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Abstract

Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human

memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns

of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial

electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human

gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency

bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes

encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in

the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are

distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to

identify correlations between gene expression and active human brain states as well as provide a molecular window into

memory encoding oscillations in the human brain.
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Introduction

Comparing brain activity during successful versus unsuccessful

memory encoding permits exploration of the neurophysiologi-

cal mechanisms that underlie episodic memory formation.

Observed differences in activity based on encoding success are

termed subsequent memory effects (SMEs), and the spatial and

temporal resolution afforded through the use of intracranial

electroencephalography (iEEG) allows for the identification of

SMEs across the brain (Sederberg et al. 2007; Lega et al. 2016).

Successful encoding is often associated with a low frequency

power decrease (local desynchronization) and gamma band

power increase, however, important differences in the magni-

tude and preferred frequency range for this effect have been

observed both within a core network for item encoding and in

adjacent brain regions (Sederberg et al. 2007; Hanslmayr et al.

2012).

We sought to link for the first time the expanding literature

for intracranial SME with gene expression datasets. We mod-

eled our analytic methods on recent work by our group and

others suggesting there are gene expression patterns that

match resting state brain activity across multiple cortical loca-

tions (Hawrylycz et al. 2015; Richiardi et al. 2015; Wang et al.
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2015; Krienen et al. 2016). We used similar methodology for this

analysis, using a large existing database of oscillatory SMEs

across the brain. We used RNA-seq data and iEEG to identify

genes correlated with oscillatory activity across 14 neocortical

regions, suggesting several gene targets that may influence

memory performance. We also used co-expression network

analysis to ascertain the co-expression of oscillatory SME-

correlated genes together with genes involved in several brain

disorders, highlighting potential therapeutic inroads into dis-

eases for which memory disorders are often comorbid. Finally,

we performed an additional control analysis by correlating

gene expression separately with brain oscillatory activity

recorded as the same group of subjects performed basic mathe-

matical calculations (data collected as part of the distractor

portion of the free recall task). This revealed a distinct set of

nonoverlapping genes as compared with the memory analysis,

giving confidence to the assessment that our methods were

able to identify a set of genes unique to mnemonic processing

rather than genes that were correlated with cognitive activity

more generally.

Such an analysis fills an important gap in the literature: the

molecular mechanisms and regional differences in gene

expression that may support these observed differences in

oscillatory patterns are currently unknown (Wang 2010;

Buzsaki and Wang 2012). Previous work has suggested that

there is a genetic component to memory performance

(McClearn et al. 1997; Volk et al. 2006; Panizzon et al. 2011).

Most previous genetic studies of memory have focused on

uncovering variants associated with disorders that have associ-

ated memory deficits such as schizophrenia or Alzheimer’s dis-

ease (AD). At least one gene, WWC1 (also known as KIBRA), has

been associated not only with these disorders, but also with

memory performance in control cohorts (Papassotiropoulos

et al. 2006; Schwab et al. 2014; Vyas et al. 2014; Kos et al. 2016).

However, outside of the identification and study of WWC1,

there have been few studies linking specific genes to normal

memory function, and no studies directly linking genes in

humans, either at the level of variants in the DNA or in their

mRNA expression in the brain, to memory-related oscillations.

Fundamentally, the type of investigation we report here

(correlating SME patterns and gene expression across the brain

using large, existing datasets) is hypothesis-generating,

designed to identify gene targets for further experimentation in

animal models of memory function. However, our efforts were

guided by several testable hypotheses. Foremost we hypothe-

sized that the correlated genes we observed would be distinct

from those correlated with resting state brain activity and dif-

ferent from those linked to mathematical processing based on

our expectation of differences in brain activity for task based

memory activation. Previous studies seeking to correlate EEG

evoked potentials (outside of a memory task) with genetic var-

iations posited an association with genes encoding ion chan-

nels and other receptor proteins such as GABRA2, CHRM2, and

GRM8 (Rangaswamy and Porjesz 2008). We therefore hypothe-

sized that the brain oscillation pattern across cortical regions

would be correlated with genes known to affect ion channel

function, along with genes previously linked to memory disor-

ders. Finally, we hypothesized a priori that the most gene cor-

relations would be related to gamma band effects given their

hypothesized association with local cortical activation in cogni-

tion ((Lachaux et al. 2007) but see also (Hanslmayr et al. 2016)).

In the work described here, we present unique data derived

from human brain datasets. We believe our results will provide

researchers with a set of gene targets for memory-related

experimentation, some of which are nonintuitive and might

otherwise be overlooked as gene candidates. Animal studies

investigating these genes will further explicate how those we

identify are related to memory function and the genesis of

SMEs across the brain.

Materials and Methods

iEEG Data Processing and Analysis

iEEG data was collected over a period of 10 years across 2 insti-

tutions (University of Pennsylvania, IRB# 820 461 and Thomas

Jefferson University, IRB# 08 F.464 R). Overall, 45 of the partici-

pants have contributed data to previous publications (Burke

et al. 2014; Long and Kahana 2015; Lega et al. 2016). While the

total study contains data from 29 cortical regions in 183

patients, the analysis reported here only uses data from 14 neo-

cortical regions in the left hemisphere of 66 male patients. This

is because this subset of data matches the left neocortical gene

expression dataset from 2 male postmortem brain expression

datasets (Kang et al. 2011; Wang et al. 2015). Participants per-

formed the free recall task, a standard test of episodic memory.

The experimental design has been described in several previ-

ous publications (Lega et al. 2012). In brief, participants were

presented with 25 lists of memory items (high frequency

nouns, 15 items per list) and instructed to remember as many

as possible. Following a distractor task consisting of simple

addition problems, they were given 30 s to retrieve as many

memory items as they could in any order. Words vocalized at

the retrieval period were used to classify encoding events as

successful or unsuccessful; the magnitude of the SME for each

frequency band was calculated using this classification (differ-

ence in oscillatory power between recalled and nonrecalled

events). None of the patients had a known diagnosis of a heri-

table epilepsy disorder. Participants contributed Z values for a

given Brodmann area only if they had electrodes placed in this

area for phase II monitoring.

