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Abstract

Background: Ebolavirus species Zaire (ZEBOV) causes highly lethal hemorrhagic fever, resulting in the death of 90% of
patients within days. Most information on immune responses to ZEBOV comes from in vitro studies and animal models. The
paucity of data on human immune responses to this virus is mainly due to the fact that most outbreaks occur in remote
areas. Published studies in this setting, based on small numbers of samples and limited panels of immunological markers,
have given somewhat different results.

Methodology/Principal Findings: Here, we studied a unique collection of 56 blood samples from 42 nonsurvivors and 14
survivors, obtained during the five outbreaks that occurred between 1996 and 2003 in Gabon and Republic of Congo. Using
Luminex technology, we assayed 50 cytokines in all 56 samples and performed phenotypic analyses by flow cytometry. We
found that fatal outcome was associated with hypersecretion of numerous proinflammatory cytokines (IL-1b, IL-1RA, IL-6, IL-
8, IL-15 and IL-16), chemokines and growth factors (MIP-1a, MIP-1b, MCP-1, M-CSF, MIF, IP-10, GRO-a and eotaxin).
Interestingly, no increase of IFNa2 was detected in patients. Furthermore, nonsurvivors were also characterized by very low
levels of circulating cytokines produced by T lymphocytes (IL-2, IL-3, IL-4, IL-5, IL-9, IL-13) and by a significant drop of
CD3+CD4+ and CD3+CD8+ peripheral cells as well as a high increase in CD95 expression on T lymphocytes.

Conclusions/Significance: This work, the largest study to be conducted to date in humans, showed that fatal outcome is
associated with aberrant innate immune responses and with global suppression of adaptive immunity. The innate immune
reaction was characterized by a ‘‘cytokine storm,’’ with hypersecretion of numerous proinflammatory cytokines, chemokines
and growth factors, and by the noteworthy absence of antiviral IFNa2. Immunosuppression was characterized by very low
levels of circulating cytokines produced by T lymphocytes and by massive loss of peripheral CD4 and CD8 lymphocytes,
probably through Fas/FasL-mediated apoptosis.
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Introduction

Ebolavirus (EBOV) and Marburgvirus (MARV) are among the

most deadly human pathogens, causing a severe hemorrhagic

fever syndrome in both humans and non human primates [1–2].

EBOV is subdivided into five species with different pathogenicities

[3]. Zaire ebolavirus (ZEBOV), the most lethal species (case-fatality

rate up to 90%), caused numerous human outbreaks between 1976

and 2008 in Democratic Republic of Congo, Republic of Congo

(RC) and Gabon [4–9]. Sudan ebolavirus (SEBOV, case-fatality rate

about 50%) has caused three documented outbreaks in Sudan and

one in Uganda [10–14]. Côte d’Ivoire ebolavirus (CIEBOV) has been

linked to a single, non fatal human case [15–16], while the newly

discovered Bundibugyo ebolavirus (BEBOV) caused an outbreak with

a 25% case-fatality rate in 2007 in Uganda [17]. Finally, Reston

ebolavirus (REBOV), which has caused outbreaks in non human

primates and swine in the Philippines, appears to be non

pathogenic for humans [18–20].

EBOV and MARV initially replicate massively in macrophages

and dendritic cells (DC), then spread rapidly to all vital organs,

infecting endothelial cells, epithelial cells, hepatocytes, and other

cell types [21–25]. Infection by MARV and the most lethal EBOV

species, described virtually exclusively in vitro and with experimen-

tal animal models, is associated with high-level viremia, abundant

proinflammatory cytokine and chemokine production, massive

bystander lymphocyte apoptosis, and widespread focal tissue

destruction, resulting in increased endothelial cell permeability,

multiorgan failure, and severe clotting disorders, and culminating
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in a final septic shock-like syndrome [26–29]. Fatal outcome in

experimentally infected mice and non human primates is

associated with impairment of innate immune responses, including

rapid and important secretion of certain inflammatory mediators

and the absence of type I interferon (IFN) production, and also

with profound suppression of adaptive immune responses,

including impaired humoral responses and B and T lymphocyte

apoptosis [30–35].

