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Introduction

Tuberculosis (TB) caused by the human
pathogen Mycobacterium tuberculosis, is the lead-
ing cause of morbidity and mortality caused by in-
fectious agents worldwide.

Eight million new cases of tuberculosis (TB),
along with 2-3 million TB-related deaths, are
recorded each year, and it is estimated that one-
third of the world’s population is presently infect-
ed with Mycobacterium tuberculosis [1]. Fortu-
nately, not all individuals infected with M. tuber-
culosis will develop overt disease, and ~90%-95%
of infected individuals will stay healthy through-
out their lives. In contrast to individuals with ac-
tive TB, the vast majority of individuals with latent
TB can therefore be considered to be protected by
an appropriate, naturally acquired immune re-
sponse to M. tuberculosis antigens.

Tuberculosis is primarily acquired through in-
halation of airborne droplets containing Mycobac-
terium tuberculosis (Mtb) (fig. 1). The bacteria
travel to distal regions of the lung and are engulfed
by lung dendritic cells (DCs) and macrophages. In
the vast majority of individuals, an orchestrated
series of innate immune pathways and T-helper 1
(Th1)-dominant adaptive immune pathways are

activated following phagocytosis of the bacteria,
to culminate in a granuloma at the initial focus of
infection [2].

Many studies, notably those on monozygotic
and dizygotic twins, indicate that inherited genetic
factors play a key role in determining susceptibili-
ty and resistance to overt TB following infection
[3]. The immune interactions between the host and
the highly complex molecular structure of M. tu-
berculosis are multifactorial.

At the site of multiplication of bacilli, neu-
trophils are the first cells to be recruited, followed
by NK cells, γ/δ T cells, and α/β T cells [4]. Stud-
ies in humans have demonstrated that neutrophils
provide agents such as defensins, which are lack-
ing in macrophage-mediated killing [5]. NK cells
are also the effector cells of innate immunity.
These cells may directly cause the lysis of
pathogens or that of infected monocytes. In vitro
co-culture with live M. tuberculosis results in the
expansion of NK cells, implying that they may be
important responders to M. tuberculosis infection
in vivo. During early infection, NK cells are capa-
ble of activating phagocytic cells at the site of in-
fection [6].

From the standpoint of the host, resistance to
infection is dependent on the ability of macro-
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Tuberculosis (TB) caused by the human pathogen
Mycobacterium tuberculosis, is the leading cause of mor-
bidity and mortality caused by infectious agents world-
wide. Recently, there has been an ongoing concern about
the clarification of the role of specific human genes and
their polymorphisms involved in TB infection. In the vast
majority of individuals, innate immune pathways and T-
helper 1 (Th1) cell mediated immunity are activated re-
sulting in the lysis of the bacterium.

Firstly, PTPN22 R620W polymorphism is involved in
the response to cases of infection. The Arg753Gln poly-
morphism in TLR-2 leads to a weaker response against the

M. tuberculosis. The gene of the vitamin D receptor (VDR)
has a few polymorphisms (BsmI, ApaI, Taq1, FokI) whose
mixed genotypes alter the immune response. Solute carrier
family 11 member (SLC11A1) is a proton/divalent cation
antiporter that is more familiar by its former name
NRAMP1 (natural resistance associated macrophage pro-
tein 1) and can affect M. tuberculosis growth.

Polymorphisms of cytokines such as IL-10, IL-6, IFN-g,
TNF-a, TGF-b1 can affect the immune response in various
ways. Finally, a major role is played by M. tuberculosis
antigens and the Ras-associated small GTP-ase 33A.

As far as we know this is the first review that collates
all these polymorphisms in order to give a comprehensive
image of the field, which is currently evolving.
Monaldi Arch Chest Dis 2008; 69: 1, 24-31.
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phages to phagocytose and destroy the bacilli; and
this, in turn, is affected by class II HLA-deter-
mined antigen presentation, the activation of
macrophages by T cell-derived cytokines and vita-
min D [7], and granuloma formation. Several of
the genes involved in these processes have been
identified, notably the HLA-DR and HLA-DQB1
loci, which determine which mycobacterial anti-
gens are presented to helper T cells.