Cortical oscillatory signals were obtained from brain surface

contacts in subdural electrode grid and strip arrays (only sur-

face electrodes were used for this study due to the availability

of matching gene data). Contacts were standard platinum-

iridium contacts 2mm in diameter placed via open craniotomy.

Electrodes were localized to Brodmann areas using standard

methods previously published (Sederberg et al. 2007; Long and

Kahana 2015). In brief, Talairach coordinates were determined

by expert identification of electrode contacts after fusion of

patient brains with standard atlas brains using FSL software.

These coordinates were used to assign electrodes to Brodmann

areas using the standard atlas (Jenkinson et al. 2012). All elec-

trodes within the Brodmann areas of interest for each of the 66

male participants in the analysis were included, except for elec-

trodes located at or adjacent to the ictal onset location or for

which manual review of EEG signal at the time of data collec-

tion revealed significant artifact. In total, 5 153 electrodes were

available for analysis with each patient contributing an average

of 5.6 electrodes in each Brodmann area. We did not restrict

our analysis to a minimum number of electrodes or a mini-

mum number of patients for each area for the analysis.

Table S1 contains the number of electrodes from each

Brodmann area used per patient. In total, 14 Brodmann regions

were used from the participants (BA8, BA9, BA10, BA11, BA20,

BA21, BA22, BA39, BA40, BA42, BA44, BA45, BA46, and BA47) to

carry out correlation analyses. We made the a priori decision to

exclude primary motor, sensory, and visual cortex from the
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correlation analysis based on these regions exhibiting quite dif-

ferent expression profiles compared with relatively homoge-

nous gene expression across other regions of the human cortex

(Hawrylycz et al. 2015), along with relatively less sampling from

these regions in the iEEG memory dataset.

Intracranial EEG activity was initially recorded between 256 and

1000Hz and rereferenced using a global average re-referencing

scheme. Electrodes located immediately within seizure onset

locations were excluded from the analysis. Inter-ictal spiking

activity and other events with signal artifact were further

excluded by applying a kurtosis rejection algorithm that has

been previously published (Sederberg et al. 2003, 2007) with a

(conservative) threshold of 4. Morlet wavelets (wave number 6)

were used to extract oscillatory power at each frequency with a

500ms buffer to eliminate edge artifacts. Power values were

averaged across the entire encoding epoch (1600ms) that fol-

lowed the onset of the presentation of memory items. We com-

pared the extracted oscillatory power after log transforming the

raw values between recalled and nonrecalled distributions

using a two-tailed t-test. We used non-normalized data for the

power analysis to avoid the influence of different normalization

schemes on the results. This generated a P-value of the differ-

ence between the distribution of oscillatory power for remem-

bered and forgotten words for each electrode and at each

frequency. The P-values were then Z-transformed using the

cumulative distribution function to permit combining data

across regions, electrodes, and bands.

The Z values for each electrode were averaged across 6 fre-

quency bands defined based on standard human EEG categoriza-

tion (Hanslmayr and Staudigl 2014): delta (2–4Hz), theta (4–8Hz),

alpha (8–12Hz), beta (16–20Hz), low gamma (35–70Hz), and high

gamma (70–150Hz). Frequencies from 20 to 35Hz were not ini-

tially included as these fall between the standard beta and low

gamma frequency ranges. However, we did subsequently

include data from these frequencies and obtained additional

gene correlations (Supplemental Methods). While we acknowl-

edge that the demarcated limits of specific frequency bands are

somewhat arbitrary, we used standard definitions for these

bands in human EEG (Hanslmayr and Staudigl 2014) to facilitate

comparisons among different genes and limit the number of

correlations to evaluate. The SME for each frequency band was

averaged across all electrodes in a given Brodmann area to

obtain a single SME value for each region to be used in the corre-

lation with the gene expression dataset. SME values from 9

Brodmann regions (BA9, BA21, BA22, BA39, BA40, BA44, BA45,

BA46, and BA47) were compared with the dataset from Wang

et al. and SME values from Brodmann regions (BA8, BA9, BA10,

BA11, BA20, BA21, BA22, BA39, BA40, BA42, BA44, BA45, BA46,

and BA47) were compared with the 7 brain regions denoted by

gyral landmarks in the dataset from Kang et al. (Table S2).

The gene datasets available for comparison with the iEEG

data presented certain challenges. The first is the spatial scale

of the tissue data that was used to generate the gene expres-

sion compilations, which combines data within one or several

Brodmann areas to define a cortical region. For high frequency

oscillations, Brodmann areas are a relatively blunt scale of spa-

tial segregation for analysis, and the regions typically employed

in aggregating data for iEEG studies are smaller. We needed a

method to rationally combine data across the cortical areas

that contribute to the regions from the gene expression dataset.

We elected to employ a two-sided statistical test to capture

memory-relevant information from electrodes that exhibited a

significant difference in oscillatory power in both directions

(recalled > nonrecalled power and vice versa). This also allowed

us to use an unbiased method of including all information from

a given region without filtering for electrodes exhibiting an

effect in only one direction and to capture the magnitude of

memory processing in a region with heterogeneous properties

for the electrodes. An example of the logic underlying this a

priori decision is shown in Figure S2.

This means that the correlations we identify cannot disam-

biguate genes linked to positive versus negative SMEs, but

rather quantify how gene expression differences across the

brain match cortical differences in the strength of oscillatory

correlation of successful encoding.

Brain Tissue and RNA Sequencing

All gene expression data are derived from different individuals

than the ones that participated in the iEEG study. Gene expression

data are limited by tissue availability, thereby focusing the com-

parisons to specific brain regions and only male samples.

