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Abstract

Background: Mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2)

cause autosomal dominant forms of Alzheimer disease (ADAD). More than 280 pathogenic mutations have

been reported in APP, PSEN1, and PSEN2. However, understanding of the basic biological mechanisms that

drive the disease are limited. The Dominantly Inherited Alzheimer Network (DIAN) is an international

observational study of APP, PSEN1, and PSEN2 mutation carriers with the goal of determining the sequence

of changes in presymptomatic mutation carriers who are destined to develop Alzheimer disease.

Results: We generated a library of 98 dermal fibroblast lines from 42 ADAD families enrolled in DIAN. We

have reprogrammed a subset of the DIAN fibroblast lines into patient-specific induced pluripotent stem cell

(iPSC) lines. These cells were thoroughly characterized for pluripotency markers.

Conclusions: This library represents a comprehensive resource that can be used for disease modeling and

the development of novel therapeutics.
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Background

Dominantly inherited mutations in amyloid precursor

protein (APP), presenilin 1 (PSEN1), and presenilin 2

(PSEN2) cause early-onset Alzheimer disease (AD) [1, 2].

Sequential cleavage of APP, a type 1 transmembrane

protein, by β-secretase and then by γ-secretase produces

amyloid-β (Aβ) [3]. PSEN1 and PSEN2 are critical com-

ponents of the γ-secretase complex. The amyloid cas-

cade hypothesis proposes that changes in APP and/or

Aβ homeostasis lead to the aggregation of Aβ and

deposition in plaques and that these events are sufficient

to initiate the cascade of pathologic abnormalities asso-

ciated with AD [4]. In order to better understand AD,

the Dominantly Inherited Alzheimer Network (DIAN)

was established as an international effort to monitor and

identify changes in APP, PSEN1, and PSEN2 mutation

carriers through the preclinical and clinical disease

course. DIAN participants are monitored longitudinally

with the goal of detecting and treating autosomal dom-

inant Alzheimer disease (ADAD) at the earliest stages

[5]. These efforts have begun to reveal fluid biomarker

changes in ADAD mutation carriers as early as 20 years

prior to the clinical onset of disease [5, 6].

Dominantly inherited mutations in APP account for ap-

proximately 16% of ADAD, represented by 30 pathogenic

mutations [7]. Two recessive APP mutations, A673V and

E693Δ, also reportedly cause AD (reviewed in [2]). The
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majority of mutations in APP cluster in exons 16 and 17,

which encode the region that is adjacent to or within the

Aβ domain. APP mutations impact Aβ production by

several mechanisms: mutations adjacent to the α-secretase

cleavage site lead to increased total Aβ, Aβ40, Aβ42, and

Aβ42/40, whereas mutations near the γ-secretase cleavage

site leads to reduced total Aβ and Aβ40 along with

increased Aβ42/40 [8–10]. APP mutation carriers typically

present with an age at onset ranging from 45 to 60 years

[11]. PSEN1 and PSEN2 are structurally similar integral

membrane proteins that contain nine transmembrane

domains with a hydrophilic intracellular loop region

(reviewed in [12]). PSEN1 and PSEN2 mutations are

distributed throughout the protein, with some clustering

occurring in the transmembrane domains [13]. PSEN1

and PSEN2 localize in the endoplasmic reticulum and

Golgi apparatus, where they play an important role in pro-

tein processing [14, 15]. Mutations in PSEN1 and PSEN2

alter γ-secretase activity and exhibit an elevated Aβ42/40
ratio. As many as 185 dominantly inherited, pathogenic

mutations have been identified in PSEN1, accounting for

almost 80% of ADAD cases [7]. Individuals with PSEN1

mutations present with the youngest and most variable

ages at onset (between 30 and 75 years) [16]. To date, 13

dominantly inherited pathogenic mutations have been

identified in PSEN2, which account for 6% of ADAD cases

[7]. PSEN2 mutation carriers exhibit the latest age at onset

among ADAD mutations [16]. Although ADAD muta-

tions are extremely rare, increasing evidence suggests that

common variants in APP, PSEN1, and PSEN2 may act as

risk factors for AD [12, 17, 18].