Most information on filovirus pathogenesis comes from in vitro

studies and experimental models. However, experimentally

infected animal models fail to reproduce certain features of

human ZEBOV infection. For instance, rodent models do not

exhibit hemorrhagic manifestations and often fail to develop

disseminated intravascular coagulation. Lymphocyte apoptosis is

consistently observed in mice infected with an adapted variant of

ZEBOV but has not been reported in ZEBOV-infected guinea

pigs despite histological evidence in the spleen or lymphoid organs

of fatally infected animals [26,36–38]. Non human primate models

best mimic fatal human infection, but they do not reproduce the

survival of a small percentage of patients [39–43]. The paucity of

data on human immune responses to ZEBOV is largely due to the

fact that most outbreaks occur in remote areas where the facilities

required to handle and process clinical samples are lacking. Only

four studies of human filovirus infection have been reported so far,

only two of which focused on ZEBOV. These two studies were

small, involved few immunological markers, and gave conflicting

results. The first study involved 9 patients infected during the 1995

Kikwit outbreak (7 fatal cases and 2 survivors), and showed slightly

higher serum levels of IFN-c, IFN-a, TNF-a, IL-2 and IL-6 in the

non survivors than in the survivors, suggesting that stronger

immune activation was associated with fatal outcome [44]. The

second study, involving 12 patients infected during the 1996

Gabon outbreaks (8 fatal cases and 4 survivors), failed to confirm

the link between elevated IFN-a, TNF-a or IL-2 secretion and

fatal outcome [45–48]. This latter study suggested that fatal

outcome was associated with generalized immune suppression,

including intravascular apoptosis, a lack of ZEBOV-specific IgG

production, and defective early inflammatory responses when

compared to non fatal and asymptomatic infection. However,

evidence of lymphocyte apoptosis was based on DNA fragmen-

tation in peripheral blood mononuclear cells (PBMC) and reduced

CD3, CD8, IFN-c, IL-2 and IL-4 mRNA levels, which cannot

distinguish apoptosis from necrosis or anergy, or identify the

different target cell subsets. Innate immunity has only been

investigated in 8 fatal cases and 4 survivors. Because of the known

variability of human immune responses to a given pathogen, and

differences in immune status at the time of infection, due for

example to concomitant infections by other pathogens, larger

studies are needed to observe statistically meaningful trends.

To further characterize human immune responses during the

acute phase of ZEBOV infection, we analyzed a unique collection

of 56 blood samples collected during the five outbreaks that

occurred between 1996 and 2003 in Gabon and RC.

Materials and Methods

Ethics Statement
This study was implemented as part of an Ebola outbreak

control operation coordinated by Ministries of Health (MoH) of

Gabon and RC, and therefore no ethics committee approval was

deemed necessary, as it is usually the case in this kind of

emergencies. The patients described here are anonymous. Blood

samples were collected by a team from CIRMF (Centre

International de Recherches Médicales de Franceville), Gabon,

participating in the international response to the different

outbreaks along with healthcare workers from MoH of Gabon

and RC, the World Health Organization (WHO), Médecins sans

Frontières, the Centers for Disease Control and Prevention (CDC),

Atlanta, USA, and the National Microbiology Laboratory,

Winnipeg, Canada. Blood samples were collected at the patient’s

home or in hospital isolation wards, with WHO and MoH

authorizations (File S1 and File S2), and with verbal consent from

the patient. The two study protocols were reviewed and approved

together by the scientific committee of CIRMF.