Postmortem brain tissue processing and RNA-seq analysis has

been previously reported (Wang et al. 2015). Samples are from the

left hemisphere of 5 male donors. For this dataset, we used RPKM

(reads per kilobase of transcript per million reads mapped) values

for gene expression measurements. Analysis of the replication

gene expression dataset was previously reported (Kang et al.

2011). For our analysis, we used data from the left hemisphere of

22 male donors. The average Z values of each brain region from

both studies are included in Table S2. The number of expressed

genes in both studies that were used for comparisons was 12 018.

Identification of Individual SME-Correlated Genes

The Z values were estimated across participants for each of the

6 frequency bands and placed in a correlation matrix with gene

expression values for the neocortical areas included in the anal-

ysis of each dataset. Only genes longer than 500 bp and anno-

tated as “protein_coding” were included. RNA-seq expression

values were log2 (RPKM+1) scaled to make them comparable

with RMA values from the Kang et al. microarray study. A

Spearman’s rank correlation test was used. We assumed the

relationship between oscillations and gene expression as mono-

tonic. P < 0.05 from a Spearman’s rank correlation was used as

the cutoff to identify the significantly correlated genes in each

oscillation. Genes that met these criteria for both gene expres-

sion datasets and were correlated in the same direction in both

datasets (i.e., positive or negative) were kept for further analyses.

By correlating gene expression across brain regions, this means

that any genes identified are associated with how SME informa-

tion varies across the brain not within a given brain region

To confirm the predictions, we applied a general linear model

estimating the linear relationship between oscillations and gene

expression using lm(log2(Oscillations+1) ~ log2(Gene expression

level+1)). To note, one was added to maintain 0 in the down-

stream analysis. We then assessed the adjusted R squared from

the linear model and compared with the rho squared from the

Spearman’s rank correlation (Pearson’s R = 0.78, P = 0.002; permu-

tational Pearson’s correlation test; 1000 permutations). To test the

robustness of the results, permutations were applied for each

dataset. We shuffled the expression of both datasets 1000 times

and recalculated the Spearman’s rank correlation between oscilla-

tions and gene expression. We then assessed the difference

between predicted nominal Spearman’s rank correlation esti-

mated and the permuted one. Permuted P-values are in Table S3.

Along with the permutation testing and use of confirmatory

gene expression dataset described above, we conducted a
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control analysis in which we examined the genes correlated

with a different (nonmnemonic) cognitive task. We quantified

oscillatory activity across the same cortical regions recorded as

subjects solved simple arithmetic problems. These are per-

formed as the distractor portion of the free recall task. We gener-

ated a Z value comparing oscillatory power across the frequency

spectrum for a 900ms period after math item presentation to a

baseline period from the beginning of each word list (cross fixa-

tion). We performed a correlation between this measure of oscil-

latory activity (during mathematical processing) following the

same methods as for the SME analysis. We quantified the frac-

tion of overlapping genes between these 2 analyses in an effort

to ensure the genes we report as memory-related are not actu-

ally linked to nonmnemonic oscillatory activity such as more

general visual processing or nonspecific cognitive engagement.

Results

Identification of SMEs in Fronto-temporal-Parietal

Cortex

We analyzed human data obtained via direct intracranial

electrophysiological recordings from 29 neocortical areas in 183

participants as they performed a delayed free recall task while

undergoing phase II monitoring for identification of an epileptic

focus (Fig. 1 and Fig. S1) (Lega et al. 2012; Burke et al. 2014).

Subjects had an average recall probability of 22.5% of items from

the 15 word lists, with a range from 4.2% to 51.7%. The results of

a binomial test on the proportion of electrodes in each region

exhibiting a significant SME for each frequency band are

included in Table S4. The significance of these P-values (the

majority exceed an FDR < 0.01) indicates that the identified

SMEs are robust and valid for comparing to gene expression.

Figure S2 shows the average effect size of the difference between

oscillatory power for recalled and nonrecalled events (normal-

ized across regions), with expected stronger effects for certain

bands (such as gamma) in the temporal cortex for example.

However, there were significant SMEs in many cortical regions

for all frequency bands, consistent with existing data (Sederberg

et al. 2007; Burke et al. 2014). These values demonstrate the

robustness of the memory effects observed in our data, but for

the purposes of the oscillation/gene expression correlations, the

important property is how these memory effects varied across

the cortex, including regions with overall weaker SMEs (Fig. S2).

Identification of SME-Correlated Genes

For comparison with the gene expression dataset, we examined

the correlation between the pattern of variation in gene expres-

sion across cortical regions and the pattern of variation in SME

FREE RECALL
30 seconds

DISTRACTOR
at least 30 seconds

ENCODING
10 words

1.6 sec/word

800 ms ISI w/jitter

CLOUD

AXE

FARM

TRUCK

...

BED

3+6+2 = ?

1+5+4 = ?

7+2+6 = ?

BED

CLOUD

freq

power

freq

power

freq

power

freq

power

freq

power

x n-lists

Recalled Not Recalled

2-sample

t-test

SME
(z-score)

freq

SME

freq

SME

freq

SME

freq

SME

freq

SME

freq

SME

freq

SME

freq

Average SME across all

Electrodes in a Region

SME

freq

A

B

Figure 1. Schematic of SME task and analysis. (A) Patients were presented with lists of 15 words to remember during the encoding period. After a distraction period

comprised of basic math problems in the format X + Y + Z = ?, patients were asked to verbally recall the previously presented words. Throughout the encoding, dis-

traction, and recall period, intracranial electrodes were recording activity throughout the neocortex. A Z-score characterizing the differences in activity during encod-

ing of items that were subsequently recalled and during encoding of items that were forgotten (SME) was calculated for each electrode. (B) The SME for each region of

interest was calculated by averaging the SME from all of the electrodes within that region. The SME was binned into distinct frequency ranges corresponding to

known frequency oscillations.
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values across these same regions using a nonparametric statis-

tical test (Spearman’s rank correlation). This variation was dif-

ferent for each frequency band (Table S2) and is the reason the

gene correlations are different for each band. This method was

modeled on a comparison of gene expression and fMRI BOLD

signal variation across brain regions (Wang et al. 2015), and we

discuss our results versus this previous analysis below.

