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Abstract. We propose a novel human-centric approach to detect and

localize human actions in challenging video data, such as Hollywood
movies. Our goal is to localize actions in time through the video and
spatially in each frame. We achieve this by first obtaining generic spatio-
temporal human tracks and then detecting specific actions within these
using a sliding window classifier.
We make the following contributions: (i) We show that splitting the ac-
tion localization task into spatial and temporal search leads to an efficient
localization algorithm where generic human tracks can be reused to rec-
ognize multiple human actions; (ii) We develop a human detector and
tracker which is able to cope with a wide range of postures, articulations,
motions and camera viewpoints. The tracker includes detection interpola-
tion and a principled classification stage to suppress false positive tracks;
(iii) We propose a track-aligned 3D-HOG action representation, investi-
gate its parameters, and show that action localization benefits from using
tracks; and (iv) We introduce a new action localization dataset based on
Hollywood movies.
Results are presented on a number of real-world movies with crowded,
dynamic environment, partial occlusion and cluttered background. On
the Coffee&Cigarettes dataset we significantly improve over the state of
the art. Furthermore, we obtain excellent results on the new Hollywood–

Localization dataset.
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1 Introduction

Our objective is to localize human actions both in space (the 2D image region)
and time (the temporal window) in videos. Early work on action recognition
in video used sequences with prominent actions, mainly static cameras, simple
backgrounds and full bodies visible, as in the KTH [1] and Weizmann [2] datasets,
e.g. [3–5]. This enabled action classifiers to be explored with variation in the
actors and actions, but without the added complexity of change of viewpoint,
scale, lighting, partial occlusion, complex background etc. However, following
recent work [6–9] where video material from movies is used, the field has moved
onto less controlled and much more challenging datasets. Our work is aimed at
this more challenging movie material.
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As is well known from the results of the PASCAL Visual Object Classes
challenges [10], localization is much more demanding than classification. In the
case of action classification, which is often the aim in action research, sequences
with pre-defined temporal extent are labeled as belonging to one of n action
classes – experiments on the KTH, Weizmann and Hollywood2 [11] datasets
generally report such classifications rather than localization. However, for video
search and annotation applications, action localization is far more useful than
classification as it enables the temporal sequence containing the action to be
delimited and also the actor carrying out the action to be identified, when there
are multiple actors in a shot.

We propose an approach which explicitly splits the spatio-temporal action
localization into first detecting and tracking humans, which determines the spa-
tial localization of the action, followed by a temporal action classification of the
tracks, which detects and localizes the action in time. To this end we make con-
tributions in two areas: (i) a generic human tracking method for uncontrolled
videos, which outputs high quality tracks by adding a classification stage to sup-
press false positives; and (ii) a track adapted 3D (space and time) descriptor,
inspired by the HOG descriptor [12], which enables a temporal sliding window
classifier to reliably recognize and localize actions.

We show that using human tracks gives benefits on three fronts: first, the
localization performance improves over the state of the art; second, the com-
plexity of search is reduced (since search restricted to a track is less costly than
an exhaustive search of the complete spatio-temporal volume); and, third, learn-
ing new actions is far more efficient – since the tracks are agnostic about the
actions, they can be reused for any action, and training the classifier for new
actions is cheap.

While the idea of combining tracking and classification for action localization
is not new, previously it has mainly been applied to video restricted to a static
camera [13, 14] or simple background with limited clutter, as for example foot-
ball or ice hockey fields [15, 16]. In such a context methods such as background
subtraction or image differencing can localize the actors. Furthermore, recogni-
tion tasks often focus on periodic and continuous actions (e.g., handwaving or
running) or only perform temporal, but not spatial, localization [17].

A few recent approaches address the problem of localizing natural actions
in realistic cluttered videos. Laptev and Pérez [7] localize actions by training
an action-pose specific human detector (e.g. for the moment of drinking) in
combination with a spatio-temporal video block classifier. Willems et al. [18]
also improve efficiency of detection, in their case by using visual words that are
discriminative for an action to propose spatio-temporal blocks for subsequent
classification. Ke et al. [19] matches spatio-temporal voxels to manually created
shape templates. As will be seen our method substantially outperforms [7, 18].