Outbreaks and patients
All suspected cases, identified by the international medical

teams, were isolated, sampled and received symptomatic treatment

and palliative care. Blood samples were collected during the acute

phase from patients with laboratory-confirmed ZEBOV infection,

during all the documented ZEBOV outbreaks that occurred in

Gabon and RC between 1996 and 2005. The first outbreak hit the

villages of Mayibout I and II, located in north-eastern Gabon,

from January to February 1996, causing 10 non fatal clinical cases

and 21 deaths. The second outbreak caused 45 deaths among 60

cases between October 1996 and March 1997 in the Booué area,

,150 km southwest of Mayibout. The infection spread to several

villages around Booué, then to Libreville, where 15 cases were

recorded. The third outbreak occurred between October 2001 and

May 2002 in the Mekambo area of Gabon and the Mbomo area of

RC, ,150 km east of Mayibout. This outbreak in fact consisted of

several independent epidemic chains of human transmission that

arose from infected animal carcasses (mainly chimpanzees and

gorillas). A total of 207 human cases (58 survivors and 149 deaths)

were recorded. There were 15 survivors and 128 deaths recorded

during the third outbreak which again affected the region of

Mbomo in RC, between December 2002 and May 2003. This

outbreak had two independent sources, both due to handling of

animal carcasses, one in Yembelengoye village and one in Mvoula,

a gold-digger camp located further east, and mainly affected

Author Summary

Ebolavirus, especially the species Zaı̈re (ZEBOV), causes a
fulminating hemorrhagic fever syndrome resulting in the
death of most patients within a few days. In vitro studies
and animal models have brought some insight as to the
immune responses to ZEBOV infection. However, human
immune responses have as yet been poorly investigated,
mainly due to the fact that most outbreaks occur in
remote areas of central Africa. Published studies, based on
small numbers of biological samples have given conflicting
results. We studied a unique collection of 50 blood
samples obtained during five outbreaks that occurred
between 1996 and 2003 in Gabon and Republic of Congo.
We measured the plasma levels of 50 soluble factors
known to be involved in immune responses to viral
diseases. For the first time, using a cell staining technique,
we analyzed circulating lymphocytes from ZEBOV-infected
patients. We found that fatal outcome in humans is
associated with aberrant innate immunity characterized by
a ‘‘cytokine storm,’’ with hypersecretion of numerous
proinflammatory mediators and by the noteworthy
absence of antiviral interferon. The adaptive response is
globally suppressed, showing a massive loss of CD4 and
CD8 lymphocytes and the immune mediators they
produce. These findings may have important pathological
and therapeutic implications.
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Mbomo and Kelle. Finally, the last outbreak affected the region of

Mbomo, causing 6 deaths among 35 cases between October and

December 2003. Initial cases occurred in Mbanza, a village

located about 30 km north of Mbomo.

Biological samples
Upon collection, blood samples were immediately transported

to CIRMF. Plasma and sera were separated by centrifugation and

stored at 280uC until use. When enough blood was available,

PBMC were separated from whole blood by density gradient

centrifugation on lymphocyte separation medium (Eurobio) at

2300 rpm for 20 min at room temperature, then washed with

phosphate buffered saline (PBS)/2% fetal calf serum (FCS), and

cryopreserved in FCS containing 10% DMSO in liquid nitrogen

in CIRMF secure facilities.

Thirty control plasma samples were randomly selected among

4,349 samples collected from healthy individuals throughout

Gabon during a previous study [49]. These individuals were

themselves randomly selected among the Gabonese rural popu-

lation excluding children and elderly persons (more than 65 years).

All controls were native Gabonese.

ZEBOV infection was confirmed by detection of circulating

antigens with reagents kindly provided by the CDC, Atlanta.

Assays of circulating cytokines, chemokines and growth
factors
Levels of 50 cytokines, chemokines and growth factors were