The postmortem gene expression data we used for compari-

son with the SME data are derived from a separate cohort of 5

individuals, each with mRNA samples from 9 regions for a total

of 45 samples. We also compared the SME values to an indepen-

dent postmortem gene expression neocortical dataset derived

from 22 individuals, each with mRNA samples from 7 regions

(aggregated from 14 Brodmann areas) for a total of 154 samples

(Kang et al. 2011) for replication (Fig. 2A). SME values calculated

from either cohort show high similarity (Fig. S3A; P = 1.3e–03,

Mantel Test for similarity with 10 000 Monte Carlo simulations).

Thus, in total, the SME values from 66 individuals were com-

pared with gene expression from the union of 14 regions in 27

different individuals. For the correlation with SME values, only

genes that met our criteria for significance (P < 0.05, Spearman’s

rank correlation) in the same direction in both datasets were

considered validated and used in further analyses (Fig. S4). We

confirmed this empirical correlation using a linear regression

model between SMEs and gene expression (Fig. 2B). The linear

regression recapitulates the correlation, supporting a strong

linear relationship between SMEs and the identified genes

(Table S3). In addition, we also compared the rho2 values between

the 2 datasets, and observed similar correlations between oscilla-

tions and gene expression (Fig. S5). Finally, we carried out permu-

tation testing to compare the observed correlations to random

distributions of each dataset. We found that the predicted nomi-

nal Spearman’s rho values were highly discordant from the per-

muted distributions in both datasets (Fig. 2C and Table S3).

Thus, we controlled for the false positives among the nominal

correlations of the 12 018 expressed genes using a 3-step

approach: (1) independent running of the correlation analysis

(with shuffle) on a second gene expression dataset, (2) using an

independent verification of the identified genes with a linear

modeling approach, and (3) using a permutation procedure to

identify genes whose rho values exceeded those of the type one

error rate (5%) and control for the false discovery rate. We

believe these methods provide robust statistical confirmation of

the genes correlated with SMEs across cortical brain areas.

With this approach, we found that the expression of 163 out

of a total of 12 018 expressed genes is correlated with iEEG SMEs

(Fig. 2D, Table S3). There was an equivalent distribution of genes

positively and negatively correlated with SMEs using both expres-

sion datasets (Fig. S6A,B). This indicates that we identified genes

for which expression increases are correlated with larger magni-

tude SMEs as well as those genes for which expression decreases

in a corresponding manner, suggesting that the expression of

these genes might underlie the ability to generate SMEs. In addi-

tion, we observed similar co-expression (Spearman’s rank correla-

tion) among these 163 genes in the human neocortex using both

gene expression datasets (P = 4.5e–02, Mantel Test for similarity

with 10 000 Monte Carlo simulations; Fig. S6C).

Gene Correlations Differ Among Frequency Bands

SMEs in the gamma band, especially in the hippocampus, have

been linked to long term potentiation and learning in animal

studies (Lisman and Buzsaki 2008). These oscillations are also

found in human neocortex, but their underlying mechanism in

humans is not as well described (Fries 2009). Encoding-related

desynchronization that is a hallmark of successful item encoding

throughout the brain often involves multiple frequency bands

(Hanslmayr et al. 2016), and in our data we identified 9 genes cor-

related with more than 2 oscillations (Fig. 2D and Table S5).

Interestingly, CBLN2 and HSPB8 are positively correlated with low

gamma SMEs but negatively correlated with lower frequency

oscillations, suggesting a gene-level preservation of a desynchro-

nization/gamma synchronization pattern often observed during

successful encoding (Hanslmayr et al. 2012).

Beta oscillations are thought to contribute to information

processing as part of the prevalent low frequency desynchroni-

zation although they have received less focus than gamma or

theta frequency oscillations in memory experiments (Fries

2009). We observed beta-band SMEs throughout the cortex, and

61% (98 genes) of the SME-correlated genes we identified were

correlated with oscillatory effects in this frequency range with

37 genes positively correlated and 61 genes negatively corre-

lated (Tables S3 and S5).

SME-Correlated Genes are Enriched for Neuronal

Markers

Previous investigations have postulated that interneurons pre-

dominately modulate sub-gamma frequency oscillations, while

gamma oscillations may emerge from interactions between

inhibitory interneurons and excitatory pyramidal neurons

(Buzsaki and Wang 2012; Lee et al. 2013). We therefore asked

whether SME-correlated genes are enriched for specific cell

types. We used 3 cell marker transcriptome resources with

detailed annotations of genes linked to cell types (Zhang et al.