But, the diagnosis of M. tuberculosis infection
is more difficult to establish than with almost
every other common bacterial infection [8] and it
seems that the study of genes involved in the pro-
cedures of the infection will give the possibility
both to diagnose and try curing tuberculosis. Sup-
posing we know the genetic profile of the patient
we will be able to make prompt and accurate prog-
nosis. Moreover screening of the population will
lead to the restriction of epidemics of certain
strains.

Genes and their polymorphisms associated 
to Tuberculosis

HLA haplotypes gene and the association with TB

At the beginning of the host immune response
the HLA-complex system is involved in the pre-
sentation of the antigen. Thus, its association is un-
doubted and table 1 illustrates some of the studied
HLA haplotypes appearing in TB infected patients
worldwide, as it would take too long to discuss this
subject thoroughly.

Nevertheless, MHC genes are not sufficient in
conferring susceptibility or resistance to disease.
However, non-HLA genes have also been impli-
cated in TB susceptibility.

PTPN22 R620W Polymorphism in TB

The PTPN22 gene product (i.e., Lyp) is an im-
portant downregulator of T-cell activation and oth-
er cell subsets such as NK cells and neutrophils,
the action is performed through physical interac-
tion with Csk and probably through its interaction
with the adaptor molecule Grb2 [12, 13].

Remarkably, the association of the PTPN22
polymorphism with disease (table 2) in the popu-
lation selected by Gomez et al. [14] is opposite to
that of TB and autoimmunity, suggesting positive
selection. Natural selection for resistance to a
pathogen can increase the frequency of alleles that
are otherwise deleterious. Thus, infectious dis-
eases such as TB may exert immunological pro-
tection against autoimmunity (by homeostatic
competition, bystander suppression, or toll-like re-
ceptor stimulation), favouring at the same time, a
selective genetic pressure that would increase the
risk of autoimmune diseases.

Polymorphism in TLR-2

TLRs comprise a family of mammalian cell-
surface proteins that stimulate pro-inflammatory
cytokine gene transcription in response to various
microbial ligands. TLRs mediate cellular respons-
es to microorganism, but are not required for
phagocytosis. Members of the mammalian TLR
family have been implicated in the activation of
macrophages by a variety of chemically diverse

Table 1. - HLA haplotypes associated with pulmonary TB

HLA haplotype associated Population
with pulmonary TB

HLA-DRB1*1501 Asian Indians [9]

HLA-DQB1*0502 Asian Indians

HLA-DQB1*0503 Vietnam [10]

HLA-DQB1*05 Poland [11]

HLA-DQB1*02 Poland

Table 2. - PTPN22 R620W polymorphism and the association of its carriers with TB

T allele carriers C allele carriers

Tuberculin skin test positive (TST+) Protected against disease Prone to development of overt TB

Tuberculin skin test negative (TST-) Comlementary mechanisms active,
or never contacted the M. tuberculosis

Fig. 1. - Genes and their polymorphisms associated to Tuberculosis.
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Table 3. - The Arg753Gln Polymorphism in TLR-2
has genotypes showing certain connection with TB
occurance

Genotype Risk of TB

GG Healthy
GA 1,60 fold higher risk than in GG carriers
AA 6,04 fold higher risk than in GG carr

bacterial products [15, 16]. TLR2 is involved in
the recognition of various lipoproteins of microor-
ganisms such as Borrelia, Mycoplasma and Tre-
ponema, and certainly M. tuberculosis [17].
Blocking this receptor abolishes the ability of
macrophages to sense and respond to mycobacteri-
um. Macrophages sense the presence of mycobac-
teria through activation of TLR2 (firstline de-
fence), triggering activation of further immune re-
sponse (TNF-a, interleukin-1 production, antigen
processing, activation of T-lymphocytes, interfer-
on gamma production, etc.) in later events. In vit-
ro studies have shown that TLR2 activation direct-
ly leads to intracellular killing of M. tuberculosis
by alveolar macrophages [18].