measured in plasma samples by using Luminex technology (Bio-

Rad). Two kits, the Bio-plex human cytokine 27-plex assay and the

Bio-plex human cytokine 23-plex assay (Bio-Rad), were used as

recommended by the manufacturer. The target cytokines were

interleukin-1b (IL-1b), IL-1 receptor antagonist (IL-1RA), IL-2,

IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15,

IL-17, eotaxin, basic fibroblast growth factor (FGF-basic),

granulocyte colony-stimulating factor (G-CSF), granulocyte mac-

rophage colony-stimulating factor (GM-CSF), IFN-c, IFN-induc-

ible protein 10 (IP-10), monocyte chemoattractant protein-1

(MCP-1), macrophage inflammatory protein-1a (MIP-1a), MIP-

1b, platelet-derived growth factor-bb (PDGF-bb), regulated-on-

activation normal T-cell expressed and secreted (RANTES),

tumor necrosis factor-a (TNF-a), and vascular endothelial growth

factor (VEGF) for the 27-plex assay; and Il-1a, IL-2Ra, Il-3, Il-

12p40, IL-16, IL-18, cutaneous T cell attracting chemokine

(CTACK or CCL27), growth regulated oncogene alpha (GRO-

alpha or CXCL1), hepatocyte growth factor (HGF), intracellular

adhesion molecule 1 (ICAM-1), IFN-a2, leukemia inhibitory

factor (LIF), MCP-3 (or CCL7), macrophage colony-stimulating

factor (M-CSF), monokine induced by interferon-gamma (MIG or

CXCL9), nerve growth factor-b (NGF-b), stem cell factor (SCF),

stem cell growth factor-b (SCGF-b), SDF-1a (or CXCL12), tumor

necrosis factor-b (TNF-b), TNF-related-apoptosis-induced-ligand

(TRAIL) and vascular cell adhesion molecule 1 (VCAM-1) for the

23-plex assay. Briefly, 25 mL of plasma was diluted 1:4 and

incubated with anti-cytokine antibody-coupled beads for 1 h. All

incubations were performed at room temperature. Between each

step, the complexes were washed three times in wash buffer (Bio-

Rad) using a vacuum manifold. The beads were then incubated

with a biotinylated detector antibody for 1 hour, before incubation

with streptavidin-phycoerythrin for 30 min. Finally, the complexes

were resuspended in 125 mL of detection buffer and 200 beads

were counted during acquisition in the Luminex 200 device (Bio-

Rad). Mean fluorescence intensity was used to calculate final

concentrations in pg/mL.

PBMC phenotyping
Cryopreserved PBMCwere rapidly thawed in a 37uCwater bath,

washed three times and incubated overnight at 37uC in RPMI 1640

culture medium (Life Technologies, UK) with 10% heat-inactivated

FCS (full RPMI-10% FCS), 1% penicillin-streptomycin, 1% non

essential amino acids, and 1 MHEPES. The cells were then washed

in RPMI medium, adjusted to a density of 16106 cells/mL, and

cultured for 18 hours before harvesting and a further wash in

RPMI. Approximately 16106 cells were labeled for 20 min at room

temperature with anti CD3-FITC, CD4-PE, CD8-PC7 and CD95-

PC5 antibodies (Beckman-Coulter, Geneva, Switzerland). The cells

were washed and resuspended in PBS 2% FCS, then 100,000 events

were analyzed with an FC500 four-color flow cytometer (Beckman

Coulter). Results were analyzed with CXP software (Beckman

Coulter). PBMC from three healthy individuals living in rural areas

of Gabon who were sampled at the time of the outbreak served as

controls.

Statistical analysis
Student’s t test or the Mann-Whitney-Wilcoxon test was used to

compare values in patient groups and controls. STATA software

version 9.0 (Stata Corporation, College Station, USA) was used,

and statistical significance was assumed when p,0.05.

Results

Levels of circulating cytokines, chemokines and growth
factors
The patients were subdivided according to clinical outcome

(survivors, S, and deceased, D) and the number of days between

symptom onset and sampling (early, S1 and D1; late, S2 and D2).

S1 and D1 samples were collected 1–4 days after symptom onset;

S2 and D2 were collected $5 days after symptom onset (Table

S1). Given that disease course in all fatal cases lasted 6–7 days, D2

group contained patients in their last 2–3 days before death.

Levels of the following soluble mediators did not differ

significantly between the patient population (S1, S2, D1, D2)

and the controls: IFN-a2, IFN-c, IL-7, IL-12p40, IL-12p70, IL-
17, IL-18, TNF-a, TNF-b, TRAIL, FGF-basic, LIF, MIG, MIP-

1a, MCP-3, SDF-1a, IL-2ra, G-CSF, GM-CSF, VEGF, PDGF-

bb, SCGF-b, ICAM1, VCAM1, RANTES, IL-1a, HGF, b-NGF,

SCF and CTACK (Figure S1).