The datasets and evaluation method used throughout the paper are described
in section 2. In particular we introduce a new dataset for training and testing
action localization – Hollywood–Localization. Section 3 describes the tracking-by-
detection method we use to obtain human tracks. Given the track, we determine
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if the action occurs and when (temporal localization) using a sliding window
classifier based on the new spatio-temporal track-adapted 3D-HOG descriptor
(section 4). In section 5 we compare our approach to previous methods and
descriptors using the Coffee&Cigarettes (C&C ) dataset [7], and present results
for our new dataset Hollywood–Localization. We demonstrate that our use of a
generic human tracker does not reduce performance over action specific methods;
indeed our performance exceeds previous localization results. Furthermore, we
show that the human tracks can be used for multiple actions, including: drinking,
smoking, phoning and standing-up.

2 Datasets and evaluation method

We use two movie datasets in this work: C&C (in which we additionally anno-
tate the smoking action) and our new Hollywood–Localization dataset. The new
dataset and the corresponding annotations will be made available online if the
paper is accepted.

Coffee&Cigarettes. The film C&C consists of 11 short stories, each with dif-
ferent scenes and actors. The dataset C&C introduced by Laptev and Pérez [7]
consists of 41 drinking sequences from six short stories for training and 38 se-
quences from two other short stories for testing. Additionally, the training set
contains 32 drinking samples from the movie Sea of Love and 33 drinking sam-
ples recorded in a lab. This results in a total of 106 drinking samples for training
and 38 for testing.

We evaluate additionally on smoking actions. The C&C dataset also provides
annotations for smoking, however, no results for localization have been reported
in [7]. The smoking training set contains 78 samples: 70 samples from six short
stories of C&C (the ones used for training the drinking action) and 8 from Sea

of Love. 42 samples from three other short stories of C&C are used for testing.
We use the evaluation protocol of [7] in our experiments: an action is cor-

rectly detected if the predicted spatio-temporal detection has an overlap with
the ground truth annotation O(X, Y ) ≥ 0.2. The overlap between a ground truth
cuboid Y and a track segment X is given by O(X, Y ) = (X ∩Y )/(X ∪Y ). Once
an annotated sample has been detected, any further detection is counted as a
false positive.

Hollywood–Localization. To evaluate the performance of our approach on
challenging video data, we introduce the Hollywood–Localization dataset based
on sequences from Hollywood movies [11]. In total we annotated 130 clips con-
taining the action answer phone and 278 clips with the action standing-up. The
same number of randomly selected clips not containing the action are used as
negatives in each case. We keep the training/test movies split from [11] which
roughly divides the samples into two halves.

Since Hollywood–Localization actions are much more dynamic, a cuboid is no
longer an adequate representation for the ground truth. Therefore, the ground
truth we provide specifies an action by its temporal start and end frames, and a
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spatial localization rectangle for one of the intermediate frames. For evaluation
we adapt the C&C protocol. The overlap in time is computed as Ot(X, Y ) =
O(Xt, Yt), and in space as Os(X, Y ) = O(Xs, Ys), where Xt and Yt are the
temporal extents of the track X and the annotation Y , and Xs and Ys are the
corresponding spatial rectangles in the annotated action frame. The final overlap
is computed as O′(X, Y ) = Ot(X, Y ) × Os(X, Y ) and the accuracy threshold is
set to 0.2 as for C&C .

3 Human detection and tracking

To detect (i.e. localize) and track human actors we use the tracking-by-detection
approach [20–23] that has proved successful in uncontrolled video. This involves
detecting humans in every frame, and then linking the detections using a simple
general purpose tracker. We illustrate the method here for human upper body
detections using a HOG [12] descriptor and sliding window linear SVM classifier.
The method is equally applicable to other human detectors – such as faces or
whole bodies (pedestrians). Following [21], we use KLT [24] as the tracker. Since
tracking and detection are not the main focus of this work we only concentrate
on the novel aspects here. In particular, the interpolation of missed detections,
and a classification stage for the final tracks in order to reduce false positives.