Effective therapies have yet to be identified to modify

or delay AD, which is due in part to the limitations of

current cell and mouse models of AD. Most models rely

on overexpression of a mutant transgene to study AD,

which may produce effects that are a function of protein

levels rather than a disease-relevant phenotype [19–21].

The majority of models capture amyloid or tau path-

ology but rarely both. Furthermore, although these

models capture some secondary features of AD, such as

gliosis, most do not produce frank neurodegeneration.

With more than 280 pathogenic mutations across 3

genes, current model systems do not distinguish be-

tween those mechanisms that are shared among muta-

tions and those that are unique. This is particularly

critical when considering the potential impact of muta-

tion status on responsiveness to therapies, such as

γ-secretase modulators [22]. Thus, our understanding of

how APP and tau are metabolized has been obtained

from experimental paradigms that do not fully capture

physiological conditions that are relevant to AD.

In this article, we present a resource of patient-specific

fibroblast and induced pluripotent stem cell (iPSC) lines

carrying APP, PSEN1, or PSEN2 mutations and noncarrier,

related controls. iPSCs have emerged as a powerful system

for studying the molecular mechanisms underlying neuro-

degenerative diseases [23–27]. Human iPSCs express the

regulatory elements that facilitate endogenous expression

and splicing of genes associated with AD. Human iPSCs

also have the capacity to be differentiated into cortical neu-

rons or other cell types (e.g., glia) that are affected in AD

[28–31]. Recent studies have shown that iPSC-derived

neurons from APP, PSEN1, or PSEN2 mutation carriers

phenocopy aspects of the disease, including changes in

Aβ isoform ratios and phosphorylated tau levels [22,

23, 28, 29, 32]. Advances in the generation of astrocyte,

microglia, and cerebral organoids from iPSCs will facili-

tate future studies into the cell-autonomous and

non-cell-autonomous effects of ADAD mutations [30,

31, 33, 34]. The iPSCs used in this study were obtained

from individuals enrolled in DIAN, which collects

neuropathological, clinical, imaging, biomarker (cerebro-

spinal fluid [CSF] and plasma), and genetic information

that can be used to correlate with cellular phenotypes. To-

gether, this resource represents a comprehensive resource

for the broader scientific community to use to model AD

and to develop novel therapeutics.

Methods
Patient consent

Skin biopsies were collected following written in-

formed consent was obtained from the donor. The

study was approved by the Washington University

School of Medicine Institutional Review Board and

Ethics Committee (IRB 201104178, 201306108). The

consent allows use of tissue by all parties, commercial

and academic, for the purposes of research but not for

use in human therapy.

Dermal fibroblast isolation

To isolate dermal fibroblasts, the skin biopsies were rinsed

with PBS (MilliporeSigma, Burlington, MA, USA) and cut

with dissecting scissors. The resulting tissue fragments were

plated into a dry 24-well tissue culture plate. Excess PBS was

removed, and fibroblast growth medium (Lonza, Basel,

Switzerland) was added. Tissue was incubated at 37 °C, 5%

CO2. After 24 hours, tissue was supplemented with fibroblast

growth media, and media changes were repeated every 3–

4 days. Fibroblast cells were observed to migrate from the

tissue within 2 weeks of culture. Dermal fibroblasts were

maintained in fibroblast growth media supplemented with

penicillin and streptomycin. All fibroblasts are housed within

the DIAN Genetics Core Tissue Bank and available for distri-

bution upon request: https://dian.wustl.edu/our-research/

observational-study/dian-observational-study-investigator-re-

sources/biospecimen-request-terms-and-instructions/. Add-

itional phenotype information is available upon request,

including sex, age at biopsy, and other clinical, genetic, and
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biomarker measures collected within DIAN: https://dia-

n.wustl.edu/our-research/observational-study/dian-observa-

tional-study-investigator-resources/data-request-form/.