The only significant differences between S1/D1 and controls

were higher levels of IL-6, IL-8, MCP-1, M-CSF, MIF (only D1)

and IP-10 in the patients (p,0.05) (Figures 1 and 2), while the only

significant differences between S1 and D1 were higher IL-8, MCP-

1, and MIF levels in non survivors than in survivors (p,0.05)

(Figures 1, 2 and 3).

Somewhat surprisingly, the only significant differences between

S1 and S2 were higher values of IL-8, MIF and GRO-a in the

later samples (p,0.05).

By contrast, marked differences in the levels of several cytokines,

chemokines and growth factors were observed between D1 and

D2. We also found significant differences between the control

samples and D2, and between D2 and S2. Circulating levels of the

inflammatory cytokines IL-1b, IL-1RA, IL-6 and IL-16 were

significantly (p,0.05) higher in D2 samples than in controls, S1,

S2 and D1 samples (Figure 1). Levels in D2 were higher than S1 or

controls for IL-8 and IL-15. Levels of all these cytokines were

between 5 and 1,000 times higher in D2 samples than in controls.

D2 samples contained very high levels of IL-1RA (mean 4.8 ng/

mL, SD 5.5 ng/mL; 10 times the control value), IL-6 (mean

1.2 ng/mL, SD 1.6 ng/mL; 100 times the control value), and IL-8

(mean 2.4 ng/mL, SD 4.2 ng/mL; 1000 times the control value)

Zaire Ebola Virus Immune Responses
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(Figure 1). Similarly, levels of the chemokines MIP-1a, MIP-1b,

MIF, IP-10, GRO-a and eotaxin were significantly (p,0.05)

higher in D2 samples than in controls, S1, S2 and D1 samples

(Figure 2). Levels in D2 were higher than S2 or controls for MCP-

1 and M-CSF. Again, levels of these chemokines were between 5

and 1,000 times higher in D2 samples than in controls. The

following two chemokines were found at very high levels in D2

samples: MCP-1 (mean 1.3 ng/mL, SD 1.4 ng/mL; 500 times the

control value) and IP-10 (mean 7.9 ng/mL, SD 5.9 ng/mL; 1000

times the control value).

Levels of circulating cytokines mainly produced by T lympho-

cytes (IL-2, IL-3, IL-4, IL-5, IL-9, IL-13) were either similar or

significantly lower (p,0.05) in surviving and in non surviving

patients than in the controls, especially in early samples (Figure 3).

Levels of cytokines did not differ significantly between different

outbreaks, ruling out any temporal bias (Data not shown).

PBMC phenotyping results
The samples used in this part of the study, including those from

healthy individuals, were all obtained during the 2001 ZEBOV

outbreak in Gabon.

Frozen PBMC from two healthy controls, three patients

sampled 0–1 days before death, one survivor sampled 5 days

after symptom onset, and three survivors sampled two weeks after

recovery were analyzed by flow cytometry. Positive gating for

lymphocytes based on forward and side scatter was followed by

CD3+CD4+ and CD3+CD8+ gating, and specific populations

were further defined by using antibodies specific for CD95. The

Figure 1. Circulating proinflammatory cytokines upregulated in fatal (red plots, D) and non fatal (green plots, S) cases of clinical
ZEBOV infection. Fatal and non fatal cases were each subdivided into two groups according to the interval between symptom onset and blood
sampling, as follows: S1 and D1 sampled 1–4 days after symptom onset, S2 and D2 sampled$5 days after symptom onset. Given that disease course
in all fatal cases lasted 6–7 days, D2 group contains patients sampled in the last 2–3 days before death. Cytokine levels were compared with those
found in 30 randomly selected healthy volunteers (blue plots). Results are shown as mean values in each group, and the bars on the plots indicate the
standard errors. Asterisks (*) indicate statistically significant differences between patients and healthy controls (p,0.05). Symbols { indicate
statistically significant differences between survivors and fatal cases (p,0.05).
doi:10.1371/journal.pntd.0000837.g001
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results are reported as the percentage of PBMC found in each

gate.