2014; Zeisel et al. 2015; Lake et al. 2016) to perform enrichment

analyses of genes with preferential cell types expression pat-

terns among the SME-correlated genes (Fig. 3A and Table S5;

Supplemental Methods). The Zhang et al. study used a combi-

nation of immunopanning and FACS from cortical tissue of

neonatal mice, the Zeisel et al. study used single cell microflui-

dics from somatosensory cortex and hippocampal CA1 tissue

from adult mice, and the Lake et al. study used FACS combined

with microfluidics to obtain neuronal nuclei from 6 cortical

regions of an adult human brain. Therefore these cell-type

expression datasets are independent from the human neocorti-

cal expression datasets we used to generate the SME correla-

tions. We found that SME-correlated genes show the highest

expression level in neurons compared with 6 other cell types in

the cerebral cortex (Zhang et al. 2014), which is significantly

higher than expected by chance (P = 8.23e–08; hypergeometric

test, Benjamini–Hochberg corrected). In the second cell marker

study, 9 cell type markers are available from the single-cell

expression analysis of hippocampus and somatosensory cortex

(Zeisel et al. 2015). We found that SME-correlated genes are sig-

nificantly overrepresented among interneurons (P = 1.2e–02;

hypergeometric test, Benjamini–Hochberg corrected). Analyzing

the human single nuclei expression transcriptome dataset

derived exclusively from cortical neurons (Lake et al. 2016), we

find that SME-correlated genes are significantly overrepre-

sented in excitatory neuron genes (P = 9.0e–03; hypergeometric

test, Benjamini–Hochberg corrected) and that these are mostly

correlated with theta and beta oscillations. Since this cell-type

marker dataset is the only one we analyzed derived from

human brain, it is possibly the most relevant to our analyses.

The genes we identified in both of these cell types may provide
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Figure 2. Identification of SME-correlated genes. (A) Gene expression (e.g., RPKM, reads per kilobase of transcript per million reads mapped) from neocortical areas

was correlated with iEEG signals that corresponded to an SME (Z-score) in the same neocortical areas. Expression of 163 genes correlated with SME frequency oscilla-

tions. The majority of these genes correlated with beta oscillations. (B) Plot of the adjusted R-squared from a linear model compared with the rho-squared of the

Spearman’s co-efficient. Highlighted are the genes with the greatest value for both calculations. (C) Visualization of the permutation testing (1 000) for both Wang

et al. and Kang et al. gene expression datasets. In red, displayed are the real nominal values from the Spearman’s rank correlation test, while in grey displayed are

the permuted values. (D) Visualization of the genes correlated with each frequency oscillation.
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clues to the mechanism of beta frequency modulation during

memory encoding. It is also worth noting that we did not observe

non-neuronal gene markers correlating with SMEs. However, as

only the nonhuman cell-type marker datasets (Zhang et al. 2014;

Zeisel et al. 2015) contained information from non-neuronal

genes, our calculations might have been underpowered, especially

as several studies have uncovered functional and expression dif-

ferences between human and mouse astrocytes (Oberheim et al.

2009; Han et al. 2013; Zhang et al. 2016).

SME-Correlated Genes are Linked to Cognitive Disorders

We next carried out a functional ontological analysis of the

SME-correlated genes. We found that those genes are signifi-

cantly enriched for synaptic transmission, ion channel activity,

and neurotransmitter transport (Fig. 3B and Table S6), further

refining the SME-correlated genes to neuronal functions related

to activity. Moreover, we identified enrichment in specific

human and mouse phenotypes, such as memory disorders,

learning disorders, and seizures.

Figure 3. Functional characterization of SME-correlated genes. (A) Cell-type enrichment for SME-correlated genes (SME) and oscillation-specific correlated genes using

3 independent datasets: 1(Zhang et al. 2014), 2(Zeisel et al. 2015), and 3(Lake et al. 2016). Enrichment is based on brain-expressed genes as background. (B) Gene ontol-

ogy and phenotype enrichment for SME-correlated genes. On the x-axis is the number of SME-correlated genes per category; on the y-axis are the –log10(FDR) values.

(C) Genome-wide association study enrichment for SME-correlated genes. On the x-axis are the –log10(FDR) values; on the y-axis are the log2 values of the odds ratio

from the Fisher’s exact test. (D) Gene set enrichment for SME-correlated genes. Left panel: enrichment based on brain-expressed genes. Right panel: enrichment based

on protein-coding genes. ASD = autism genes in the SFARI database, ASD_SC = autism genes from the SFARI database with scores 1–4, FMRP = targets of FMRP from

the Darnell et al. 2011 study, ID = genes associated with intellectual disability, L&M = genes in the ontology category “learning and memory,” SYN = genes encoding

for synaptic genes, SZGR = genes associated with schizophrenia from the SZGR database, and SCZ_loci = genes near the 108 loci identified by the Schizophrenia

Working Group of the Psychiatric Genomics 2014 study.
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To further confirm our prediction about the role of SME-

correlated genes in cognition, we next asked whether SME-

correlated genes are enriched for genetic variants implicated in

multiple cognitive and neurodevelopmental disorders

(Supplemental Methods). Using a Fisher’s exact test model con-

taining the brain-expressed genes as background, genome-

wide association studies were filtered using a minor allele fre-

quency (MAF) of 0.05 and P-value of 0.05. We found that SME-

correlated genes are enriched for single-nucleotide polymorph-

isms (SNP) in genes associated with attention-deficit/hyperac-

tivity disorder (ADHD), autism spectrum disorder (ASD), bipolar

disorder (BIP), and major depressive disorder (MDD), while var-

iants in genes associated with schizophrenia (SCZ) and non-

brain disorders such as cholesterol levels (HDL and LDL) and

cardiac function (CARDIO) were not enriched (Fig. 3C).

We next asked whether any SME-correlated genes have pre-

viously been linked to memory and identified 3 SME-correlated

genes associated with the ontology term “learning and memory”

(CALB1, DRD2, and TBR1) (Table S5). These genes are noteworthy

because all 3 have been linked to specific brain disorders that

can include memory or cognitive impairments: CALB1 with

Huntington’s disease (Seto-Ohshima et al. 1988), DRD2 with

schizophrenia (Schizophrenia Working Group of the Psychiatric

Genomics 2014), and TBR1 with ASD (Sanders et al. 2015). We

therefore investigated whether SME-genes are enriched for cog-

nitive disorder genes, in general. Only beta-frequency SME-cor-

related genes are significantly enriched for ASD genes (Fig. 3D; P

= 3.8e–02; hypergeometric test, Benjamini–Hochberg corrected).