3.1 Upper body detection and association by tracking

For human actions in movies, an upper body detector [22, 7] is suitable for
medium and long shots. Based on Dalal and Triggs [12], the upper body detector
is trained in two stages. In the initial stage, positive and negative windows are
extracted from the Hollywood–Localization training movies. For this purpose we
have annotated heads in keyframes and automatically extended them to upper
bodies. Each annotation window is jittered [25] and flipped horizontally amount-
ing to over 30k positive training samples in total. We sample about 55k negative
training windows that do not overlap significantly with the positive annotations.
For the second retraining stage, we follow the strategy of Dalal and Triggs [12]
and look for high ranked false positives using the initial stage detector. We re-
trieve additional 150k false positives from the Hollywood–Localization training
movies, and also add over 6k jittered positives and 9k negatives from the C&C

training set.
Figure 1 (left) compares the precision-recall plots obtained for the two stages

of the detector. We evaluate the predicted upper bodies using ground truth
annotation for 137 frames of C&C [7] not used for training, for a total of 260
upper bodies. A person is considered to be correctly localized when the predicted
and ground truth bounding box overlap (intersection to union) ratio is above
0.5. Re-training improves the precision for low recalls but with some loss of recall
(blue initial and green retrained lines). However, the recall is largely recovered by
the interpolating tracker (red line) which fills in missing detections (as described
in section 3.2).
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Fig. 1. (left) Upper body detector evaluated on frames from the C&C sequences
not used for training. Average precision is given in parentheses. Note how precision is
improved with detector retraining, and both precision and recall with tracking. (right)
Precision of tracks for various filtering methods at recall rates of interest on C&C stories
not used for training. Note the huge improvement obtained by classifying on a set of
track properties, rather than using the properties individually.

Upper body detections are associated between frames using a KLT [24] fea-
ture tracker. In a similar manner to Everingham et al. [26], the number of KLT
features passing through two detections (both forwards and backwards in time)
is used to compute a connectivity score between them, and detections are then
linked by agglomerative clustering.

3.2 Interpolation and smoothing

Detections can be missing in some frames, and hence the tracks formed by ag-
glomerative clustering can have temporal gaps. To construct continuous tracks,
it is necessary to fill in these gaps (otherwise the subsequent computation of the
action descriptor is more difficult). Furthermore, the position and scale of the
upper body detections can be noisy. In order to provide a stable reference frame
for the subsequent action classification, we smooth (and complete by interpola-
tion) the estimated detection window by optimizing over the track parameters
{p

t
}:

min
{pt}

∑

t∈T

(

||pt − p̄t||2 + λ2||pt − pt+1||2
)

(1)

where pt = (xt, yt, wt, ht) denotes the position, width and height of a bounding
box at time instance t for a track T , p̄t = (x̄t, ȳt, w̄t, h̄t) are the detections
and λ is a temporal smoothing parameter. Note that if a detection is missed,
then the appropriate term p̄t is removed from the cost function for that frame.
Optimizing (1) results in a linear equation with a tri-diagonal matrix, which can
be solved efficiently by Gaussian elimination with partial pivoting. Setting λ = 4
for 25Hz videos results in a virtual “steadi-cam” with no adverse oversmoothing.

Figure 1 (left) shows the gain from smoothing and completing detections
to form tracks. Exploiting the temporal consistency (tracking) significantly im-
proves the recall of the retrained human detector.
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Fig. 2. Upper body detections (top row) and tracks (bottom row) after classification
post-processing for a sample test sequence of C&C . The bounding box colours indicate
different tracks. Note the improvement due to the tracking where false positives have
been removed, as well as the high accuracy despite motion, articulations and self-
occlusions.