iPSC generation

Human fibroblasts were transduced with non-integrating

Sendai virus carrying OCT3/4, SOX2, KLF4, and cMYC

(Life Technologies, Carlsbad, CA, USA) in feeder- and

serum-free conditions using mTesR (STEMCELL Tech-

nologies, Vancouver, BC, Canada) [35, 36]. Cells that

showed morphological evidence of reprogramming were

selected by manual dissection and maintained undifferen-

tiated using mTesR1. A subset of APP fibroblast cell lines

were reprogrammed into iPSCs using non-integrating

episomal vectors expressing OCT4, SOX2, KLF4, L-MYC,

LIN28, and p53 short hairpin RNA in feeder- and

serum-free conditions using TeSR-E7 medium (STEM-

CELL Technologies) [37]. Subsequently, reprogrammed

colonies were manually dissected to establish clonal cell

lines for expansion and characterization. The repro-

grammed cells were maintained undifferentiated using E8

medium (STEMCELLTechnologies).

iPSC characterization

Human iPSC lines were characterized using standard

methods [35]. All lines were analyzed for pluripotency

markers (OCT3/4, TRA-1-60), and a subset of lines were

analyzed for additional markers (SOX2, NANOG,

SSEA4) by immunocytochemistry and qPCR and for

chromosomal abnormalities by karyotyping. Cell lines

were confirmed to possess the appropriate genotype by

Sanger sequencing. All iPSCs are housed within the

DIAN Genetics Core Tissue Bank and available for dis-

tribution upon request along with clinical, genetic, and

biomarker data collected in DIAN (see “Dermal fibro-

blast isolation” section for details).

iPSC culture, banking, and quality control measures

Human iPSCs were cultured in mTesR1 on Matrigel-coated

tissue culture-treated plates (Cultrex Basement Membrane

Extract [BME]; Trevigen, Inc., Gaithersburg, MD, USA). For

routine passaging and unless otherwise noted below, iPSCs

were dissociated with Accutase (Innovative Cell Technolo-

gies, San Diego, CA, USA) for 3 minutes. Dissociated cells

were collected in PBS and centrifuged at 750 rpm for 3 mi-

nutes. After medium was aspirated, a portion of the cells

were plated on new Matrigel-coated plates in mTesR1. iPSCs

were maintained with less than 5% spontaneous differ-

entiation and were cryopreserved in mTesR supple-

mented with 10% dimethyl sulfoxide and 40% FBS.

iPSCs are karyotyped every 20 passages to ensure

clones maintain stable genomes. For the APP lines,

iPSCs were cultured using Vitronectin XF in TeSR-E8

medium and passaged with ReLeSR (STEMCELL

Technologies). All cell lines were confirmed to be

mycoplasma-free using the MycoAlert mycoplasma de-

tection kit (Lonza) according to the manufacturer’s

instructions.

Immunocytochemistry

Cells were washed and fixed with 4% paraformaldehyde

(Sigma-Aldrich, St. Louis, MO, USA). Primary and second-

ary antibodies were diluted in 3% bovine serum albumin.

The following antibodies were used (Life Technologies):