These genes include examples such as CADPS2, GRID2, GRIK4,

and MET, all genes important for propagating information at

synaptic membranes.

We next investigated whether one of the few genes to be pre-

viously linked specifically to human memory capabilities, WWC1,

had association with the observed SME correlations. Variants in

WWC1 have been linked to episodic memory and synaptic plas-

ticity as well as cognitive disorders such as schizophrenia and

AD (Papassotiropoulos et al. 2006; Schwab et al. 2014; Vyas et al.

2014; Kos et al. 2016). As we had observed an enrichment of syn-

aptic genes among SME-correlated genes, this raised the possibil-

ity that WWC1 related pathways might be observed within the

SME data. We therefore investigated whether SME-correlated

genes are linked to WWC1 co-expression. We assessed the corre-

lation of SME genes with the genes most highly connected to

WWC1 expression in our dataset. We found a significant correla-

tion of SME genes with WWC1 related genes (odds ratio = 4.85,

P = 1.81e–16, Fisher’s exact test with 10 000 Monte Carlo simula-

tions), and most of these genes are positively correlated with

WWC1 expression (odds ratio = 9.51, P = 9.10e–15, Fisher’s exact

test with 10 000 Monte Carlo simulations; Fig. 4A). The relative

expression level of these positively correlated genes follows a

similar expression pattern in both the Wang et al. and Kang et al.

datasets. Moreover, only the positively correlated genes are

enriched for ASD and synaptic genes (Fig. 4B). These results fur-

ther strengthen the relevance of the identified SME-correlated

genes with cognitive functions.

Co-expression Network Analysis Identifies Additional

Genes Linked to SMEs

To further expand our understanding of gene expression pat-

terns correlated with an SME, we carried out weighted gene co-

expression network analysis (WGCNA). We identified 20 mod-

ules containing highly co-expressed genes (Fig. 5A, Table S5).

Two modules were significantly enriched for SME-correlated

genes, SME15 (P = 4.3e–03; hypergeometric test, Benjamini–

Hochberg corrected) and SME20 (P = 1.0e–04; hypergeometric

Figure 4. Identification of SME-correlated genes co-expressed with WWC1. (A) Left panel: Density plot showing the percentage of SME-correlated genes. The majority

of SME-correlated genes are positively correlated with WWC1 in both gene expression datasets analyzed. Right panel: Expression level of the positively correlated

SME genes in both datasets analyzed. (B) Enrichment of synaptic and ASD genes among the WWC1-SME-correlated genes. ASD = autism genes in the SFARI database,

ASD_SC = autism genes from the SFARI database with scores 1–4, FMRP = targets of FMRP from the Darnell et al. 2011 study, ID = genes associated with intellectual

disability, L&M = genes in the ontology category “learning and memory,” SYN = genes encoding for synaptic genes, SZGR = genes associated with schizophrenia from

the SZGR database, and SCZ_loci = genes near the 108 loci identified by the Schizophrenia Working Group of the Psychiatric Genomics 2014 study.
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test, Benjamini–Hochberg corrected) (Fig. 5B and Table S7). We

also found that genes in these 2 modules are enriched for genes

associated with ASD, genes that are targets of the Fragile X

Mental Retardation Protein (FMRP), genes encoding synaptic

proteins, or genes associated with learning and memory

(Fig. 5B and Table S7). Upon examining the correlations at the

level of oscillations, we observed that SME15 has strong posi-

tive associations with beta and low gamma oscillations, while

Figure 5. Co-expression network analysis of SME-correlated genes. (A) Network dendrogram of all identified modules. (B) Functional enrichments in the 2 SME-

enriched modules. ASD = autism genes in the SFARI database, ASD_SC = autism genes from the SFARI database with scores 1–4, asdM12/16 = autism-associated co-

expression modules from the Voineagu et al. 2011 study, FMRP = targets of FMRP from the Darnell et al. 2011 study, ID = genes associated with intellectual disability,

L&M = genes in the ontology category “learning and memory,” SYN = genes encoding for synaptic genes, SZGR = genes associated with schizophrenia from the SZGR

database, SCZ_loci = genes near the 108 loci identified by the Schizophrenia Working Group of the Psychiatric Genomics 2014 study, and SME = SME-correlated genes.

FDR are based on a hypergeometric test, corrected using the Benjamini–Hochberg method. (C) The relationship of each module across oscillations. In blue, are dis-

played negative correlations, whereas in red are displayed positive correlations. The 2 SME-enriched modules are outlined with dashed lines. (D) Module preservation

of the network in 3 independent datasets ((Hawrylycz et al. 2015), (Kang et al. 2011) and BrainSpan) demonstrates the robustness of the SME-correlated modules.
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SME20 has negative associations (Fig. 5C). Visualization of the

genes connected to SME-correlated genes in SME15, and SME20

reveals a number of connections to synaptic-protein encoding

genes and ASD genes (Fig 6A,B). In contrast, the gene ontology

of these 2 modules reveals quite different enrichments as

SME20 is enriched for neuron-specific categories such as synap-

tic transmission and ion channel function, while SME15 is

enriched for protein modification, protein binding, and RNA

binding (Fig 6A,B and Table S8). To determine the applicability of

our findings to the cortex in general, we carried out a module

preservation analysis of our data with another human brain

transcriptome study containing 44 cortical regions in the left

hemisphere of 5 individuals (Hawrylycz et al. 2015), an addi-

tional dataset comprising 5 cortical regions of 5 individuals

(BrainSpan), and the Kang et al. dataset. All modules are pre-

served; however, SME20 has a much greater relative preserva-

tion than SME15 (Fig. 5D). This suggests that SME15 may capture

the genes relevant to memory encoding in the specific cortical

regions we assessed, whereas SME20 may identify general neu-

ronal processes for memory encoding, in line with the ontology

categories identified. In addition, we assessed cell type enrich-

ment within the SME-enriched modules. Only SME15 is enriched

for neuronal genes representative of both excitatory and inhibi-

tory neurons (Fig. 6C), again perhaps suggesting some specificity

of neuronal networks underlying SMEs in the cortical regions we

studied. Upon carrying out enrichment analyses using genes cat-

egorized by oscillation correlations, we only observed a signifi-

cant enrichment of beta-correlated SME genes among the

“Inhibitory group 6” list of genes (P = 4.5e–02; hypergeometric

test, Benjamini–Hochberg corrected).