3.3 Classification post-processing

Since the upper body detector considers only a single frame, background clutter
can generate many false positives. Some of these are quite stable and survive
tracking to produce erroneous human tracks that should be removed.

We take a principled approach and in a final stage train a classifier to distin-
guish correct from false tracks. To this end, we define 12 track measures based
on track length (since false tracks are often short); upper body SVM detection
score (false detections normally have a lower score than true ones); scale and
position variability (those often reveal artificial detections); and occlusion by
other tracks (patterns in the background often generate a number of overlap-
ping detections). For these measures we compute a number of statistics (min,
max, average) where applicable and form a 12-dimensional feature vector used to
classify the track. We obtain ground-truth for the tracks using 1102 annotated
keyframes from Hollywood–Localization training movies (a track is considered
positive if it coincides with an actor in the annotated keyframe, and negative
otherwise) and train an SVM classifier (linear and RBF). The SVM is then used
to classify the tracks.

Figure 1 (right) compares different methods used to remove erroneous tracks
resulting from background clutter. The detection score turns out to be crucial
for recognizing true human tracks. Nevertheless, training an SVM classifier on
all 12 track measures significantly improves recognition precision compared to
any heuristics on the individual measures. Using either a linear or a non-linear
SVM, the precision at a useful recall of 0.8 improves from 0.14 to 0.73, i.e., the
number of false positives is reduced by more than two thirds. The benefits to
both precision and recall are evident in figure 1 (left).

Overall, the proposed human detection and tracking method copes with a
rich set of articulations, viewing angles and scales, as illustrated in figure 2, and
results significantly improve over the individual human detections. Missed actors
arise from unusual shots with camera roll, face close-ups or distant views. In
crowded scenes, background actors might be missed, but most of the foreground
characters are detected.
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Fig. 3. The HOG-Track descriptor: (left) the human tracker detects and tracks a
human upper body; (right) the HOG-Track descriptor divides the track into temporal
slices. Each slice is aligned with the bounding box of its centre frame and is divided
into a spatial grid of cuboid cells.

4 Action localization

Given a set of human tracks, the goal is to determine which tracks contain a
given action and to localize the action within the track. Our approach is based
on a temporal sliding window, that is, we search for a range of frames which
contains the action. Due to the tracks, the spatial extent of the action is already
fixed. Consequently, we only need to delimit the beginning and length of an
action (a two dimensional search space). This is in contrast with an exhaustive
search, which needs to determine also the 2D image region corresponding to the
human, i.e., its position and scale in the case of a sliding window approach.

Actions are represented by a spatio-temporal window descriptor. Our de-
scriptor extends the HOG image descriptor [12] to spatio-temporal volumes,
and goes beyond a rigid spatio-temporal cuboid [7, 18], as it adjusts piecewise to
the spatial extent of the tracks. This introduces a more flexible representation,
where the description will remain centred on the deforming human action. This
descriptor is termed HOG-Track , and is described in section 4.1. For temporal
localization we use a state-of-the-art two stage sliding window classifier [27, 28]
on the tracks.

4.1 HOG-Track descriptor

The HOG-Track action descriptor divides a track segment into cells. As in the
original HOG [12], there are cells in the 2D spatial domain, but additionally
the track segment is divided into temporal slices. These slices are aligned with
a human track, as illustrated in figure 3. In more detail, a given track segment
is defined by a temporal sequence of bounding boxes. This sequence is divided
into equally long temporal slices and the spatial image region corresponding to
the slice is given by the bounding box of its centre frame. This ensures that
our descriptor follows the variation of spatial position of a human within the
spatio-temporal volume of the video.

Each slice is split into a spatial grid of cuboid cells as illustrated in figure 3
and each cell is represented by a histogram of spatio-temporal (3D) gradient
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orientations. Orientation is quantized over an icosahedron—a regular polyhedron
with 20 faces. Opposing directions (faces of the icosahedron) are identified into
one bin, i.e., there are a total of 10 orientations. Each gradient votes with its
magnitude into the neighbouring bins, where weights are distributed based on
interpolation.