As expected, the percentages of CD3+CD4+ and CD3+CD8+

cells in the two healthy controls were normal (respectively 43.6%

and 22.4%) and similar to those both in the survivor sampled

during the acute phase (46.2% and 24.1% respectively) and the

three survivors sampled after recovery (mean: 36.6% and 17.4%,

respectively, Figure 4). By contrast, the percentages of these two

lymphocyte populations in the three fatally infected patients were

drastically lower than in the controls and survivors: 9.4%

CD3+CD4+ cells and 6% CD3+CD8+ cells (Figure 4).

These data were compatible with the massive lymphocyte death

observed elsewhere in experimentally infected animals and in vitro.

In order to identify the underlying mechanisms during human

ZEBOV infection, we determined the percentages of CD3+

CD4+ and CD3+CD8+ cells also expressing CD95 (Fas), a specific

surface marker of apoptosis. CD3+CD4+CD95+ and CD3+

CD8+CD95+ cells represented respectively 54.1% and 75.8% of

Figure 2. Upregulated circulating chemokines in fatal (red plots, D) and non fatal (green plots, S) cases of clinical ZEBOV infection.
doi:10.1371/journal.pntd.0000837.g002
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PBMC in the three ZEBOV fatalities, compared to 5.6% and

6.8% in the two healthy individuals (Figure 5). The percentage of

CD3+CD4+CD95+ cells in the survivor sampled during the acute

phase of ZEBOV infection was 11%, while the mean percentages

of CD3+CD4+CD95+ and CD3+CD8+CD95+ cells in the three

post-recovery samples were 20.8% and 18.5%, respectively

(Figure 5).

Discussion

This study, the largest to date, shows that human fatal ZEBOV

infection is associated with a markedly impaired innate immune

reaction, characterized by strong proinflammatory cytokine

production, undetectable antiviral IFNa, and profound immu-

nosuppression resulting from massive peripheral T lympho-

cyte apoptosis mediated probably in great part by Fas/FasL

interactions.

Non survivors had extremely high circulating levels of numerous

proinflammatory cytokines (IL-1b, IL-1RA, IL-6, IL-8, IL-15 and

IL-16), as well as chemokines and growth factors (MIP-1a, MIP-

1b, MCP-1, M-CSF, MIF, IP-10, GRO-a and eotaxin). Levels of

these mediators rose rapidly after symptom onset in non survivors,

reaching very high levels in the two days before death and creating

a ‘cytokine storm’: shortly before death, average levels were

between 5 and 1,000 times higher (even more in some individuals)

than those observed in both healthy individuals and survivors.

Proinflammatory cytokines, chemokines and growth factors are

mainly synthesized by monocytes and dendritic cells and represent

the cornerstone of the innate immune reaction to pathogens. At

moderately elevated concentrations, these soluble mediators act at

various points in the first line of defense, recruiting circulating

mononuclear cells to the site of infection, increasing endothelial

permeability, activating macrophage and DC cytotoxic functions,

and inducing adaptive immune responses by providing co-

stimulatory signals for naı̈ve T cells. By contrast, we never

detected a raise in IFN-a2 in either survivors or non survivors,

suggesting that direct antiviral activity is lacking in ZEBOV-

infected patients.

Figure 3. Downregulated cytokines mainly secreted by T lymphocytes, in fatal (red plots, D) and non fatal (green plots, S) cases of
clinical ZEBOV infection.
doi:10.1371/journal.pntd.0000837.g003
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Some of these results are consistent with those of in vitro studies

and animal models. Indeed, macrophages challenged with EBOV

and MARV in vitro release large quantities of several proin-

flammatory cytokines and chemokines, while production of type I

IFNs is inhibited. Dendritic cells (DCs), on the other hand, fail to

produce cytokines when infected [23,25,50–52]. Similarly, fatal

outcome in experimentally infected mice and non human primates

is associated with impairment of innate immune responses,

including rapid and important secretion of inflammatory media-

tors, contrasting with the absence of type I interferon production

[30–35].

