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Abstract 33 

Most age-related human diseases are accompanied by a decline in cellular organelle integrity, including 34 

impaired lysosomal proteostasis and defective mitochondrial oxidative phosphorylation. An open 35 

question, however, is the degree to which inherited variation in or near genes encoding each organelle 36 

contributes to age-related disease pathogenesis. Here, we evaluate if genetic loci encoding organelle 37 

proteomes confer greater-than-expected age-related disease risk. As mitochondrial dysfunction is a 38 

“hallmark” of aging, we begin by assessing nuclear and mitochondrial DNA loci near genes encoding the 39 

mitochondrial proteome and surprisingly observe a lack of enrichment across 24 age-related traits. Within 40 

nine other organelles, we find no enrichment with one exception: the nucleus, where enrichment 41 
emanates from nuclear transcription factors. In agreement, we find that genes encoding several 42 

organelles tend to be “haplosufficient,” while we observe strong purifying selection against heterozygous 43 

protein-truncating variants impacting the nucleus. Our work identifies common variation near 44 

transcription factors as having outsize influence on age-related trait risk, motivating future efforts to 45 

determine if and how this inherited variation then contributes to observed age-related organelle 46 

deterioration. 47 

  48 
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Introduction 49 

The global burden of age-related diseases such as type 2 diabetes (T2D), Parkinson’s disease (PD), and 50 

cardiovascular disease (CVD) has been steadily rising due in part to a progressively aging population. These 51 

diseases are often highly heritable: for example, narrow-sense heritabilities were recently estimated as 52 

56% for T2D, 46% for general hypertension, and 41% for atherosclerosis1. Genome-wide association 53 

studies (GWAS) have led to the discovery of thousands of robust associations with common genetic 54 

variants2, implicating a complex genetic architecture as underlying much of the heritable risk. These loci 55 

hold the potential to reveal underlying mechanisms of disease and spotlight targetable pathways. 56 

Aging has been associated with dysfunction in many cellular organelles3. Dysregulation of autophagic 57 
proteostasis, for which the lysosome is central, has been implicated in myriad age-related disorders 58 

including neurodegeneration, heart disease, and aging itself4, and mouse models deficient for autophagy 59 

in the central nervous system show neurodegeneration5,6. Endoplasmic reticular (ER) stress has been 60 

invoked as central to metabolic syndrome and insulin resistance in T2D7. Disruption in the nucleus through 61 

increased gene regulatory noise from epigenetic alterations3 and elevated nuclear envelope “leakiness”8 62 

has been implicated in aging. Dysfunction in the mitochondria has even been invoked as a “hallmark” of 63 

aging3 and has been observed in many common age-associated diseases9–15. In particular, deficits in 64 

mitochondrial oxidative phosphorylation (OXPHOS) have been documented in aging and age-related 65 

diseases as evidenced by in vivo 31P-NMR measures10,16, enzymatic activity11,12,17–21 in biopsy material, 66 

accumulation of somatic mitochondrial DNA (mtDNA) mutations13,14,22, and a decline in mtDNA copy 67 

number (mtCN)15.  68 

Given that a decline in organelle function is observed in age-related disease, a natural question is whether 69 

inherited variation in loci encoding organelles is enriched for age-related disease risk. Though it has long 70 

been known that recessive mutations leading to defects within many cellular organelles can lead to 71 

inherited syndromes (e.g., mutations in >300 nuclear DNA (nucDNA)-encoded mitochondrial genes lead 72 

to inborn mitochondrial disease23), it is unknown how this extends to common disease. In the present 73 

study, we use a human genetics approach to assess common variation in loci relevant to the function of 74 

ten cellular organelles. We begin with a deliberate focus on mitochondria given the depth of literature 75 

linking it to age-related disease, interrogating both nucDNA and mtDNA loci that contribute to the 76 

organelle’s proteome. This genetic approach is supported by the observation that heritability estimates 77 
of measures of mitochondrial function are substantial (33-65%24,25). We then extend our analyses to nine 78 

additional organelles. 79 

To our surprise, we find no evidence of enrichment for genome-wide association signal in or near 80 

mitochondrial genes across any of our analyses. Further, of ten tested organelles, only the nucleus shows 81 

enrichment among many age-associated traits, with the signal emanating from the transcription factors 82 

(TFs). Further analysis shows that genes encoding the mitochondrial proteome tend to be tolerant to 83 

heterozygous predicted loss-of-function (pLoF) variation and thus are surprisingly “haplosufficient” – i.e., 84 

show little fitness cost with heterozygous pLoF. In contrast, nuclear TFs are especially sensitive to gene 85 

dosage and are often “haploinsufficient”, showing substantial purifying selection against heterozygous 86 

pLoF. Thus, our work highlights inherited variation influencing gene-regulatory pathways, rather than 87 

organelle physiology, in the inherited risk of common age-associated diseases. 88 

Results 89 

Age-related diseases and traits show diverse genetic architectures 90 

To systematically define age-related diseases, we turned to recently published epidemiological data from 91 

the United Kingdom (U.K.)26 in order to match the U.K. Biobank (UKB)27 cohort. We prioritized traits whose 92 

prevalence increased as a function of age (Methods) and were represented in UKB 93 

(https://github.com/Nealelab/UK_Biobank_GWAS) and/or had available published GWAS meta-94 
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analyses28–37 (Figure 1A, Supplementary note). We used SNP-heritability estimates from stratified linkage 95 

disequilibrium score regression (S-LDSC, https://github.com/bulik/ldsc)38 to ensure that our selected traits 96 

were sufficiently heritable (Table S1, Methods, Supplementary note), observing heritabilities across UKB 97 

and meta-analysis traits as high as 0.28 (bone mineral density), all with heritability Z-score > 4. We then 98 

computed pairwise genetic and phenotypic correlations between the age-associated traits to compare 99 

their respective genetic architectures and phenotypic relationships (Figure 1B, Table S2, Methods). In 100 

general, genetic correlations were greater in magnitude than respective phenotypic correlations, 101 

potentially as GWAS are less sensitive to purely non-genetic factors that influence phenotype (e.g., 102 

measurement error). As expected we find a highly correlated module of primarily cardiometabolic traits 103 

with high density lipoprotein (HDL) showing anti-correlation39. Interestingly, several other traits 104 
(gastroesophageal reflux disease (GERD), osteoarthritis) showed moderate genetic correlation to the 105 

cardiometabolic trait cluster while atrial fibrillation, for which T2D and CVD are risk factors40, showed 106 

phenotypic, but not genetic, correlation. Our final set of prioritized, age-associated traits included 24 107 

genetically diverse, heritable phenotypes (Table S1). Of these, 11 traits were sufficiently heritable only in 108 