Lorenz et al. [19] reported a novel polymor-
phism in the TLR2 gene (arginine to glutamine
substitution at residue 753 (Arg753Gln)) that leads
to a decreased response of macrophages to bacter-
ial peptides, resulting in an attenuated immune re-
sponse in the host.

Ogus et al. [20] have studied the Arg753Gln
Polymorphism in TLR-2 (table 3).

This TLR2 gene polymorphism may be one of
the factors influencing disease susceptibility, al-
though other factors or defects in different steps of
the immune response (even other polymorphisms
of TLR2 or other TLRs) might also be responsible
for an inability to prevent progression of TB infec-
tion to disease.

TLR activation of human macrophages up-
regulates expression of the vitamin D receptor
and the vitamin D-1-hydroxylase genes, leading
to induction of the antimicrobial peptide catheli-
cidin and killing of intracellular Mycobacterium
tuberculosis. Moreover, sera from African-Amer-
ican individuals, known to have increased sus-
ceptibility to tuberculosis, had low 25-hydroxyvi-
tamin D and were inefficient in supporting cathe-
licidin messenger RNA induction. Thus, there is
a link between TLRs and vitamin D–mediated in-
nate immunity suggesting that differences in abil-
ity of human populations to produce vitamin D
may contribute to susceptibility to microbial in-
fection [21].

The role of vitamin D receptor (VDR) gene

Vitamin D receptor (VDR) gene is one of the
important candidate genes (non-MHC gene) being
studied in tuberculosis. The importance of poly-
morphic variant genotypes of VDR gene has been
emphasised on the susceptibility or resistance to

Fig. 2. - Vitamin D receptor and the translocation of the receptor into
nucleus.

various infectious diseases including pulmonary
tuberculosis (PTB) [22]. Before the discovery of
effective antimycobacterial drugs, vitamin D3 was
used to treat patients with cutaneous TB with strik-
ing effects and vitamin D3 therapy in the form of
cod liver oil and exposure to sunlight were used to
treat human tuberculosis. 1.25-dihydroxy vitamin
D3 is an important immunomodulatory hormone,
which activates monocytes and suppresses lym-
phocyte proliferation, immunoglobulin produc-
tion, and cytokine synthesis [23]. Moreover, this
hormone has been shown to act as both an “upreg-
ulating agent” during natural immunity via the 
enhancement of phagocytosis by monocyte/
macrophage populations and a “downregulator”
during acquired immune responses via an inhibito-
ry effect on MHC Class II expression by antigen
presenting cells.

Vitamin D receptor and the translocation 
of the receptor into nucleus

Vitamin D3 exerts its action through VDR, a
nuclear hormone receptor (fig. 2). VDR is present
on monocytes and activated T and B lymphocytes.
VDR is a ligand activated transcription factor,
which upon binding with vitamin D3, het-
erodimerises with Retinoid X Receptor and inter-
acts with Vitamin D response elements, upstream
of target genes and alters their transcription [24].
Several polymorphisms have been identified in the
VDR gene, most of which are identified by A bial-
lelic variation in restriction enzyme sites, which
include the BsmI, ApaI at intron 8 (T to G), a silent
TaqI site in exon 9 (T to C) and a functional FokI
site (C to T). Altered VDR mRNA expression has
been shown with variant genotypes of the VDR
gene [25] (tables 4, 5).

The observed unresponsive nature of the
macrophages and lymphocytes to vitamin D3
stimulation in PTB patients, irrespective of the
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variant genotypes of VDR gene, may be due to in-
creased level of endogenous secretion of vitamin
D3 by activated alveolar macrophages and other
cells which is suggested to be associated with hy-
percalcemia in tuberculosis [26]. High level of en-
dogenous vitamin D3 during active stage of tuber-
culosis may downregulate the expression of
VDRs and make the cells refractory to external
administration of vitamin D3 under in vitro condi-
tion.

