vol. 63, No. 6, June 1975, pp.
894-911.

11. D. R. Cheriton, "Man-Machine Interface Design for
Time-Sharing Systems," Proc. ACMNat'l Conf., 1976,
pp. 362-380.

12. F. Gebhardt and I. Stellmacher, "Design Criteria for
Documentation Retrieval Languages,"J. Am. Soc. In-
formation Science, Vol. 29, No. 4, July 1978, pp.
191-199.

13. M. W. Turoff, J. L. Whitescarver, and S. R. Hiltz, "The
Human Machine Interface in a Computerized Con-
ferencing Environment," Proc. IEEE Conf on In-
teractive Systems, Man, and Cybernetics, 1978, pp.
145-157.

14. T. C. S. Kennedy, "The Design of Interactive Pro-
cedures for Man-Machine Communication," Int'l J.
Man-Machine Studies, Vol. 6, 1974, pp. 309-334.

15. J. D. Foley and V. L. Wallace, "The Art of Graphic
Man-Machine Conversation," Proc. IEEE, Vol. 62,
No. 4, Apr. 1974, pp. 462-471.

16. StephenE. Engel and RichardE. Granda, "Guidelines
for Man/Display Interfaces," IBM Poughkeepsie
Laboratory Technical Report TR 00.2720, Dec. 19,
1975.

17. G. H. Walther and H. F. O'Neil, Jr., "On-line User-
Computer Interface-the Effect of Interface Flexibili-
ty, Terminal Type, and Experience on Performance,"
AFIPS Conf Proc., Vol. 43, 1974 NCC, pp. 379-384.

18. Robert B. Miller, "Response Time in Man-Computer
Conversational Transactions," AFIPS Conf. Proc.,
Vol. 33, 1968 SJCC, pp. 267-277.

19. L. H. Miller, "A Study in Man-Machine Interaction,"
AFIPS Conf. Proc., Vol. 46, 1977 NCC, pp. 409-421.

20. T. Goodman and R. Spence, "The Effect of System
Response Time on Interactive Computer-Aided Prob-
lem Solving," Proc. ACM SIGGRAPH '78 pp.
100-104.

21. Mitchell Grossberg, Raymond A. Wiesen, and Douwe
B. Yntema, "An Experiment on Problem Solvingwith
Delayed Computer Responses," IEEE Trans.
Systems, Man, and Cybernetics, Vol. SMC-6, No. 3,
Mar. 1976, pp. 219-222.

22. B. W. Boehm, M. J. Seven, and R. A. Watson, "In-
teractive Problem-Solving-An Experimental Study
of 'Lockout' Effects," "AFIPS Conf Proc., Vol. 36,
1971 SJCC, pp. 205-210.

23. M. Schatzoff, R. Tsao, and R. Wiig, "An Experimental
Comparison of Time-Sharing and Batch Processing,"
Comm. ACM, Vol. 10, No. 5, May 1967, pp. 261-265.

24. M. M. Gold, "Time-Sharing and Batch Processing: An
Experimental Comparison of their Value in a Problem-
Solving Situation," Comm. ACM, Vol. 12, No. 5, May
1969, pp. 249-259.

25. L. B. Smith, "A Comparison of Batch Processing and
Instant Turnaround," Comm. ACM, Vol. 10, No. 8,
Aug. 1967, pp. 495-500.

26. H. Sackman, "Experimental Analysis of Man-
Computer Problem-Solving,"Human Factors, Vol.12,
1970, pp. 187-201.

27. H. Sackman, Man-Computer Problem Solving, Auer-
bach Publishers Inc., Princeton, N. J., 1970.

28. Michel Boillot, "Computer Communication Modes
and their Effect on Student Attitudes Towards Pro-
gramming," Nova University thesis, available
through ERIC ED 098 957, Apr. 1974.

29. J. V. Hansen, "Man-Machine Communication: AnEx-
perimental Analysis of Heuristic Problem-Solving
under On-Line and Batch-Processing Conditions,"
IEEE Trans. Systems, Man and Cybernetics, Vol. 6,
No. 11, Nov. 1976, pp. 746-752.

30. Jeanne M. Lee and B. Shneiderman, "Personality and
Programming: Time-Sharing vs. Batch Processing,"
Proc. ACMNat'l Conf., 1978, pp. 561-569.

31. B. J. Winship and J. D. Kelly, "A Verbal Response
Model of Assertiveness," Counseling Psychology,
Vol. 23, No. 3, 1976, pp. 215-220.

32. G. M. Weinberg, The Psychology of Computer Pro-
gramming, Van Nostrand Reinhold, N. Y., 1971.

33. Norman Sondheimer, "On the Fate of Software
Enhancements, AFIPS Conf Proc., Vol. 48, 1979
NCC, pp. 1043-1048.

34. Stuart K. Card, "Studies in the Psychology of Com-
puter Text Editing," Xerox Palo Alto Research
Center, SSL-78-1, San Jose, Calif., Aug. 1978.

35. Stuart K. Card, Thomas P. Moran, and Allen Newell,
"The Keystroke-Level Model of User Performance
Time with Interactive Systems" (submitted for
publication).

36. Stuart K. Card, Thomas P. Moran, and Alan Newell,
"Computer Text-Editing: An Information-Processing
Analysis of a Routine Cognitive Skill," Cognitive
Psychology (to appear).

37. Barr Zion Segal, "Effects of Method of Error Inter-
ruption on Student Performance at Interactive Ter-
minals," University of Illinois Department of Com-
puter Science Technical Report UIUCDCS-R-75-727,
May 1975.

Ben Shneiderman, an associate pro-
fessor at the University of Maryland,
has produced five books (including the
forthcoming Software Psychology)
plus 50 articles on data-base manage-
ment, programming, and human fac-
tors. After receiving his PhD in com-
puter science-from the State University
of New York at Stony Brook, he spent
three years teaching in the Department

of Computer Science at Indiana University, before coming
to the University of Maryland in 1976.

December 1979 19