Numerous studies have shown that VP35 and VP24 play an

essential role in the ZEBOV suppression of IFN-a/b production

and/or response by infected DCs and macrophages [53–57].

VP24 interrupts nuclear accumulation of tyrosine-phosphorylated

STAT1 and STAT2 in infected cells, making them insensitive to

IFN-a/b [58–59]. VP35 inhibits phosphorylation, activation and

nuclear localization of the interferon regulatory factors 3 and 7

(IRF-3 and IRF-7), transcription factors crucial for IFN-a/b
synthesis [60–65]. VP35 is also reported to inhibit activation of

dsRNA-binding protein kinase (PKR) and the RNAi pathway,

again antagonizing the interferon response [66–67].

The second remarkable finding of this study is that human fatal

ZEBOV infection is associated with a lack of adaptive immunity,

reflected by very low levels of circulating cytokines produced by T

lymphocytes and by massive loss of CD4 and CD8 lymphocytes.

Using Luminex technology, we found that levels of numerous

circulating T cell cytokines (IL-2, IL-3, IL-4, IL-5, IL-9, IL-13)

were much lower in non survivors than in healthy individuals.

Furthermore, using cytometry analysis, we found that CD4 and

CD8 lymphocytes represented only 9.2% and 6%, respectively, of

PBMC in ZEBOV fatalities, compared to more than 40% and

20% in healthy individuals and survivors. Respectively 54.1% and

75.8% of these cells expressed CD95, values about 10 times higher

than those observed in the healthy individuals. These findings,

although they are based on a small sample size, confirm and

extend the results of the only previous study in natural human

ZEBOV infection, which showed marked DNA laddering of

PBMC and release of the apoptotic 41/7 NMP protein in ZEBOV

fatalities [45,68]. This latter study did not specify which PBMC

subsets underwent apoptosis, or provide information on the

underlying mechanism. We found that T CD4 and CD8

lymphocytes underwent massive apoptosis in ZEBOV fatalities,

largely through Fas/FasL interaction, whereas the level of

lymphocyte apoptosis seen in the survivors was close to that

found in the healthy controls. These findings are consistent with

the marked bystander lymphocyte apoptosis associated with fatal

ZEBOV infection in experimental animals. Studies using flow

cytometry, electron microscopy and TUNEL staining have shown

that NK, CD4 and CD8 T cells are markedly depleted both

through classical apoptosis and through apoptosis-like pro-

grammed cell death in the blood and spleen of ZEBOV-

Figure 4. Flow cytometry of PBMC (CD3, CD4 and CD8 phenotyping) collected from fatal and non fatal cases of clinical ZEBOV
infection, and from convalescent sampled two weeks after recovery. Results are presented as individual pictures (one individual per group).
Mean percentages of gated cells (side and forward scatter) in each group are shown on each picture.
doi:10.1371/journal.pntd.0000837.g004
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challenged BALB/c mice [69–70]. Similarly, using the same in situ

techniques as those mentioned above, recent studies have shown

that lymphocytes undergo massive apoptosis in the spleen and

lymph nodes of experimentally infected non human primates

[24,30,33]. In addition, ZEBOV infection of human PBMC in vitro

has been shown to induce apoptosis of CD4 and CD8 T

lymphocytes [71].

Our findings, together with those of in vitro studies and animal

models, indicate that lymphocyte apoptosis may account for the

lymphopenia and lymphoid depletion associated with ZEBOV

infection. This lymphocyte apoptosis is likely to involve several

pathways, but we show that apoptosis via Fas/FasL interaction is

largely responsible for the massive lymphocyte death observed in

human fatal ZEBOV infection. This is consistent with in vitro

studies and experimental ZEBOV infection of macaque monkeys,

showing that Fas/FasL and, to a lesser extent TNF-TRAIL

mechanisms, may largely account for lymphocyte apoptosis in this

setting. Infection of naı̈ve PBMC with ZEBOV in vitro strongly

upregulates Fas/FasL expression on CD4 and CD8 T lympho-

cytes and also TNF-related apoptosis-inducing ligand (TRAIL)

mRNA expression in the same cells [71]. Similarly, TRAIL and

Fas transcript levels were shown to be transiently increased in

ZEBOV-infected cynomolgus monkeys [24,32]. Alternatively, DC

dysfunction may lead to bystander lymphocyte apoptosis.