SLC11A1 (NRAMP1) gene and the association
with TB

Solute carrier family 11 member 1 protein
(SLC11A1), formerly called NRAMP1 (for Natur-
al Resistance Associated Macrophage Protein 1),
is a protein with highly conserved amino acid se-
quence across species [27]. The SLC11A1 gene,
located on 2q35, is 14 kb in length and contains 15
exons. The SLC11A1 protein is a pH-dependent
proton/divalent cation antiporter involved in
macrophage function. The Slc11a1 gene in mice
has been implicated in susceptibility to inflamma-

tory autoimmune disorders [28] and to certain in-
tracellular pathogens such as Mycobacteria, Leish-
mania and Salmonella [29]. Although the mecha-
nism by which SLC11A1 controls intracellular
pathogens remains unclear, polymorphisms of hu-
man SLC11A1 are associated with susceptibility
to several inflammatory autoimmune disorders as
well as infectious diseases including leprosy, TB,
visceral leishmania (VL) and human immunodefi-
ciency virus (HIV). Two independent studies in the
Gambian population confirm the association be-
tween SLC11A1 and susceptibility to TB infection
[30,31] (table 6). However, other association stud-
ies were unable to link SLC11A1 with susceptibil-
ity to TB in Moroccans [32].

Furthermore, a study of linkage disequilibrium
(LD) of 8 SNPs across the 14 kb SLC11A1 gene
provides evidence that two distinct patterns of
tight LD exist for this gene in a Chinese popula-
tion; there is high LD among markers in the 5’re-
gion and among markers in the 3’region, but not
between these regions [34]. A similar pattern was
observed between markers in the 5’ and 3’region
of the gene in a Gambian population.

Therefore, it is critical to identify and use
markers from across the entire gene for use in as-
sociation and linkage studies of disease suscepti-
bility. Microsatellites previously identified at this
locus include a Z-DNA forming (GT)n dinu-
cleotide repeat in the promoter region of the
SLC11A1 gene reported to have enhancer activity
and a tetranucleotide (CAAA)n repeat at the
3’UTR terminal region of the gene [35].

Ras-Associated small GTP-ases

The contribution of CD8+ T cells to the an-
timycobacterial host response includes:
a) cytotoxicity mediated via a granule-dependent

exocytosis pathway;
b) cytotoxicity mediated via Fas/Fas ligand inter-

action;
c) direct microbicidal activity; and
d) release of cytokines [36].

Among relevant cytokines, T cell-derived in-
terferon (IFN)-g is central to the protective host
immune response. IFN-g is expressed on antigen-
specific activation and leads to maturation of ef-
fector T cell functions and activation of infected
macrophages. Macrophages play a dual role in the
antimycobacterial host response: on the one hand,
they restrict the growth of engulfed mycobacteria;
on the other hand, they shield the pathogen from

Table 6. - SLC11A1 polymorphisms and their genotypes

Polymorphism Genotype Association with TB

INT4 CC Significant in pulmonary TB [33]

D543N GA Significant in pulmonary TB

GG+ haplotype Reduced frequency in patients

CAdel Reduced frequency in patients

Table 4. - VDR gene polymorphisms and their alleles

Genes

BsmI ApaI TaqI FokI

Alleles BB AA TT FF
Bb Aa tt Ff

Table 5. - VDR gene polymorphisms and the associ-
ation of certain alleles and genotypes with TB

Genotype VDR expression

BB Increased
Bb Normal
AA Normal
Aa Normal
TT Normal
tt Increased
FF Increased
Ff Normal
BBAAtt Increased
BAt Increased
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being extinguished [37]. M. tuberculosis resides in
phagosomal vesicles, where complex interactions
between pathogen and host have evolved. A cru-
cial element of mycobacterial survival involves the
blockade of phagosomal maturation, which nor-
mally leads to the death of the engulfed microbes.
In this process, the recruitment of regulatory en-
zymes to the phagosomal membrane is disrupted
by M. tuberculosis.