UKB, 3 were sufficiently heritable only among non-UKB meta-analyses, and 10 were well-powered in both 109 

UKB and an independent cohort. 110 

 111 
Mitochondrial genes are not enriched among age-related trait GWAS  112 

To test if age-related trait heritability was enriched among mitochondria-relevant loci, we began by simply 113 

asking if ~1100 nucDNA genes encoding the mitochondrial proteome from the MitoCarta2.0 inventory41 114 

were found near lead SNPs for our selected traits represented in the NHGRI-EBI GWAS Catalog 115 

(https://www.ebi.ac.uk/gwas/)42 more frequently than expectation (Methods, Supplementary note). To 116 

our surprise, no traits showed a statistically significant enrichment of mitochondrial genes (Figure 2-S1A); 117 

in fact, six traits showed a statistically significant depletion. Even more strikingly, MitoCarta genes tended 118 

to be nominally enriched in fewer traits than the average randomly selected sample of protein-coding 119 

genes (Figure 2-S1B, empirical p = 0.014). This lack of enrichment was observed more broadly across 120 

virtually all traits represented in the GWAS Catalog (Figure 2-S1C). We also examined specific 121 

Figure 1. Selection of genetically diverse age-related diseases and traits using epidemiological data. A. Period prevalence of 
age-associated diseases systematically selected for this study (Methods). Epidemiological data obtained from Kuan et al. 
2019. B: Genetic (lower half) and phenotypic (upper half) correlation between the selected age-related traits. All correlations 
were assessed between UK Biobank phenotypes with the exception of eGFR, Alzheimer’s Disease, and Parkinson’s Disease, 
for which the respective meta-analyses were used (Methods). Grey “o” in phenotypic correlations indicate phenotypes not 
tested within UKB for which individual-level data was not available. Point estimates and standard errors/p-values reported in 
Table S2. * represents correlations that are significantly different from 0 at a Bonferroni-corrected threshold for p = 0.05 across 
all tested traits. 
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transcriptional regulators of mitochondrial biogenesis (TFAM, GABPA, GABPB1, ESRRA, YY1, NRF1, 122 

PPARGC1A, PPARGC1B) and found very little evidence supporting a role for these genes in modifying risk 123 

for the age-related GWAS Catalog phenotypes (Supplementary note). 124 

To investigate further, we turned to U.K. Biobank (UKB). We compiled and tested loci encoding the 125 

mitochondrial proteome (Figure 2A) with which we interrogated the association between common 126 

mitochondrial variation and common disease. First, we considered all common variants in or near nucDNA 127 

MitoCarta genes, as well as two subsets of MitoCarta: mitochondrial Mendelian disease genes23 and 128 

nucDNA-encoded OXPHOS genes. Second, we obtained and tested mtDNA genotypes at up to 213 loci 129 

after quality control (Methods) from 360,662 individuals for associations with age-related traits. 130 

First, we used S-LDSC38,43 and MAGMA (https://ctg.cncr.nl/software/magma)44, two robust methods that 131 

can be used to assess gene-based heritability enrichment accounting for LD and several confounders, to 132 

test if there was any evidence of heritability enrichment among MitoCarta genes (Methods). We found 133 

no evidence of enrichment near nucDNA MitoCarta genes for any trait tested in UKB using S-LDSC (Figure 134 

2B, 2-S7A), consistent with our results from the GWAS Catalog. We replicated this lack of enrichment 135 

using MAGMA at two different window sizes (Figure 2-S7C, 2-S7E; all q > 0.1). 136 

Figure 2. Assessment of the association of nucDNA and mtDNA loci contributing to the mitochondrial proteome with age-related 
traits. A. Scheme outlining the aspects of mitochondrial function assessed in this study. nucDNA loci contributing to the 
mitochondrial proteome are shown in teal, while mtDNA loci are shown in pink. B. S-LDSC enrichment p-values on top of the 
baseline model in UKB. Inset labels represent gene-set size; dotted line represents BH FDR 0.1 threshold. C. Visualization of 
mtDNA variants and associations with age-related diseases. The outer-most track represents the genetic architecture of the 
circular mtDNA. The heatmap track represents the number of individuals with alternate genotype on log scale. The inner track 
represents mitochondrial genome-wide association p-values, with radial angle corresponding to position on the mtDNA and 
magnitude representing –log

10
 P value. Dotted line represents Bonferroni cutoff for all tested trait-variant pairs. D. Replication 

of S-LDSC enrichment results in meta-analyses. Dotted line represents BH FDR 0.1 threshold. * represents traits for which 
sufficiently well powered cohorts from both UKB and meta-analyses were available. The trait color legend to the right of panel 
C applies to panels B and C, representing UKB traits. 
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Given the lack of enrichment among the MitoCarta genes, we wanted to (1) verify that our selected 137 

methods could detect previously reported enrichments and (2) confirm that common variation in or near 138 

MitoCarta genes can lead to expression-level perturbations. We first successfully replicated previously 139 

reported enrichment among tissue-specific genes for key traits using both S-LDSC (Figure 2-S2, 2-S3) and 140 

MAGMA (Figure 2-S4, 2-S5, Supplementary note, Methods). We next confirmed that we had sufficient 141 

power using both S-LDSC and MAGMA to detect physiologically relevant enrichment effect sizes among 142 

MitoCarta genes (Figure 2-S6, Methods, Supplementary note). We finally examined the landscape of cis-143 

expression QTLs (eQTLs) for these genes and found that almost all MitoCarta genes have cis-eQTLs in at 144 

least one tissue and often have cis-eQTLs in more tissues than most protein-coding genes (Figure 2-S8, 145 
Methods, Supplementary note). Hence, our selected methods could detect physiologically relevant 146 

heritability enrichments among our selected traits at gene-set sizes comparable to that of MitoCarta, and 147 

common variants in or near MitoCarta genes exerted cis-control on gene expression.  148 

Next, we considered mtDNA loci genotyped in UKB, obtaining calls for up to 213 common variants passing 149 

quality control across 360,662 individuals (Methods, Supplementary note). We found no significant 150 

associations on the mtDNA for any of the 21 age-related traits available in UKB using linear or logistic 151 

regression (Methods, Figure 2C, 2-S9, Table S4). 152 

As a control and to validate our approach, we also performed mtDNA-GWAS for specific traits with 153 

previously reported associations. A recent analysis of ~147,437 individuals in BioBank Japan revealed four 154 

distinct traits with significant mtDNA associations45. Of these, creatinine and aspartate aminotransferase 155 