Dendritic cells, and to a lesser extent macrophages, play a pivotal

role in both innate and adaptive immunity to many viruses. First,

these cells secrete antiviral type I IFNs (mainly IFN-a/b) and also

proinflammatory cytokines and chemokines that upregulate and

guide the adaptive immune response to express specific functions.

Second, DCs initiate adaptive immune responses by presenting

antigens to T lymphocytes and by stimulating T and B cell

differentiation. Thus, early productive replication of EBOV and

MARV in macrophages and DCs is likely to impair both innate

and adaptive immune responses. The soluble apoptotic factor

nitric oxide (NO), synthesized by infected macrophages, as well as

the apoptosis-inducing ligands FasL and TRAIL, and immuno-

suppressive sequences in the viral glycoprotein, have also been

implicated in lymphocyte apoptosis in this setting [32,71–73].

Another possibility is that marked DC functional impairment may

induce an overall immunosuppressive state. Indeed, several in vitro

studies have shown that EBOV and MARV infection of DCs fails

to activate these cells, thereby inducing altered cytokine expression

and interfering with the ability of DCs to express co-stimulatory

molecules [24–25,33,52]. Such DC functional impairment is

thought to reduce T cell stimulatory activity and to abrogate

functional adaptive immune responses.

This work shows that fatal outcome is associated with aberrant

innate immune responses and global suppression of adaptive

immunity. The innate response in non survivors leads to a

‘‘cytokine storm’’ which probably rapidly triggers disseminated

Figure 5. Flow cytometry of PBMC (CD3, CD4, CD8 and CD95 phenotyping) collected from fatal and non fatal cases of clinical
ZEBOV infection, and from convalescent sampled two weeks after recovery. Results are presented as individual pictures (one individual per
group). Mean percentages of gated cells (side and forward scatter) in each group are shown on each picture.
doi:10.1371/journal.pntd.0000837.g005
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intravascular coagulation, vascular dysfunction and hypotension

and, together with massive lymphocyte apoptosis, likely contrib-

utes to vascular collapse, multiple organ failure and the shock-like

syndrome associated with human fatal ZEBOV infection.

Supporting Information

Figure S1 Detection of six unmodified circulating inflammatory

cytokines in fatal (red plots, D) and nonfatal (green plots, S) clinical

cases of ZEBOV infection. Fatal and nonfatal cases were each

subdivided into two groups according to the interval between

symptom onset and blood sampling, as follows: S1 and D1

sampled 1–4 days after symptom onset, S2 and D2 sampled $5

days after symptom onset. Given that disease course in all fatal

cases lasted 6–7 days, D2 group contains patients sampled in the

last 2–3 days before death. Cytokine levels were compared with

those found in 30 randomly selected healthy volunteers (blue

plots). Results are shown as mean values in each group, and the

bars on the plots indicate the standard errors.

Found at: doi:10.1371/journal.pntd.0000837.s001 (0.85 MB EPS)

Table S1 Numbers of healthy individuals and survivors and

nonsurvivors of clinical ZEBOV infection. Fatal and nonfatal cases

were each subdivided into two groups according to the interval

between symptom onset and blood sampling, as follows: S1 and

D1 sampled 1–4 days after symptom onset, S2 and D2 sampled

$5 days after symptom onset. Given that disease course in all fatal

cases lasted 6–7 days, D2 group contains patients sampled in the

last 2–3 days before death.

Found at: doi:10.1371/journal.pntd.0000837.s002 (0.03 MB

DOC)
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