Ras-associated small GTPase (Rab) 5 and
Rab7 are essential mediators of these fusion
events; Rab5 accumulates in the membranes of M.
tuberculosis-containing phagosomes, whereas re-
cruitment of Rab7 is inhibited [38]. Rab molecules
play decisive roles in the regulation of intracellular
trafficking in various cell types and tissues [39]. In
T cells, for example, Rab27A controls the exocy-
tosis of lysosomes as an important step in the re-
lease of cytotoxic granules as part of antimicrobial
T cell effector functions.

More than 60 Rab family members presum-
ably exist in humans, and some of them play vital
roles in distinct diseases; nonetheless, the function
of the majority of them remains unknown. The
Rab members that outstand are provided in the il-
lustration together with the role they play in the in-
fection. Broader implications for the crucial role
played by regulatory GTPases against TB have
arisen from mouse studies, in which LRG-47, a
member of the IFN-g–inducible p47 GTPase fam-
ily, has been shown to be essential for protection
against TB [40] (table 7).

Cytokine Polymorphisms connected with TB

In TB infection plays an important role in the
interaction between the pathogen and the host im-
mune system. Thus, cytokines play an important
role in anti-TB immune response. Among them,
IFN-g and tumour necrosis factor-a (TNF-a) are
associated with macrophage activation and en-

hanced antimycobacterial capabilities in marine
and human models.

The role of IFN-g as the main macrophage ac-
tivating cytokine during infection with Mtb is well
established in different experimental models. In
humans, in vitro human macrophage anti-Mtb ac-
tivity requires IFN-g. Lymphocytes from TB pa-
tients have diminished IFN-g production in re-
sponse to mycobacterial antigens [45]. However,
the best evidence for a role of IFN-g in resistance
to mycobacterial infections has been obtained in
families with mutations of the a and b chains of the
IFN-g receptor, the interleukin-12 (IL-12) p40
chain, and the IL-12Rb1 genes [46]. In these fam-
ilies, affected individuals have a mendelian sus-
ceptibility to mycobacterial disease, particularly to
non-tuberculous mycobacteria.

TNF-a plays multiple roles in defense and
pathologic responses in TB. In TNF-a gene-targeted
mice, increased susceptibility and structural alter-
ations in granuloma formation have been demon-
strated. TNF-a is also considered a major factor in
host-mediated damage of lung tissue [47]. Howev-
er, the strongest evidence for a protective role of
TNF-a in human TB is the high incidence of TB re-
activation in patients with rheumatoid arthritis treat-
ed with monoclonal antibodies against TNF-a.

In contrast, interleukin-10 (IL-10) and trans-
forming growth factor-b1 (TGF-b1) are considered
macrophage-deactivating cytokines. TGF-b1 en-
hances intracellular growth of Mtb in human
monocytes and downregulates IFN-g production.
Monocytes from TB patients have been reported to
exhibit enhanced production of TGFb1. Further-
more, TGF-b is known to promote collagen depo-
sition and development of fibrotic lesions. IL-10-
deficient mice have increased antimycobacterial
immunity. IL-10 downregulates TH1-induced re-
sponse to Mtb, reactivates chronic pulmonary TB
in mice, and reduces Mtb-induced apoptosis of
murine and human macrophages [48].

Table 7. - Ras-associated small GTP-ase (Rab) polymorphisms and their functions

Rab GTP-ase Function Locus Association with TB

Rab 5 Regulator of phagosome maturation, a process 7q11.21
that is targeted by M. tuberculosis

Rab 7 Regulator of phagosome maturation 3q22.1 Slightly increased in patients

Rab33 CD8+ T cell factor [41]. Killing of M. tuberculosis in Xq26 Reduced gene expression
macrophages by CD8+ T cells via a perforin/granulysin- in patients with TB
mediated process has been described [42]

Rab 24 Participate in fusion events between the endoplasmatic 5q35.3 Increased in patients with TB
reticulum/cis-Golgi compartment and lysosomes 
that control autophagy processes[43]. Elimination 
of M. tuberculosis within macrophages

Rab 13 Regulates continuous endocytic recycling in epithelial 1q21.2 Increased in patients with TB
cell lines [44]

Rab 27A Related to cytotoxic CD8+ T cell functions 15q15-q21.1 Slightly increased in patients with TB
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Patients with TB have increased IL-10 produc-
tion, mainly in anergic patients. However it is sug-
gested that these findings show that IL-6 is in-
volved in stimulating early IFN-g production, but
is not essential for development of protective im-
munity against Mtb [49].