For better invariance to position, we design spatially adjacent cells to have
an overlap of 50%. All cell descriptors in a slice are L2 normalized per slice,
and the final descriptor concatenates all cell descriptors. The parameters of the
descriptor (the spatial grid and temporal slice granularity) are determined by
cross-validation, as described in section 5. On the drinking and smoking actions
the training performance is optimized for a spatial grid of 5 × 5 and 5 temporal
slices. The dimensionality of the resulting descriptor is 10 orientation bins ×
52 spatial cells × 5 temporal slices = 1250. This configuration is used in all our
experiments.

4.2 Action classification and localization

Our temporal sliding window approach extracts descriptors at varying locations
and scales. To classify these descriptors, we use a state-of-the-art two stage
approach [27, 28] which rejects most negative samples with a linear SVM, and
then uses a non-linear SVM with an RBF kernel to better score the remaining
samples.

When training the sliding window classifier, the ground-truth annotations
are matched to the tracks and the action part of the track is used for training.
The HOG-Track is computed for this temporal section, i.e., the temporal slices
are aligned with the ground-truth begin and end time stamps of the action. The
spatial regions are obtained from the track bounding box of the centre frame of
each slice. Training is very similar to the detector training of section 3: additional
positives are generated here by jittering the original positives in time, duration,
and spatial scale. Initial negative samples are obtained by randomly sampling
positions with varying lengths in the tracks, which do not overlap with any
positive annotations, and in a re-training stage hard negatives are added to the
training set. The C parameter and weight for positive samples are determined on
the training set using a leave-one-video-out cross-validation. The second stage
classifier uses a non-linear SVM with an RBF kernel and is trained on the same
training data as the linear one. Again, we optimize the parameters via cross-
validation.

At test time, a sliding window is used to localize actions. Seven temporal
window scales are evaluated starting from a minimum length of l = 30 frames,
and increasing by a factor of

√
2. The window step size is chosen as one fifth

of the current scale. The HOG-Track descriptor for each window is classified
with the linear SVM. Non-maxima suppression then recursively finds the global
maximum in a track and removes all neighbouring positive responses with an
overlap greater than 0.3. The remaining detections are re-evaluated with the non-
linear SVM classifier. As will be seen next, this second re-scoring stage improves
classification results considerably.
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Fig. 4. HOG-Track descriptor evaluation: for a varying number of spatial cells and
temporal slices for drinking and smoking actions on the C&C test dataset averaged
over three runs.

5 Experimental results

5.1 Coffee&Cigarettes

Tracks for action localization. Our action localization method depends on
correct track positions in space and time. When training the sliding window
classifier, the ground-truth is matched to the tracks and the corresponding tracks
are used for training. We only keep samples that have an overlap of at least 0.5.
This results in a loss of around 10% of the training samples. During testing
an action can not be detected if the track is not localized. This reduces the
maximum possible recall by again around 10%.

Descriptor evaluation. In order to determine a suitable layout of our HOG-

Track descriptor, we evaluate its parameters using cross-validation on the train-
ing set. Best results are obtained for 5 or 7 temporal slices; we use 5 as it results
in a lower dimensional descriptor. The performance is quite sensitive to the num-
ber of spatial cells, best results are obtained for 5× 5. This behaviour translates
also to the test set which is illustrated in figure 4. The performance is averaged
over three independent runs.

Localization results & comparison to state of the art. Figure 5 presents
precision-recall curves for localizing drinking and smoking actions in C&C . The
detectors are trained on the training part of each dataset and evaluated on the
corresponding test sets. Figure 5 (left) evaluates the detection results for local-
izing drinking actions. Under the same experimental setup, the linear classifier
(50.8%) substantially outperforms the state-of-the-art, i.e., Willems et al. [18]
(45.2%) and Laptev and Pérez [7] (43.4%). The non-linear classifier further im-
proves the results (54.1%). Note the excellent precision (100%) up to a recall of
ca. 30%. Figure 6 (top) illustrates the corresponding top 5 drinking localizations
ordered by their SVM score. Note the variety of camera viewpoints and lighting.