SME-Correlated Genes are Distinct From Those

Corresponding to Resting-State fMRI

Previous work has correlated postmortem human brain gene

expression with fMRI resting state activity identified through

measurements of both functional connectivity and fractional

amplitude of low frequency fluctuations (fALFF), highlighting

molecular mechanisms of fMRI signals (Hawrylycz et al. 2015;

Richiardi et al. 2015; Wang et al. 2015; Krienen et al. 2016). We

found that 4 (11%) of the 38 reported fALFF-correlated genes

significantly overlapped with the SME-correlated genes (DRD2,

HTR2C, NR2F2, and PVALB) (P = 3.0e–02; hypergeometric test,

Benjamini–Hochberg corrected) (Fig. 7A and Table S5). Among

the 78 genes most stably correlated with fMRI connectivity

(Richiardi et al. 2015), 10 (12%) of them also significantly over-

lapped with the SME-correlated genes (ANKRD6, BAIAP3,

CARTPT, GNGT2, GRP, NOV, RBP4, SLC16A6, SYT10, and TGFBI) (P

= 5.68e–08, Fisher’s exact test) (Fig. 7A and Table S5).

Interestingly, among those overlapped genes, there are differ-

ences among the oscillation frequencies with which the genes

are correlated. The fALFF-correlated genes are correlated with

alpha, beta, low gamma, and theta oscillations and the fMRI

connectivity correlated genes are correlated with beta, high

gamma, and theta oscillations (Table S5). However, none of the

shared fMRI-correlated genes are correlated with beta oscilla-

tions (Fig. 7B). The comparison to the Wang et al. 2015 study is

potentially the most relevant to the genes identified correlated

to SMEs. This is because the Wang et al. study focused on

region-specific functional activity as measured by fALFF in only

the default mode network, while the other studies used mea-

surements of functional connectivity across multiple brain net-

works. These findings underscore that these 2 different

methods of quantifying resting state activity (fALFF and

functional connectivity) may provide complementary informa-

tion about memory encoding networks.

Genes Correlated with SME Oscillations are Distinct

From Those Correlated with a Mathematical Cognitive

Task

We conducted a control analysis following the same methods

as above using oscillatory activity recorded as the same intra-

cranial EEG subjects answered simple arithmetic problems. We

sought to address the possibility that the correlations we

observed were due to nonmnemonic effects such oscillatory

activity linked to visual processing or more general engage-

ment in a cognitive task not specific for memory. We hypothe-

sized that the genes identified in this analysis would be mostly

distinct from those observed in the SME analysis. This control

analysis revealed 210 genes across all frequency bands that

were correlated with brain activity during mathematical pro-

cessing. The correlation of these 210 genes was similar in each

of the gene expression datasets (Fig. S7A; P = 1.3e–02, Mantel

Test for similarity with 10 000 Monte Carlo simulations). Unlike

the SME-correlated genes, these genes correlated with mathe-

matical processing were primarily associated with low gamma

oscillations (Fig. S7B). Only 27 overlapped with SME-related

genes (there are 36 overlapping values as some genes are corre-

lated with multiple oscillations), none of which were associated

with neuronal function, cognitive disorders or ion channels

(Fig. S7C). Moreover, if we filtered these 27 genes for oscillation

association and direction of correlation (positive or negative

correlation in both memory and math tasks), only 4 genes over-

lapped (Fig. S7C). Interestingly, there was greater overlap

between the math correlated genes and resting state fMRI cor-

relations (Fig. S7D,E), perhaps reflecting the contributions of the

parietal regions to both math function and resting state activa-

tion (Fransson 2005; Wintermute et al. 2012).

Discussion

Our study is the first attempt to link memory-related brain oscil-

lations to underlying gene expression in humans. iEEG has

revealed a number of oscillatory patterns across the frequency

spectrum that are reliably associated with successful memory

encoding and retrieval. These include localized changes in

gamma band activity and low-frequency desynchronization

(Hanslmayr et al. 2012; Burke et al. 2013, 2014). To date, knowl-

edge of these patterns, no matter how robust, has not translated

into strategies for using oscillatory information to improve mem-

ory performance in patients suffering memory deficits (Laxton

et al. 2010). Our data have implications for both of these issues.

By identifying genes correlated with oscillatory SMEs, our data

may suggest mechanisms common to effects observed in differ-

ent frequency bands. With a set of target genes implicated for

such patterns, our data should stimulate controlled investiga-

tions of how manipulations of these genes influence neurophysi-

ology and behavior in animal models of human memory and

thereby help understand the mnemonic roles of changes in spe-

cific frequency ranges. These experiments in turn could inform

basic questions of how oscillatory patterns arise and how differ-

ences in specific gene function can impact memory performance.

The genes we identify may also stimulate investigations of new

therapeutic targets to alter memory dysfunction in diseased

states. For example, GRIK4, a gene encoding an ionotropic gluta-

mate receptor, that we show is correlated with beta oscillations,

has association with both ASD and schizophrenia (De Rubeis

1742 | Cerebral Cortex, 2018, Vol. 28, No. 5
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Figure 6. Characterization of SME15 and SME20. (A) Visualization of SME15 module showing EIF5A2 and TRIM37 SME-correlated genes as hubs. The gene ontology

functional enrichments are displayed on the right. (B) Visualization of SME20 module showing GRM2 and PTPRF SME-correlated genes as hubs. The gene ontology

functional enrichments are displayed on the right. (C) Cell type enrichments among genes in SME15 and SME20 using excitatory and inhibitory single-nuclei tran-

scriptome data (Lake et al. 2016).
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et al. 2014; Greenwood et al. 2016). Therefore, pharmacological

agents with preferential activity for this receptor may be helpful

for treating cognitive problems in these patient populations. This

same approach may also suggest new ways to understand side

effect profiles of medications that impact the gene targets we

have identified, notably ion channels.