Studies on TB patients with different ethnic
backgrounds have shown conflicting evidence for
TNF-a and IL-10 -1082 polymorphisms associa-
tion with TB. No association was found for TGF-
b. In contrast, published reports agree that IFN-
g+874 allele A, associated with low IFN-g pro-
duction, is associated with pulmonary TB [50],
nevertheless these reports do not differentiate be-
tween different clinical forms of TB (table 8).

Mycobacterial antigens that play 
a role in latent or active TB

It is necessary to make a short reference re-
garding the role of the mycobacterium itself in the
establishment of the infection, so as to have a com-
plete idea of the subject.

The abundance of regulatory proteins in the M.
tuberculosis genome may explain the ability of the
pathogen to adapt to this hostile environment [51]
by up-regulating so-called latency genes. One of
the most prominent of these is the one that encodes
Rv2031c (also known as a-crystallin, HspX, or the
16-kDa antigen), whose importance is demonstrat-
ed by the reduced ability of bacteria deficient in
this gene to grow in macrophages. Moreover, pro-
duction of Rv2031c appears to increase as the bac-
teria go into the metabolically resting stage and to
decrease as they revert to exponential growth [52].
It therefore serves as the prototypic “latency-asso-
ciated antigen”.

Moreover, although M. tuberculosis is an
obligatory aerobic organism, it is able to adapt to
and survive in the hypoxic and hostile environ-
ment of host macrophages. In this regard, it has

been shown that M. tuberculosis undergoes a dra-
matic change in gene transcription characteristic of
non-replicating persistence. When grown in vitro
in oxygen-depleted cultures, as well as in cultures
exposed to nitric oxide, M. tuberculosis up-regu-
lates overlapping, characteristic sets of genes [53],
among which is the gene encoding the small 16-
kDa heat shock protein Rv2031c. Expression of
this protein is increased by a factor of approxi-
mately 4 to 7 during the stationary growth phase
and appears to be crucial for survival of the organ-
ism [54].

In addition, M. tuberculosis strains of the W
Beijing genotype acquired mis-sense mutations in
DNA repair genes [55]. These M. tuberculosis W-
Beijing genotype strains are genetically highly
conserved and widespread.

The success of this group of strains may result
in part from mutations in DNA repair enzymes,
which might provided a true selective advantage
for these bacteria to adapt and persist, including
through the acquisition of resistance to anti-TB
drugs. Mutations in the DNA repair genes might
be the evolutionary answer of the TB bacillus to
increase adaptation to hosts. This adaptation will
lead to increasing trends in the TB epidemic in the
coming decades.

Conclusions

In conclusion, we have to assume that more re-
search and development is needed to determine the
efficacy of new tests in detecting latent TB in both
developed and developing countries [56].

Moreover, the role of human genes in the be-
ginning and progression of pulmonary tuberculosis
has to be clarified. The use of proteomics and tran-
scriptomic analyses will help in the identification
of new genes and we hope that using simple ge-
netic tests will assist as a guide in attempting to
control and cure tuberculosis.

Table 8. - Cytokine polymorphisms involved in TB infections

Cytokine Polymorphism Consequnces/associations

IL-10 -1082 (A/A) Low IL-10 production in patients with pleural TB

IFN-g +874 (A allele) Higher frequency in controls and pulmonary TB patients

+874 (T/T) Decreased in pulmonary TB, but not in pleural or miliary

TNF-a -308

-238 (G/A)

TGF-b1 -509 C-T

+29 T-C In linkage disequilibrium with -509 C-T

+915 G-C Similar distribution in healthy and patients to +29 T-C

IL-6 -174 Similar distribution in patients and healthy
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