Figure 5 (right) evaluates the detection results for localizing smoking actions.
The non-linear classifier turns out to be crucial, improving the performance by
+5.4% to 24.5% in terms of AP. The noticeably lower performance for smoking
(when compared to drinking) can be explained by the large intra-class variability
of this action. Temporal boundaries of a smoking action can in fact be only
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Fig. 5. Precision-recall curves on the C&C test set. Human actions evaluated: drinking
(left) and smoking (right). We compare our linear and non-linear detectors and report
state-of-the-art results where applicable.

loosely defined and smoking often happens in parallel with other activities (like
talking or drinking). Furthermore, a cigarette is smaller and less distinctive than
a cup. Previous action analysis on this dataset [7, 18] did not include smoking,
so no comparisons can be given. The top 5 smoking localizations are shown
in figure 6 (bottom). Interestingly, the false positive ranked 4th includes rapid
vertical motion of the hand towards head and mouth.

Since drinking and smoking actions seem to be visually similar, it is interest-
ing to assess the discriminative power of both classifiers. For this, we measure the
performance of a drinking classifier for the task of localizing smoking and vice
versa. Table 1 displays the confusion between the actions drinking and smok-
ing. In both cases the performance is very low (around 5% AP) which shows
that both classifiers are able to learn discriminative models that can distinguish
visually similar, yet different actions successfully.

Comparison with other action descriptors. To show the importance of
computing the HOG-Track descriptor on the spatial extent of humans deter-
mined by tracks, we conduct experiments with a number of baseline classifiers.
We keep the experimental setup and descriptor parameters the same.

t
1. (TP) 2. (TP) 3. (TP) 4. (TP) 5. (TP)

1. (TP) 2. (TP) 3. (TP) 4. (FP) 5. (TP)

Fig. 6. The five highest ranked drinking (top) and smoking (bottom) detections on
C&C . For drinking the first false positive (FP) is ranked 11th.
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Drinking action Smoking action

Drinking detector 54.1% 5.3%
Smoking detector 5.0% 24.5%

Table 1. Performance (AP) of drinking and smoking classifiers when localizing drinking
and smoking actions. Note that the classifiers do not confuse the actions.

First, we extract the HOG descriptor for the entire video frame, i.e., ignore
the tracks. In this case the evaluation criterion only measures the overlap in
time, as we do not determine the spatial extent. The average precision for the
linear baseline classifier on the C&C drinking dataset is 8.1% (vs 50.8% with
tracks) and for the non-linear one it is 17.1% (vs 54.1%). Clearly, such baseline
is able to localize drinking actions to some extent, but its performance is inferior
without the spatial localization provided by the tracks.

Next, we evaluate the importance of adapting the HOG-Track descriptor to
tracks. We compute the descriptor for a spatio-temporal cuboid region tangent
to the track. Precisely, we align the centre of the cuboid with the track, but
do not “bend” it along the track. The performance for the linear classifier on
drinking is 28.9% (vs 50.8% with adaptation) and this improves to 47.3% (vs
54.1%) with the non-linear classifier. This confirms the importance of descriptor
adaptation.

Finally, we further evaluate the cuboid representation by performing an ex-
haustive (i.e., not using tracks) spatio-temporal search for an action. The non-
linear classifier achieves an AP of 25.8% (vs 54.1%) for drinking. Figure 7 com-
pares all these different methods. We also include results for the exhaustive
cuboid search carried out by Laptev and Pérez [7]. Overall, using tracks to drive
the action localization significantly outperforms the other approaches.

Complexity. In the following we investigate the theoretical and practical time
complexity of our localization approach. We also discuss memory requirements
and compare to an exhaustive “sliding cuboid” baseline.