(AST) had sufficiently large sample sizes in UKB. We observed a large number of associations throughout 156 

the mtDNA for both traits (p < 1.15 ∗ 10!", Figure 2-S9E). Thus, our mtDNA association method was able 157 

to replicate robust mtDNA associations among well-powered traits. 158 

We sought to replicate our negative results in an independent cohort. We turned to published GWAS 159 
meta-analyses28–37 (Table S1) and successfully replicated the lack of enrichment for MitoCarta genes 160 

across all 10 traits with an available independent cohort GWAS using S-LDSC (Figure 2D, 2-S7B) and 161 

MAGMA at two different window sizes (Figure 2-S7D, Supplementary note; all q > 0.1). Importantly, while 162 

we were unable to pursue analyses for PD and Alzheimer’s disease in UKB due to limited case counts, we 163 

tested MitoCarta genes among well-powered meta-analyses for these disorders (Supplementary note) 164 

and observed no enrichment (Figure 2D; all q > 0.1). 165 

In summary, we tested (1) nucDNA loci near genes that encode the mitochondrial proteome in the GWAS 166 

Catalog, UKB, and GWAS meta-analyses, (2) transcriptional regulators of mitochondrial biogenesis in the 167 

GWAS Catalog, and (3) mtDNA variants in UKB. We found no convincing evidence of heritability 168 

enrichment for common age-associated diseases near these mitochondrial loci. 169 

 170 

Of all tested organelles, only the nucleus shows enrichment for age-related trait heritability  171 
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We next asked whether heritability for age-related diseases and traits clusters among loci associated with 172 

any cellular organelle. We used the COMPARTMENTS database (https://compartments.jensenlab.org) to 173 

define gene-sets corresponding to the proteomes of nine additional organelles46 besides mitochondria 174 

(Methods). We used S-LDSC to produce heritability estimates for these categories in the UKB age-related 175 
disease traits, finding evidence of heritability enrichment in many traits for genes comprising the nuclear 176 

proteome (Figure 3A, Methods). No other tested organelles showed evidence of heritability enrichment. 177 

Variation in or near genes comprising the nuclear proteome explained over 50% of disease heritability on 178 

average despite representing only ~35% of tested SNPs (Figure 3-S1, Supplementary note). We 179 

successfully replicated this pattern of heritability enrichment among organelles using MAGMA in UKB at 180 

two window sizes (Figure 3-S3A, 3-S3B), again finding enrichment only among genes related to the 181 

nucleus. 182 

 183 

Much of the nuclear enrichment signal emanates from transcription factors 184 

 185 

Figure 3. Heritability enrichment of organellar proteomes across age-related disease in UK Biobank. A. Quantile-quantile plot 
of heritability enrichment p-values atop the baseline model for gene-sets representing organellar proteomes, with black line 
representing expected null p-values following the uniform distribution and shaded ribbon representing 95% CI. B. Scheme of 
spatially distinct disjoint subsets of the nuclear proteome as a strategy to characterize observed enrichment of the nuclear 
proteome. Numbers represent gene-set size. C. S-LDSC enrichment p-values for spatial subsets of the nuclear proteome 
computed atop the baseline model. D. S-LDSC enrichment p-values for TFs and all other nucleus-localizing proteins. Inset 
numbers represent gene-set sizes, black lines represent cutoff at BH FDR < 10%. * represents traits for which sufficiently well 
powered cohorts from both UKB and meta-analyses were available. 
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With over 6,000 genes comprising the nuclear proteome, we considered largely disjoint subsets of the 186 

organelle’s proteome to trace the source of the enrichment signal47–49 (Figure 3B, Methods, 187 

Supplementary note). We found significant heritability enrichment within the set of 1,804 genes whose 188 

protein products are annotated to localize to the chromosome itself (q < 0.1 for 9 traits, Figure 3C, 3-S2A). 189 

Further partitioning revealed that much of this signal is attributable to the subset classified as TFs49 (1,523 190 

genes, q < 0.1 for 10 traits, Figure 3D, 3-S2B). We replicated these results using MAGMA in UKB at two 191 

window sizes (Figure 3-S3), and also replicated enrichments among TFs in several (but not all) 192 

corresponding meta-analyses (Figure 3-S4) despite reduced power (Figure 2-S6H). We generated 193 

functional subdivisions of the TFs (Methods, Supplementary note), finding that the non-zinc finger TFs 194 
showed enrichment for a highly similar set of traits to those enriched for the whole set of TFs (Figure 3-195 

S5D, 3-S6B, 3-S7B, 3-S8B). Interestingly, the KRAB domain-containing zinc fingers (KRAB ZFs)50, which are 196 

recently evolved (Figure 3-S5H), were largely devoid of enrichment even compared to non-KRAB ZFs 197 

(Figure 3-S5E, 3-S6C, 3-S7C, 3-S8C). Thus, we find that variation within or near non-KRAB domain-198 

containing TF genes has an outsize influence on age-associated disease heritability.  199 

We next turned to recently published GWAS assessing parental lifespan51 and “healthspan” via first 200 

morbidity hazard52. Both traits showed highly significant heritability via S-LDSC (ℎ#(𝑠. 𝑒. ) = 201 
0.0265	(0.0019) and 0.0348	(0.003) respectively, Methods). Enrichment analysis of organelles among 202 

these traits revealed a significant enrichment for the nucleus for parental lifespan (p = 0.0003) using 203 

MAGMA (Figure 4, Table S7). While we observed only a nominally “suggestive” enrichment for the nucleus 204 

for healthspan (p = 0.058), S-LDSC showed significant nuclear heritability enrichment (p = 0.0016, Figure 205 

4-S1). Analysis of spatial subsets of the nuclear proteome showed significant enrichment for TFs and 206 

proteins localizing to the chromosome in both aging phenotypes using MAGMA (Figure 4) and for 207 

healthspan using S-LDSC (Figure 4-S1). 208 

 209 
Mitochondrial genes tend to be more “haplosufficient” than genes encoding other organelles 210 

Figure 4. Enrichment of organellar proteomes within parental lifespan and healthspan as proxies for aging. Upper panels 
represent organelle proteomes; lower panels represent spatial subsets of the nuclear proteome. Numbers atop each bar 
represent gene-set sizes. Dashed lines represent cutoff at BH FDR < 10%, dotted lines represent nominal p = 0.05. 
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In light of observing heritability enrichment only among nuclear transcription factors, we wanted to 211 

determine if the fitness cost of pLoF variation in genes across cellular organelles mirrored our results. 212 