SOX2, SSEA4, TRA-1-60, OCT-3/4, Alexa Fluor 594 donkey

antirabbit, Alexa Fluor 488 goat antimouse, Alexa Fluor 488

donkey antirat, and Alexa Fluor 594 goat antimouse. Nuclei

were counterstained with 4′,6-diamidino-2-phenylindole

(DAPI; Life Technologies). Images were acquired on a Nikon

Eclipse 80i fluorescence microscope (Nikon Instruments,

Melville, NY, USA) using MetaMorph software (Molecular

Devices, Sunnyvale, CA, USA). For the APP lines, immuno-

cytochemistry was performed using the following primary

antibodies: mouse anti-OCT3/4 (Santa Cruz Biotechnology,

Dallas, TX, USA) and mouse anti-TRA-1-60 (Millipore-

Sigma). Cells were then immunostained with isotype-specific

secondary antibodies (Alexa Fluor 568 or 488; Life Technolo-

gies). Nuclei were counterstained using Hoechst 33342 or

DAPI (Sigma-Aldrich) and mounted in VECTASHIELD

mounting medium (Vector Laboratories, Burlingame, CA,

USA). Specificity of the staining was verified by the absence

of staining in negative controls consisting of the ap-

propriate negative control immunoglobulin fraction

(Dako; Agilent Technologies, Santa Clara, CA, USA).

Images were acquired on a Zeiss AxioImager M2

fluorescence microscope using ZEN software (Carl

Zeiss Microscopy, Buffalo Grove, IL, USA).

qPCR

RNA was extracted from cell pellets with an RNeasy kit

(QIAGEN, Hilden, Germany), following the manufac-

turer’s protocol. Extracted RNA (10 μg) was converted

to complementary DNA (cDNA) by PCR using the

High-Capacity cDNA Reverse Transcriptase Kit (Life

Technologies). Gene expression was measured in iPSCs

using qPCR as previously described (SOX2, POU5F1,

LIN28A, NANOG, B3GALT5, PODXL) [38]. Primers spe-

cific to Sendai virus (SEV) were included to evaluate the

presence of virus remaining in the isolated clones.

Primers specific to GAPDH were used as a control.

Karyotyping

Chromosomal abnormalities were assessed by G-band

karyotyping. For the APP lines, copy number variation

(CNV) analysis of the original fibroblasts and iPSCs was

performed using HumanCore BeadChip arrays (Illumina,

San Diego, CA, USA). CNV analyses were performed using

PennCNV [39] and QuantiSNP [40] with default parameter
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settings. Chromosomal aberrations were deemed to involve

at least 20 contiguous single-nucleotide polymorphisms or

a genomic region spanning at least 1 Mb [39–41].

The B allele frequency and the log R ratio were extracted

from GenomeStudio (Illumina) for representation [42].

Results
Fibroblasts

Dermal fibroblasts were collected from DIAN families

at the Knight Alzheimer Disease Research Center at

Washington University, Indiana University, University

of Pittsburgh, and Brigham and Women’s Hospital. A

total of 98 fibroblast lines are represented by 51 APP,

PSEN1, or PSEN2 mutation carriers and 47

non-carriers, related family members from 42 families

(Fig. 1, Table 1). In order to maintain anonymity, cell

lines are reported by family mutation, which may in-

clude mutation carriers or non-carriers. This fibro-

blast bank is representative of the relative proportion

of mutations present in the DIAN observational study

as well as those reported worldwide (Fig. 2) [7]. We

are continuing to bank dermal fibroblasts from DIAN

participants to expand the collection.

Generation and characterization of iPSCs

iPSCs were generated using non-integrating Sendai

virus or episomal vectors (Table 2). iPSCs were grown

in feeder-free and serum-free conditions. Resulting

iPSCs have been characterized for pluripotency

(Fig. 3; Additional file 1: Figures S1-S3 and Additional

file 2: Figure S4). Pluripotency was defined on the basis

of morphology and markers of pluripotency expression

by immunocytochemistry and qPCR (Fig. 3b and c;

Additional file 1: Figures S1 and S2). Endogenous ex-

pression of pluripotency markers was evaluated relative

to dermal fibroblasts and H9, an embryonic stem cell

line. Some variability was observed in the pluripotency

markers between individual donor lines (Additional file 1:

Figures S1 and S2). This is consistent with prior reports

that genomic background is the largest contributor to

phenotypic variability between iPSC lines [41]. We con-

firmed the silencing of exogenous Sendai virus-driven

pluripotent markers by qPCR (Fig. 3c; Additional file 1:

Figure S2). Chromosomal stability was assessed by

G-band or digital karyotyping (Fig. 3d; Additional files 1

and 2: Figures S3 and S4). iPSC lines meeting the following

criteria are available upon request: (1) maintain pluripo-

tency with less than 5% spontaneous differentiation; (2)

OCT4- and TRA1-positive by immunostaining; (3) en-

dogenous expression of LIN28A, NANOG, PODXL,

POU5F1, and SOX2 as measured by qPCR; (4) absence of

Sendai virus and Sendai-driven genes as measured by

qPCR; (5) absence of chromosomal abnormalities as mea-

sured by G-band or virtual karyotyping (CNV analysis); and

(6) the ability of the iPSC clones to differentiate into neu-

rons. All of the iPSC lines included in the collection meet

Fig. 1 APP, PSEN1, and PSEN2 mutations. Schematic of the location of APP, PSEN1, and PSEN2 mutations reported in this collection. Green =

variants of unknown pathogenicity. Aβ β-Amyloid
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the above-mentioned criteria. We are continuing to repro-

gram dermal fibroblasts to expand the stem cell bank.

Discussion
Rare mutations in APP, PSEN1, and PSEN2 cause ADAD;

however, the mechanisms by which altered APP process-

ing leads to changes in tau and cognitive decline remain

poorly understood. DIAN was established in 2008 to re-

cruit families that carry APP, PSEN1, or PSEN2 mutations.

Observational studies in these families have demonstrated

that biomarker changes can occur 15–20 years prior to

the estimated age at onset of AD [6, 43]. We established a

resource of patient-specific fibroblast and iPSC lines carry-

ing APP, PSEN1, or PSEN2 mutations and non-carrier, re-

lated controls. The human cell lines are associated with

neuropathological, clinical, imaging, biomarker (CSF and

plasma), and genetic information that can be used to cor-

relate with cellular phenotypes.

Table 1 Summary of fibroblast bank representing mutation carriers and noncarriers enrolled in the DIAN observational study

Gene Mutation Fibroblast lines Families Disease onset (yr)a Disease course (yr)a References

APP KM670/671NL 3 1 52.3 ± 2.9 8.5 ± 3.5 [57]

I716M 1 1 55 21 [58]

V717 L 2 1 45.6 ± 1.2 9.33 ± 1.58 [57, 59–62]

V717I 4 3 47.8 ± 0.9 11.86 ± 0.99 [57, 63–67]

PSEN1 A79V 11 4 60.6 ± 1.8 13 ± 1.86 [17, 57, 66, 68, 69]

M84V 1 1 58.6 ± 1.36 20 [70]

K109* 1 1 39 17 N/A

N135Y 1 1 35.5 ± 4.5 9 ± 1 N/A

M139I 4 1 35.6 ± 0.6 7.75 ± 1.97 [57, 71]

M146L 1 1 39.3 ± 0.9 5.88 ± 1.09 [57, 59, 72–74]

H163R 7 3 46.1 ± 0.7 12.14 ± 1.3 [57, 75–77]

G206A 3 2 55.2 ± 1.3 11.6 ± 2.18 [57, 78]

G209E 1 1 53.25 ± 4.40 4.75 ± 0.48 [79]

G209V 1 1 52 10 [77]

S212Y 1 1 45.3 ± 2.2 14.5 ± 2.11 [57, 80]

H214Y 1 1 52.67 ± 2.67 9 ± 2 [52, 81]

G217R 3 1 44.6 ± 0.9 12.18 ± 2.19 [57, 82]

L226R 4 1 46.7 ± 1.8 8.67 ± 1.2 [57]

I229F 2 1 40 ± 2.1 18 [57]

S230N 1 1 57.3 ± 1.45 6.50 ± 2.5 N/A

A246E 2 1 49.1 ± 1.1 13.17 ± 2.63 [57, 83]

V261F 1 1 34 ± 1.2 15 ± 2 [57]

R269H 2 1 56.4 ± 2 10 ± 1 [57, 83]