For the theoretical analysis, without loss of generality we assume a linear
one-against-rest classifier. We consider the number of multiplications in classifier
evaluation (i.e., computing the dot product in the linear case) as the complexity
measure. In a standard sliding window scheme the classifier is evaluated once for
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Fig. 7. Precision-recall curves comparing HOG-Track to other action descriptors on
C&C for the action drinking.
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each window. Consequently, the total recognition cost will linearly depend on
(a) the number of actions considered, (b) the number of windows evaluated, and
(c) the dimensionality of the descriptor. The complexity of the “sliding cuboid”
baseline can therefore be written as O(a · s2

x
st · r2

x
rt) where a is the number of

actions, sx/st denote spatial/temporal size of the problem (video), and rx/rt

correspond to spatial/temporal resolution (dimensionality) of the descriptor.
Our approach combines a spatial sliding window human classifier and a tem-

poral detector. Its complexity can be written as O(s2
x
st · r2

x
+ a · tst · r2

x
rt) where

t corresponds to the number of tracks in the video. Note that the above expres-
sion is normally dominated by the spatial search (left term). Compared to the
exhaustive approach, we gain from having an action-agnostic classifier (no factor
a) and using a simpler detector first (no factor rt). The temporal search (right
term) is fast since it searches only one dimension and t ≪ s2

x
.

In practice, the difference in the runtime is even more significant due to
limited memory. Computing the video descriptor does not allow for many op-
timizations which are possible for a single frame/image – like precomputing or
caching the gradient histograms for instance. This in practice adds another factor
to the sliding cuboid complexity. It does not affect our method since in our case
the complexity is dominated by human detection, where memory requirements
are not a problem.

The theoretical analysis above is confirmed in practice. Processing about 25
minutes of video using our method takes about 13 hours in total on a standard
workstation. Human detection takes under 10 hours, tracking humans adds 3
hours, action localization is performed in under 10 minutes. For comparison,
running an exhaustive cuboid search on the same data takes over 100 hours.

5.2 Hollywood–Localization

For this dataset we use the same parameters throughout as those used for C&C .
Figure 8 (left) evaluates the detection results for localizing phoning actions in
our Hollywood–Localization dataset. Due to the much larger variety of the videos
(Hollywood movies), this dataset is much more challenging than C&C . The dif-
ficulty of the task is further increased by the fact that negative samples con-
tain, without exception, other dynamic human actions. Some of those actions,
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Fig. 8. Precision-recall curves for the actions answering phone and standing-up of the
Hollywood–Localization test set.
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Fig. 9. The five highest ranked phoning (top) and standing-up (bottom) actions de-
tected on Hollywood–Localization. For phoning the first FP is ranked 6th.

like eating for example, might share similar motion patterns. Nevertheless, the
recognition performance is satisfactory. In almost 40 minutes of video we can
correctly localize over 80% of phoning actions and retrieve the top ones with
high precision. The top 5 phoning localizations on the test set are shown in
figure 9 (top). The true positive detections cover a large variety of poses and
scenes. The top false positives mostly involve a rapid vertical hand movement.

Figure 8 (right) evaluates the detection results for localizing standing-up

actions, and figure 9 (bottom) shows the top 5 detections. This action differs
from the previous three as it does not involve the hand moving towards the
head. The results are promising; the recall is worse than for all the other classes,
but the precision is satisfactory.

6 Conclusion

We have demonstrated the value of using human tracks for visual action local-
ization. In each dataset the same tracks support localization of different types
of actions. This allows natural human actions to be effectively recognized in
challenging environments.

A track introduces a separation between the human foreground and back-
ground of a scene, and either or both may provide information. In this paper we
have proposed a robust model for foreground regions. In the future, given this
separation, appropriate descriptors and classifiers can then be learnt for the fore-
ground and background regions. For example, if the camera is panning to follow
a person, then the motion from the background can be suppressed. However, for
some actions it will be the background (the context) or background motion that
is more informative, e.g. perhaps in the case of a person standing up.
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