Mitochondria-localizing genes and TFs play a central role in numerous Mendelian diseases23,53–55, so we 213 

initially hypothesized that genes belonging to either category would be under significant purifying 214 

selection (i.e., constraint). We obtained constraint metrics from gnomAD 215 

(https://gnomad.broadinstitute.org)56 as the LoF observed/expected fraction (LOEUF). In agreement with 216 

our GWAS enrichment results, we observed that the mitochondrion on average is one of the least 217 

constrained organelles we tested, in stark contrast to the nucleus (Figure 5A). In fact, the nucleus was 218 

second only to the set of “haploinsufficient” genes (defined based on curated human clinical genetic 219 

data56, Methods) in the proportion of its genes in the most constrained decile, while the mitochondrion 220 

lay on the opposite end of the spectrum (Figure 5B). Interestingly, even the Mendelian mitochondrial 221 

disease genes had a high tolerance to pLoF variation on average in comparison to TFs (Figure 5C). Even 222 
across different categories of TFs, we observed that highly constrained TF subsets tend to show GWAS 223 

Figure 5. Differences in constraint distribution across organelles. A. Constraint as measured by LOEUF from gnomAD v2.1.1 
for genes comprising organellar proteomes, book-ended by distributions for known haploinsufficient genes as well as olfactory 
receptors. Lower values indicate genes exacting a greater organismal fitness cost from a heterozygous LoF variant (greater 
constraint). B. Proportion of each gene-set found in the lowest LOEUF decile. Higher values indicate gene-sets containing 
more highly constrained genes. C. Constraint distributions for subsets of the nuclear-encoded mitochondrial proteome (red) 

and subsets of the nucleus (teal). Black points represent the mean with 95% CI. Inset numbers represent gene-set size. 
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enrichment (Figure 5-S1, 3-S5E) relative to unconstrained subsets for our tested traits. Indeed, explicit 224 

inclusion of LOEUF as a covariate in the enrichment analysis model (Methods) reduced the significance of 225 

(but did not eliminate) the enrichment seen for the TFs (Figure 5-S2B, 5-S3B, 5-S2E, 5-S2F). Thus, while 226 

disruption in both mitochondrial genes and TFs can produce rare disease, the fitness cost of heterozygous 227 

variation in mitochondrial genes appears to be far lower than that among TFs. This dichotomy reflects the 228 

contrasting enrichment results between mitochondrial genes and TFs and supports the importance of 229 

gene regulation as it relates to evolutionary conservation. 230 

 231 

Discussion 232 
Pathology in cellular organelles has been widely documented in age-related diseases3,7,57–60.  Using a 233 

human genetics approach, here we report the unexpected discovery that except for the nucleus, cellular 234 

organelles tend not to be enriched in genetic associations for common, age-related diseases. We started 235 

with a focus on the mitochondria as a decline in mitochondrial abundance and activity has long been 236 

reported as one of the most consistent correlates of aging14,16,18,22 and age-associated diseases10–13,15,17,19–237 
21. We tested common variants contributing to the mitochondrial proteome on the nucDNA and mtDNA 238 

and found no convincing evidence of heritability enrichment in any tested trait, cohort, or method. We 239 

systematically expanded our analysis to survey 10 organelles and found that only the nucleus showed 240 

enrichment, with much of this signal originating from nuclear TFs. Constraint analysis showed a substantial 241 

fitness cost to heterozygous loss-of-function mutation in genes encoding the nuclear proteome, whereas 242 

genes encoding the mitochondrial proteome were “haplosufficient.” 243 

Here, we focus on enrichment to place the complex genetic architectures of age-related traits in a broader 244 

biological context and prioritize pathways for follow-up. For these highly polygenic traits, any large 245 

fraction of the genome may explain a statistically significant amount of disease heritability61,62, and indeed 246 

associations between individual organelle-relevant loci and certain common diseases have been identified 247 

previously63,64. For example, variants in the endoplasmic reticular genes WFS1 and ATF6B and the 248 

mitochondrial gene ATP5G1 have been associated with common T2D65. These genes are present in the 249 

respective organelle gene-sets, however unlike TFs, neither the endoplasmic reticulum nor the 250 

mitochondrion showed enrichment for T2D. Importantly, both MAGMA and S-LDSC are capable of 251 

detecting an enrichment even in a highly polygenic background. Both methods have been used in the past 252 
to identify biologically plausible disease-relevant tissues38,43 and pathway enrichments66,67 in traits across 253 

the spectrum of polygenicity, and we identify enrichments among disease-relevant tissues using both 254 

methods in several highly polygenic traits. 255 

While previous work has shown that common disease GWAS can be enriched for expression in specific 256 

disease-relevant organs43,68, our data suggest that this framework does not generally extend from organs 257 

to organelles. This finding contrasts with our classical nosology of inborn errors of metabolism that tend 258 

to be mapped to “causal” organelles, e.g., lysosomal storage diseases, disorders of peroxisomal 259 

biogenesis, and mitochondrial OXPHOS disorders. The observed enrichment for TFs within the nucleus 260 

indicates that common variation influencing genome regulation impacts common disease risk more than 261 

variation influencing individual organelles. 262 

Our analysis of common inherited mitochondrial variation represents, to our knowledge, the most 263 

comprehensive joint assessment of mitochondria-relevant nucDNA and mtDNA variation in age-related 264 

diseases. We replicated mtDNA associations with creatinine and AST observed previously in BioBank 265 

Japan45, further supporting our approach. While individual mtDNA variants have been previously 266 

associated with certain traits69–71, these associations appear to be conflicting in the literature, perhaps 267 

because of limited power and/or uncontrolled confounding biases such as population stratification72,73. 268 

Our negative results are surprising, but they are compatible with a prior enrichment analysis focused on 269 
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T2D74 as well as a small number of isolated reports interrogating either mitochondria-relevant nucDNA74 270 

or mtDNA45,75–77 loci in select diseases.  271 

To our knowledge, we are the first to systematically document heterogeneity in average pLoF across 272 

cellular organelles. That MitoCarta genes are “haplosufficient” and pLoF tolerant (Figure 5A) is consistent 273 

with the observation that most of the ~300 inborn mitochondrial disease genes produce disease with 274 

recessive inheritance23 and healthy parents. The few mitochondrial disorders that show autosomal 275 

dominant inheritance are nearly always due to dominant negativity rather than haploinsufficiency. The 276 

intolerance of TFs to pLoF variation (Figure 5C) provide a stark contrast to the results from the 277 

mitochondria that is borne out in their associated Mendelian disease syndromes: TFs are known to be 278 
haploinsufficient78 and even regulatory variants modulating their expression can produce severe 279 