F283L 3 1 41 11 N/A

Y288H 5 1 45.7 ± 1.7 17 [57]

C410Y 2 1 47.7 ± 1.1 9.88 ± 2.46 [57, 83]

A426P 1 1 43.36 ± 1.38 13.71 ± 1.11 [77]

A431E 1 1 39.4 ± 0.6 9 ± 0.86 [57, 84, 85]

PSEN2 R62Hb 1 1 63.5 ± 15.5 12 [13, 52, 54, 86]

R71Wb 2 1 66.50 ± 18.50 18.0 ± 10 [13, 87]

S130Lb 1 1 50.50 ± 3.5 18.50 ± 6.5 [52–55]

N141I 23 2 53.7 ± 0.6 10.23 ± 0.44 [57, 88, 89]

L238F 1 1 53 ± 4 20 [70]

N/A Not available
aMean ± SE
bPathogenicity unclear

*stop
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The DIAN fibroblast bank represents cell lines from the

most common ADAD mutations. Several of the mutations

are represented by multiple families, including APP

V717I, PSEN1 A79V, PSEN1 H163R, PSEN1 G206A, and

PSEN2 N141I. Fibroblasts from ADAD mutation carriers

produce altered levels of extracellular Aβ42, which are fur-

ther exaggerated in neural progenitor cells and cortical

neurons [23]. Additionally, recent work demonstrates that

direct conversion of fibroblasts into cells of neuronal fate

maintains epigenetic signatures associated with aging

that are lost when differentiation occurs through iPSCs

[44, 45]. With 98 fibroblast lines from 42 ADAD families,

this resource offers the opportunity to identify phenotypes

that are shared across families as well as those phenotypes

that may be unique to a given family, possibly due to

disease-modifying factors in the genetic background. Add-

itionally, some mutations are represented by more than

ten donor lines, such as PSEN1 A79V and PSEN2 N141I,

a b

c d

Fig. 2 Dominantly Inherited Alzheimer Network (DIAN) fibroblast bank. a Representative bright-field image of human dermal fibroblasts. b–d Pie

charts representing the percentage of APP, PSEN1, and PSEN2 mutations represented in the DIAN fibroblast bank (b), DIAN observational study (c),

and reported in the Alzheimer’s disease (AD)/frontotemporal dementia (FTD) mutation database (d) [7]

Table 2 Human induced pluripotent stem cells from mutation carriers and non-carriers enrolled in DIAN

Gene Family mutation Mutation status Donorsa Ethnicity Clinical statusb APOE Reprogramming method Donor number

APP V717L Positive 1 EA A 33 Episomal F15553

V717I Positive 1 EA A 33 Episomal F16574

Negative 1 EA A 33 Episomal F12462

PSEN1 A79V Positive 1 EA A 34 Sendai F12424

Negative 1 EA A 33 Sendai F12436

H163R Positive 1 EA A 34 Sendai F11430

Negative 1 EA A 33 Sendai F12442

G217R Positive 1 EA A 24 Sendai F12434

Negative 1 EA A 34 Sendai F12445

PSEN2 N141I Positive 1 EA A 33 Sendai F12448

Negative 1 EA A 34 Sendai F12468

APOE Apolipoprotein E, EA European American
aIndependent induced pluripotent stem cell lines. For each line, at least two clones are available
bAt biopsy
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which will allow for the investigation of cellular and mo-

lecular modifiers of age at onset within a family.