Mendelian disease79. We observe enrichment among TFs for 10 different diseases as well as parental 280 

lifespan and healthspan, consistent with observed elevated purifying selection against pLoF variants in 281 

these genes. Our enrichment results combined with pLoF intolerance suggest that variation among TFs 282 

may produce disease-associated variants with larger effect sizes than expectation, underscoring their 283 

importance as genetic “levers” for common disease heritability. 284 

Why are mitochondria so robust to variation in gene dosage (Figure 5) and hence “haplosufficient?” We 285 

propose two possibilities. First, mitochondrial pathways tend to be highly interconnected, and it was 286 

already proposed by Wright80 and later by Kacser and Burns81 that haplosufficiency arises as a 287 

consequence of physiology, i.e., system output is inherently buffered against the partial loss of a single 288 

gene due to the network organization of metabolic reactions. Kacser and Burns in fact explicitly mention 289 

that noncatalytic gene products fall outside their framework, and we believe that our finding that nucleus-290 

localizing and cytoskeletal genes are the two most pLoF-intolerant compartments is consistent with their 291 

assessment. Second, mitochondria were formerly autonomous microbes and hence may have retained 292 

vestigial layers of “intra-organelle buffering” against genetic variation. Numerous feedback control 293 

mechanisms, including respiratory control82, help to ensure organelle robustness across physiological 294 

extremes83,84. In fact, a recent CRISPR screen showed that of the genes for which knock-out modified 295 

survival under a mitochondrial poison, there is a striking over-representation of genes that themselves 296 

encode mitochondrial proteins85. 297 

Throughout this study, we have tested for enrichment among inherited common variant associations near 298 
genes via an additive genetic model. We acknowledge the limitations of focusing on a specific genetic 299 

model and variant frequency regime, though note that common variation is the largest documented 300 

source of narrow-sense heritability, which typically accounts for a majority of disease heritability86,87. First, 301 

we consider only common variants. While rare variants may prove to be instructive, it is notable that a 302 

previous rare variant analysis in T2D88 failed to show enrichment among OXPHOS genes. Second, we 303 

consider only additive genetic models. A recessive model may be particularly fruitful for mitochondrial 304 

genes given their tolerance to pLoF variation, however these models are frequently power-limited and 305 

may not explain much more phenotypic variance than additive models89,90. Third, we have not considered 306 

epistasis. The effects of mtDNA-nucDNA interactions91 in common diseases have yet to be assessed. While 307 

there is debate about whether biologically-relevant epistasis can be simply captured by main 308 

effects87,89,92,93 at individual loci, it is possible that modeling mtDNA-nucDNA interactions will reveal new 309 

contributions. Fourth, to systematically assess all organelles, we restrict our analyses to variants near 310 

genes comprising each organelle’s proteome. It remains possible that future work will systematically 311 

identify novel organelle-relevant loci elsewhere in the genome which contribute disproportionately to 312 

age-related trait heritability. Fifth, while we are well-powered to detect physiologically relevant 313 

enrichments among most tested organelles (including the mitochondrion), our power may be more 314 

limited for particularly small compartments (e.g., lysosome). Finally, it is crucial not to confuse our mtDNA-315 
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GWAS results with previously reported associations between somatic mtDNA mutations and age-316 

associated disease13,14,22 – the present work is focused on germline variation. 317 

We have not formally addressed the causality of mitochondrial dysfunction in common age-related 318 

disease and the observed lack of heritability enrichment does not preclude the possibility of a therapeutic 319 

benefit in targeting the mitochondrion for age-related disease. For example, mitochondrial dysfunction is 320 

documented in brain or heart infarcts following blood vessel occlusion in laboratory-based models94,95. 321 

Clearly mitochondrial genetic variants do not influence infarct risk in this laboratory model, but 322 

pharmacological blockade of the mitochondrial permeability transition pore can mitigate reperfusion 323 

injury and infarct size96. Future studies will be required to determine if and how the mitochondrial 324 
dysfunction associated with common age-associated diseases can be targeted for therapeutic benefit. 325 

Efforts to develop reliable measures of mitochondrial function and dysfunction have the potential to 326 

unbiasedly discover genetic instruments that influence the mitochondrion, and causal inference 327 

techniques such as Mendelian Randomization may shed light on this important causal question. 328 

Our finding that the nucleus is the only organelle that shows enrichment for common age-associated trait 329 

heritability builds on prior work implicating nuclear processes in aging. Most human progeroid syndromes 330 

result from monogenic defects in nuclear components97 (e.g., LMNA in Hutchinson-Gilford progeria 331 

syndrome, TERC in dyskeratosis congenita), and telomere length has long been observed as a marker of 332 

aging98. Heritability enrichment of age-related traits among gene regulators is consistent with the 333 

epigenetic dysregulation99 and elevated transcriptional noise3,100 observed in aging (e.g., SIRT6 modulation 334 

influences mouse longevity101 and metabolic syndrome58). An important role for gene regulation in 335 

common age-related disease is in agreement with both the observation that a very large fraction of 336 

common disease-associated loci corresponds to the non-coding genome and the enrichment of disease 337 

heritability in histone marks and TF binding sites38,102. Given that a deterioration in several other cellular 338 

organelles has been so frequently documented in age-related traits, a future challenge lies in elucidating 339 

how inherited variation in or near TFs ultimately leads to the observed organelle dysfunction in age-340 

related disease. 341 
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age estimates were obtained from Litman, Stein 2019 (DOI: 10.1053/j.seminoncol.2018.11.002). GWAS 362 

catalog annotations can be obtained from: https://www.ebi.ac.uk/gwas. Heritability estimates across UKB 363 
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Materials and Methods 388 

Trait selection:  389 

Sex-standardized period prevalence of over 300 diseases was obtained from an extensive survey of the 390 

National Health Service in the UK as reported previously26. To select high prevalence late-onset diseases, 391 

we ranked diseases with a median onset over 50 years of age by the sum of the period prevalence of all 392 

age categories above 50. We selected the top 30 diseases using this metric and manually mapped these 393 

traits to similar or equivalent phenotypes with publicly available summary statistics from UKB and/or well-394 

powered meta-analyses (e.g., Parkinson’s Disease and Alzheimer’s Disease for dementia) resulting in 24 395 

traits with data available in UKB, meta-analyses, or both (Table S1). 396 
 397 

Criteria for inclusion of summary statistics:  398 

We manually mapped selected age-related diseases and traits to corresponding phenotypes in UKB. In 399 

parallel, we searched the literature to identify well-powered EUR-predominant GWAS (referred to as 400 

meta-analyses) that (1) used primarily non-targeted arrays, (2) had publicly available full summary 401 

statistics, and (3) did not enroll individuals from UKB to serve as independent replication (Supplementary 402 

note). We produced heritability estimates using stratified linkage-disequilibrium score regression (S-LDSC, 403 

https://github.com/bulik/ldsc)38 atop the BaselineLD v2.2 model using reference LD scores computed 404 

from 1000G EUR (https://alkesgroup.broadinstitute.org/LDSCORE/). We computed the heritability Z-405 

score, a statistic that captures sample size, polygenicity, and heritability38, and included only traits with 406 

heritability Z-score > 4 (Supplementary note) for further analysis. 407 

 408 

Genetic correlations among age-related traits:  409 
Pairwise genetic correlations, 𝑟$, were computed using linkage-disequilibrium score correlation39 on all 410 

selected age-related traits with heritability Z-score > 4. We used UKB summary statistics 411 

(https://github.com/Nealelab/UK_Biobank_GWAS) for all sufficiently powered traits; summary statistics 412 

from meta-analyses were used for eGFR35, Alzheimer’s Disease37, and Parkinson’s Disease36 as these traits 413 

showed heritability Z-score > 4 within meta-analyses but not in UKB (Table S1). P-values for genetic 414 

correlation represented deviation from the null hypothesis 𝑟$ = 0. Traits were ordered by their 415 

contribution to the first eigenvector of the absolute value of the correlation matrix, with point estimates 416 

and standard errors available in Table S2. Bonferroni correction was applied producing a p-value cutoff of 417 

0.05 45#%
#
6 + 5#&

#
68 =⁄ 1.03 ∗ 10!%, accounting for both genotypic and phenotypic correlation hypothesis 418 

tests. 419 

 420 

Phenotypic correlations in UKB: 421 
Pairwise phenotypic correlations, 𝑟', were computed for all 21 traits with well-powered individual level 422 

data available in UKB (Table S1). Pearson correlation was computed between continuous traits via 423 
cor.test in R with a two-sided alternative. Tetrachoric correlation was used to compute correlations 424 

between binary traits and biserial correlation was used for correlations between binary and continuous 425 
traits, using the polychor and polyserial functions of the polycor package in R respectively using 426 

the two-step approximation. These approaches model a latent normally distributed variable underlying 427 
binary traits. P-values were computed using a normal approximation using standard error estimates from 428 
polycor. Point estimates and standard errors are available in Table S2. 429 

 430 

Assessment of mitochondria-localizing genes in the GWAS Catalog:  431 

We mapped variants in the GWAS Catalog (obtained on September 5th, 2019, 432 

https://www.ebi.ac.uk/gwas/) meeting genome-wide significance (p < 5e-8) to genes using provided 433 

annotations, producing a set of trait-associated genes for each trait. We manually selected phenotypes 434 
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represented in the GWAS Catalog matching our set of age-associated traits with > 30 trait-associated 435 

genes. For each trait, we computed the proportion of trait-associated genes that were mitochondria-436 

localizing (defined via MitoCarta2.041) and tested for enrichment or depletion relative to overall genome 437 

background using two-sided Fisher’s exact tests correcting for multiple hypothesis tests with the 438 

Benjamini-Hochberg (BH) procedure at FDR q-value < 0.1.  439 

We also computed the test statistic 𝑁$()*+,-, defined as the number of age-associated traits showing a 440 

nominal (not necessarily statistically significant) enrichment for a given gene-set 𝑔, for the MitoCarta 441 

genes. We then generated an empirical null distribution for 𝑁$()*+,-. We drew 1,000 random samples of 442 

protein-coding genes, where each sample contained the same number of genes as the set of 443 

mitochondria-localizing genes and computed 𝑁$()*+,- for each of these gene-sets (Figure 2-S1B). The one-444 

sided p-value, defined as Pr5𝑁$()*+,- ≤ 𝑥6 under the null, was subsequently obtained. 445 

We expanded our enrichment/depletion analysis to all 332 traits in the GWAS Catalog with over 30 trait-446 

associated genes; for enrichment or depletion testing, we used two-sided Fisher’s exact tests and 447 

corrected for multiple hypothesis testing with the BH procedure at FDR q-value < 0.1. 448 

 449 

Harmonization and filtering of summary statistics for LDSC and MAGMA: 450 

UKB summary statistics previously formatted for use with LDSC and filtered to HapMap3 (HM3) SNPs 451 

(https://github.com/Nealelab/UKBB_ldsc) were used for analysis with S-LDSC. For analysis with MAGMA 452 

v1.07b44, we included variants from the full Neale Lab UKB Round 2 GWAS summary statistics 453 

(https://github.com/Nealelab/UK_Biobank_GWAS) with INFO > 0.8 and MAF > 0.01, and excluded any 454 

variants flagged as low confidence (a heuristic defined by MAF < 0.001 or expected case MAC < 25).  455 

Summary statistics obtained from publicly available GWAS meta-analyses28–37 were reported in varied 456 

formats. We manually verified the genome build upon which each meta-analysis reported results and 457 

ensured that all sets of summary statistics contained columns listing P-value, variant rsID, genome-build 458 

specific coordinates, and if available, variant-specific sample size (Table S1). If variant coordinates or rsID 459 
were not provided, the relevant columns were obtained from dbSNP database version 130 (for hg18) or 460 

146 (for hg19). We used the summary statistic munging script provided with S-LDSC 461 

(https://github.com/bulik/ldsc) to generate summary statistics compatible with S-LDSC, restricting to 462 

HM3 SNPs as these tend to be best behaved for analysis with LDSC. For use of meta-analyses with 463 

MAGMA44, we restricted analysis to variants with INFO > 0.8 and MAF > 0.01 if such information was 464 

provided. 465 

 466 

Multiple testing correction for gene-set enrichment analysis:  467 

To account for the multiple hypothesis tests performed throughout this study for age-related traits, we 468 

obtained p-value thresholds via the BH procedure at FDR < 0.1 for all gene-sets assessed for a given 469 

method and cohort type (where the two cohort types were UKB and meta-analysis). The BH procedure at 470 

FDR < 0.1 was also applied to our analyses of parental lifespan and healthspan. 471 

 472 

Gene-set based enrichment analysis: 473 

We extensively use S-LDSC and MAGMA to perform gene-set enrichment analyses among GWAS summary 474 

statistics. To test enrichment with S-LDSC, SNPs were mapped to each gene with a 100kb symmetric 475 

window as recommended43 and LD scores were computed using the 1000G EUR reference panel 476 