We generated a subset of iPSCs from mutations that are

representative of ADAD. APP V717I (e.g., London muta-

tion), which is represented in the iPSC bank, has been re-

ported in 38 families [46]. Introduction of the isoleucine at

this site results in an elevated Aβ42/40 ratio. APP V717I pre-

sents with amyloid plaques, neurofibrillary tangles, cerebral

amyloid angiopathy [47], and, in some cases, with amygdala

Lewy bodies [48]. iPSC-derived neurons expressing APP

V717I produce altered APP processing and tau expression

[29]. Several pathogenic mutations have been reported at

amino acid 717 in APP. APP V717L has been reported in

seven families and, similarly to the London mutation, pro-

duces an elevated Aβ42/40 ratio. PSEN1 A79V, H163R, and

G217R present with amyloid plaques, neurofibrillary tan-

gles, and variable amygdala Lewy bodies [48]. PSEN2

N141I presents with amyloid plaques, neurofibrillary

tangles, and amygdala Lewy bodies [48]. iPSC-derived neu-

rons from PSEN1 H163R and PSEN2 N141I carriers also

exhibit altered Aβ42/40 [22, 49].

Several fibroblast lines in the DIAN collection are de-

rived from families carrying variants in PSEN2 that have

unclear pathogenicity: R62H, R71W, and S130L. PSEN2

is known to be highly polymorphic. PSEN2 R62H has

been reported in seven families; however, little segrega-

tion data is available [7]. PSEN2 R62H is present in a

large cohort of unselected controls (Exome Variant

Server: 187/12819; ExAC Browser: 1198/121044). Given

the frequency in control populations, this variant is

likely benign. In two families, PSEN2 R71W segregates

with disease [50] and has been reported in sporadic AD

[13, 51, 52]. PSEN2 R71W is present in a large cohort of

unselected control subjects (Exome Variant Server: 36/

12970 alleles; ExAC Browser: 407/121230 alleles); how-

ever, lack of clinical information and age precludes the

a

b

c

Fig. 3 Characterization of Dominantly Inherited Alzheimer Network (DIAN) induced pluripotent stem cell (iPSC) lines. Representative images of

non-mutation carrier (left panel) and mutation carrier (right panel) iPSCs. a Immunostaining for pluripotency markers NANOG, SSEA4, OCT-3/4, and

SOX2. b qPCR for pluripotency markers. c Karyotyping
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determination of whether these variant carriers have

preclinical AD. Given that this variant has been reported

in patients with AD, it is possible that PSEN2 R71W

increases risk for AD. PSEN2 S130L has been reported

in one family with a strong history of ADAD [53].

However, PSEN2 S130L has also been identified in two

control subjects and several patients with sporadic AD

[52, 54, 55]. In an unselected control population, PSEN2

S130L is also present (Exome Variant Server: 9/12997 al-

leles; ExAC Browser: 77/119594 alleles). In cell culture,

PSEN2 S130L expression alters the Aβ42/40 ratio [56].

Thus, PSEN2 S130L may modify disease risk. Together,

these lines will facilitate the study of disease-modifying

variants in AD.

Conclusions
The field has struggled to move drugs and potential

druggable targets from mouse models into effective ther-

apies. This may be due in part to model systems that do

not fully capture APP and tau metabolism in human cell

types that are affected in disease. The fibroblast and

iPSC resource that we report represents a unique oppor-

tunity to translate findings from cells to the human sub-

jects from whom they were obtained.

Additional files

Additional file 1: Characterization of iPSC lines. Figure S1.

Immunostaining of DIAN iPSCs for pluripotency markers. iPSCs included

in the collection were fixed and stained with antibodies to OCT4 and

TRA1. Scale bar represents 100 μm. Figure S2. Quantitative assessment

of pluripotent markers in DIAN iPSCs. iPSCs lines were analyzed by qPCR

(TaqMan assay) to determine expression of pluripotency markers and, in

lines reprogrammed with Sendai virus, the absence of Sendai virus.

Human embryonic stem cells (H9) were included as a positive control.

Genes are expressed relative to a housekeeping gene, GAPDH. Graphs

represent mean normalized expressed ± SEM. Figure S3. Karyotypes of

DIAN iPSCs. G-band karyotyping of iPSCs exhibit no chromosomal

abnormalities in the clones represented in the collection. (PDF 12885 kb)

Additional file 2: Virtual karyotyping of iPSC lines. Figure S4. Virtual

karyotyping. (PDF 102140 kb)
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