(https://alkesgroup.broadinstitute.org/LDSCORE/) and subsequently restricted to the HM3 SNPs. We 477 

used S-LDSC to test for heritability enrichment controlling for 53 annotations including coding regions, 478 

enhancer regions, 5’ and 3’ UTRs, and others as previously described38 (baseline v1.1, referred to as 479 
baseline model hereafter). We also used MAGMA with both 5kb up, 1.5kb down and 100kb symmetric 480 
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windows to test for enrichment. MAGMA gene-level analysis was performed with the 1000G EUR LD 481 

reference panel to account for LD structure, and gene-set analysis was performed including covariates for 482 

gene length, variant density, inverse minor allele count (MAC), as well as log-transformed versions of 483 

these covariates. Statistical tests for both S-LDSC and MAGMA were one-sided, considering enrichment 484 

only. For both methods, we included the relevant superset of genes as a control to ensure that our analysis 485 

was competitive (Supplementary note). We refer to this approach as the ‘usual approach’. All enrichment 486 

effect size estimates and p-values are available in Tables S6 and Table S7. 487 

 488 

Enrichment analysis of genes comprising the mitochondrial proteome: 489 
We obtained the set of nuclear-encoded mitochondria-localizing genes using MitoCarta2.041 and used the 490 

literature to obtain the subset of MitoCarta genes involved in inherited mitochondrial disease23 as well as 491 

those producing components of oxidative phosphorylation (OXPHOS) complexes. We used both S-LDSC 492 

and MAGMA to test for enrichment in the usual way (Methods) controlling for the set of protein-coding 493 

genes to ensure a competitive analysis (Supplementary note). We also tested mitochondria-localizing 494 

genes for enrichment in meta-analyses using S-LDSC and MAGMA with the same parameters as for UKB 495 

traits (Supplementary note). 496 

 497 

Tissue-expressed gene-set enrichment analysis:  498 

To obtain the set of genes most expressed in a given tissue versus others, we obtained t-statistics 499 

computed from GTEx v6 gene-level transcript-per-million (TPM) data corrected for age and sex as 500 

published previously43. For each tissue, we selected the top 2485 genes (10%) with the highest t-statistics 501 

for tissue-specific expression, producing tissue-expressed gene-sets. We selected nine tissues based on 502 

expectation of enrichment for our tested traits in UKB (e.g., liver for LDL levels, esophageal mucosa for 503 

GERD). We used both S-LDSC and MAGMA to test for enrichment in the usual way (Methods) controlling 504 

for the set of tissue-expressed genes to ensure a competitive analysis (Supplementary note). Tissue-505 

expressed gene-set analyses were performed on meta-analyses with S-LDSC and MAGMA on the same 506 

tissues using the same parameters as used in UKB. 507 

 508 

Power analysis:  509 
To test for the effects of gene-set size on power, we selected ten positive control tissue-trait pairs based 510 

on (1) the presence of tissue enrichment in UKB with S-LDSC and MAGMA and (2) if the observed 511 

enrichment was biologically plausible. The pairs tested were liver-HDL, liver-LDL, liver-TG, liver-512 

cholesterol, pancreas-glucose, pancreas-T2D, atrial appendage-atrial fibrillation, sigmoid colon-513 

diverticular disease, coronary artery-myocardial infarction, and visceral adipose-HDL. We then, in brief, 514 

used an empirical sampling-based approach, generating random subsamples of a selected set of tissue-515 

expressed gene-sets at four different gene-set sizes (1523, 1105, 800, and 350 genes), defining power as 516 

the proportion of trials showing a significant enrichment (Supplementary note). We used the same sub-517 

sampled gene-sets for enrichment analysis using both S-LDSC and MAGMA in the usual way (Methods) 518 

controlling for the set of tissue-expressed genes to ensure a competitive analysis (Supplementary note). 519 

We used the same gene-sets among the subset of the positive control traits that showed enrichment in 520 

the corresponding meta-analysis to verify power for the meta-analyses (Supplementary note). 521 

 522 

Cross-tissue eQTL analysis 523 

We obtained the set of eGenes from GTEx v8 across 49 tissues (https://www.gtexportal.org), filtering to 524 

only include cis-eQTLs with q-value < 0.05. To determine how the landscape of cis-eQTLs for MitoCarta 525 

genes compared to other protein-coding genes, we regressed the number of tissues with a detected cis-526 

eQTL for a given gene x, 𝑁.
(/01 , onto an indicator for membership in a given organellar proteome 527 
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(𝐼.
2*$3)(44(

), controlling for gene length, log gene length, breadth of expression (𝜏.), and the number of 528 

tissues with detected expression > 5 TPM (𝑁.
(.'*(55

, Supplementary note). To quantify breadth of 529 

expression, we obtained median-per-tissue GTEx v8 TPM expression values and computed 𝜏103 after 530 

removing lowly-expressed genes with maximal cross-tissue TPM < 1, defined as: 531 

 532 

𝜏. =	
∑ (1 − 𝑥E+
)
+6& )
𝑛 − 1

	𝑤ℎ𝑒𝑟𝑒	𝑥E+ =
𝑥+

max
&7+7)

𝑥+
 533 

 534 

where 𝑥+  is the expression of gene 𝑥 in tissue 𝑖 with 𝑛 tissues. 𝜏 ranges from 0 to 1, with lower 𝜏 indicating 535 
broadly expressed gene and higher 𝜏 indicating more tissue specific expression patterns. Because GTEx 536 

sampled multiple tissue subtypes (e.g., brain sub-regions) that show correlated expression profiles104 537 

which bias 𝜏., 𝑁.
(/01

, and 𝑁.
(.'*(55	upward, for each broader tissue class (brain, heart, artery, esophagus, 538 

skin, cervix, colon, adipose) we selected a single representative tissue when computing these quantities 539 

(Figure 3-S5B, Supplementary note). We used LD scores computed from the 1000G EUR reference panel. 540 

The model, fit via OLS for each tested organelle, was: 541 

 542 

𝑁.
(/01	~	𝐼.

2*$3)(44( +𝑁.
(.'*(55 + 𝜏. + log(𝑔𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ) + 𝑔𝑒𝑛𝑒	𝑙𝑒𝑛𝑔𝑡ℎ 543 

 544 

mtDNA-wide association study: 545 

We obtained mtDNA genotype data on 265 variants as obtained on the UK Biobank Axiom array and the 546 

UK BiLEVE array from the full UKB release27. To perform variant QC, we used evoker-lite105 to generate 547 

fluorescence cluster plots per-variant and per-batch and manually inspected the results, removing 19 548 

variants due to cluster plot abnormalities (Table S3, Supplementary note). We additionally removed any 549 
variants with heterozygous calls, within-array-type call rate < 0.95, and with less than 20 individuals with 550 

an alternate genotype. For case-control traits, we removed any phenotype-variant pair with an expected 551 

case count of alternate genotype individuals of less than 20, resulting in a maximum of 213 variants tested 552 

per trait (Supplementary note). To perform sample QC, we restricted samples to the same samples from 553 

which UKB summary statistics were generated (https://github.com/Nealelab/UK_Biobank_GWAS), 554 

namely unrelated individuals 7 standard deviations away from the first 6 European sample selection PCs 555 

with self-reported white-British, Irish, or White ethnicity and no evidence of sex chromosome aneuploidy. 556 

We additionally removed any samples with within-array-type mitochondrial variant call rate < 0.95, 557 

resulting in 360,662 unrelated samples of EUR ancestry. We generated the LD matrix for mitochondrial 558 

DNA variants using Hail v0.2.51 (https://hail.is) pairwise for all 213 variants tested across all post-QC 559 

samples. 560 

We ran mtDNA-GWAS for all 21 UKB age-related phenotypes as well as creatinine and AST using Hail 561 

v0.2.51 via linear regression controlling for the first 20 PCs of the nuclear genotype matrix, sex, age, age2, 562 

sex*age, and sex*age2 as performed for the UKB GWAS 563 

(https://github.com/Nealelab/UK_Biobank_GWAS). We also used Hail to run Firth logistic regression with 564 

the same covariates for case/control traits. As we observed that some mitochondrial DNA variants were 565 

specific to array type, we also ran linear regression including array type as a covariate; we did not perform 566 

logistic regression with array type as a covariate due to convergence issues from complete separation of 567 

variants assessed only on a single array type. We defined mtDNA-wide significance using a Bonferroni 568 

correction by 𝑝 = 8.8"

%::;
≈ 1.15𝑒 − 5. 569 

 570 

Enrichment analysis of components of organellar proteomes: 571 
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COMPARTMENTS (https://compartments.jensenlab.org)46 is a resource integrating several lines of 572 

evidence for protein localization predictions including annotations, text-mining, sequence predictions, 573 

and experimental data from the Human Protein Atlas. We used this resource to obtain the degree of 574 

evidence (a number ranging from 0 to 5) linking each gene to localization to one of 12 organelles: nucleus, 575 

cytosol, cytoskeleton, peroxisome, lysosome, endoplasmic reticulum, Golgi apparatus, plasma 576 

membrane, endosome, extracellular space, mitochondrion, and proteasome. To avoid noisy localization 577 

assignments due to weak text mining and prediction evidence, we only considered localization 578 

assignments with a score > 2 as described previously46. We subsequently assigned compartment(s) to each 579 

gene by selecting the compartment(s) with the maximal score within each gene. We only included 580 
compartments containing over 240 genes due to limited power at smaller gene-set sizes and used 581 

MitoCarta2.041 to obtain a higher confidence set of genes localizing to the mitochondrion, resulting in 582 

gene-sets representing the proteomes of 10 organelles. S-LDSC and MAGMA were used to test for 583 

enrichment across the UKB age-related traits for these gene-sets in the usual way, controlling for the set 584 

of protein-coding genes. S-LDSC was also used to obtain estimates of the percentage of heritability 585 

explained by each organelle gene-set. 586 

 587 

Enrichment analysis of spatial components of the nucleus: 588 

To produce interpretable sub-divisions of the nucleus, we used Gene Ontology (GO)47,48 to identify terms 589 

listed as children of the nucleus cellular component (GO:0005634). We used Ensembl version 99106 to 590 

obtain a first pass set of genes annotated to each sub-compartment of the nucleus (or its children). After 591 

manual review of sub-compartments with > 90 genes, we selected nucleoplasm (GO:0005654), nuclear 592 

chromosome (GO:0000228), nucleolus (GO:0005730), nuclear envelope (GO:0005635), splicosomal 593 

complex (GO:0005681), nuclear DNA-directed RNA polymerase complex (GO:0055029), and nuclear pore 594 

(GO:0005643). We excluded terms listed as ‘part’ due to poor interpretability and manually excluded 595 

similar terms (e.g., nuclear lumen vs nucleoplasm). To generate a high confidence set of genes localizing 596 

to each of these selected sub-compartments, we then turned to the COMPARTMENTS resource which 597 

assigns localization confidence scores for each protein to GO cellular component terms. We assigned 598 

members of the nuclear proteome to these selected nuclear sub-compartments using same the approach 599 

outlined for the organelle analysis (Methods). After filtering our selected sub-compartments to those 600 
containing > 240 genes, we obtained four categories: nucleoplasm, nuclear chromosome, nucleolus, and 601 

nuclear envelope. The nuclear chromosome annotation was largely overlapping with a manually curated 602 

high-quality list of TFs49 however was not exhaustive; as such, we merged these lists to generate the 603 

chromosome and TF category. To improve interpretability, we removed genes from nucleoplasm that 604 

were also assigned to another nuclear sub-compartment, constructed a list of other nucleus-localizing 605 

proteins not captured in these four sub-compartments, and included only genes annotated as localizing 606 

to the nucleus (Methods). S-LDSC and MAGMA were used to test for enrichment across the UKB age-607 

related traits for these gene-sets in the usual way while controlling for the set of protein-coding genes 608 

(Methods). 609 

 610 

Enrichment analysis of functionally distinct TF subsets: 611 

We used a published curated high-quality list of TFs49 to partition the Chromosome and TF category into 612 

TFs and other chromosomal proteins. To determine which TFs are broadly expressed versus tissue specific, 613 

we computed 𝜏 per TF across all selected tissues after removing lowly-expressed genes with maximal 614 

cross-tissue TPM < 1 (Methods, Supplementary note). The threshold for tissue-specific genes was set at 615 

𝜏 ≥ 0.76 based on the location of the central nadir of the resultant bimodal distribution (Figure 3-S5A). 616 

To identify terciles of TFs by age, we obtained relative gene age assignments for each gene previously 617 

generated by obtaining the modal earliest ortholog level across several databases mapped to 19 ordered 618 

phylostrata107. DNA binding domain (DBD) annotations for the TFs were obtained from previous manual 619 
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curation efforts49. S-LDSC and MAGMA were used to test for enrichment across the UKB age-related traits 620 

for these gene-sets in the usual way while controlling for the set of protein-coding genes (Methods). We 621 

also tested TFs for enrichment in meta-analyses using S-LDSC and MAGMA with the same parameters as 622 

for UKB traits (Supplementary note). 623 

 624 

Analysis of constraint across organelles and sub-organellar gene-sets: 625 

We obtained gene-level gnomAD v2.1.1 constraint tables (https://gnomad.broadinstitute.org), 626 

haploinsufficient genes, and olfactory receptors56 (https://github.com/macarthur-lab/gene_lists). 627 

Constraint values as loss-of-function observed/expected fraction (LOEUF) were mapped to genes within 628 
organelle, sub-mitochondrial, sub-nuclear, and TF binding domain gene-sets. 629 

 630 

Enrichment analysis across age-related disease holding constraint as a covariate: 631 

To test for enrichment with constraint as a covariate, we used MAGMA with UKB age-related traits. We 632 

mapped variants to genes and performed the gene-level analysis as done previously for the mitochondria-633 

localizing gene and organelle analysis. We included LOEUF and log LOEUF as covariates for the gene-set 634 

analysis in addition to the default covariates (gene length, SNP density, inverse MAC, as well as the 635 
respective log-transformed versions) via the –condition-residualize flag.  636 
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