The rationale for our study was to determine whether

human brain gene expression profiles could correlate with a

robust and quantifiable measurement of active brain activity

such as SMEs. We expected to identify genes that were associ-

ated with ion channels and cognitive disorders, and that were

mostly nonoverlapping with those whole expression correlates

with fMRI signals and other cognitive processes, namely arith-

metic calculation. We were successful in identifying over 100

correlated genes and the genes identified here are among the

first genes to be linked to memory encoding in humans. We

believe further experimentation in which expression of these

genes is manipulated in a controlled setting will help explicate

how they influence oscillatory patterns across the brain. The

enrichment of these genes for neuronal and synaptic function

makes their participation in oscillatory activity quite plausible

and suggests that manipulation will be associated with observ-

able differences in electrophysiological activity.

Our results also highlight both the utility and limitations of

using resting-state fMRI to understand memory-encoding net-

works. Several of the genes that are correlated with both iEEG

and resting fMRI notably show a strong correlation (e.g., BAIAP3

and DRD2; Table S3), implying they may serve a central role in

both networks and further that there may be fundamental

brain processes important in memory encoding that are also

identified via resting state fMRI. This would be consistent with

the observation that fMRI resting state networks identify a

number of nodes that overlap with sites identified during fMRI

studies of memory retrieval (Kim 2010). However, the overall

fraction of genes that exhibit significant overlap between iEEG

SMEs and resting state fMRI was low, suggesting that there are

different electrophysiological processes involved in each. The

brain regions that are principally involved in default mode net-

work activity (especially prominent during resting state fMRI)

(Greicius et al. 2009) were not well-sampled in the gene expres-

sion data we have available. Sampling from regions such as

precuneus and midline prefrontal areas would perhaps reveal

more consistent overlap between fMRI resting state data and

iEEG SME data.

Given the strong relationship between SME-correlated genes

and WWC1 gene co-expression (Fig. 4), it would have been inter-

esting to identify AD-relevant SNPs within the SME genes as

variants within WWC1 itself have been associated with AD

(Schwab et al. 2014). However, the dataset available for compari-

son (International Genomics of Alzheimer’s Disease 2015) did

not contain the same statistical criteria (MAF cutoff, etc.) that

was readily available for the other datasets. Discovery of var-

iants relevant to AD may still be underpowered, as recent large-

scale GWAS have demonstrated the need for tens of thousands

of subjects to uncover significant variants (Schizophrenia

Working Group of the Psychiatric Genomics 2014; CONVERGE

Consortium 2015). Our focus on fronto-temporal activity and

gene expression outside of the medial temporal lobe and the

hippocampus may also limit our ability to observe AD-relevant

correlations. Moreover, gene networks relevant to SMEs may be

different from those disrupted in late-onset neurodegenerative

disorders such as AD. In contrast, the enrichment of variants

and genes associated with neurodevelopmental disorders such

as ASD among the SME-correlated genes suggest that we have

uncovered components of memory-relevant pathways impor-

tant for early brain development. Intriguingly, several studies

have shown deficits in working memory in patients with ASD

(Williams et al. 2006), MDD (Schwarz et al. 2016), BIP (Buoli et al.

2016), and ADHD (Rapport et al. 2008; Kofler et al. 2011; Roman-

Urrestarazu et al. 2016), suggesting that SME-correlated genes

might be connected with this particular endophenotype in these

neuropsychiatric disorders. Thus our findings are even more

remarkable considering that the data from patients undergoing

iEEG as well as the source of the postmortem tissues are all from

adult individuals. As memory encoding is a fundamental prop-

erty of most, if not all, cognitive functions, a convergence on

genes relevant to early brain development among the SME-

correlated genes are not unexpected. Moreover, the specific

enrichment of beta-correlated genes among a human cell-type

specific cluster of inhibitory genes (Fig. 6C) provides an entry

point for testing the roles of these genes in specific cortical func-

tions. These findings as well as the enrichment of ASD genes in

those modules may underscore a gene network important for

the disrupted functional neocortical circuits and working mem-

ory observed in patients with ASD (Williams et al. 2006).

Our gene expression data does not permit gene-SME com-

parisons with memory-relevant structures such as the hippo-

campus, parahippocampus, entorhinal cortex, and posterior

cingulate region. However, numerous studies have observed

robust SME patterns outside the mesial temporal lobe, espe-

cially a simultaneous gamma band power increase and low-

frequency power decrease (most prominent in alpha and beta

frequency ranges) observed in different experiments through-

out the cortex using iEEG (Sederberg et al. 2007; Burke et al.

Figure 7. Comparison of SME-correlated genes with fMRI-correlated genes. (A) Venn diagram indicating the overlaps among the SME-correlated genes and those cor-

related with either fALFF (“fMRI genes”; (Wang et al. 2015)) or functional connectivity (“fMRI network genes”; (Richiardi et al. 2015)) using resting state fMRI. The

majority of SME-correlated genes do not overlap with either fMRI study. (B) Venn diagram indicating the overlap of beta-correlated genes specifically with each fMRI

study.
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2014; Long et al. 2014). In addition, differences in gene expres-

sion have been linked indirectly to oscillatory differences in

theta oscillations in the rodent hippocampus along the dorsal-

ventral axis (Dong et al. 2009). Interestingly, when we include

gene expression data from “hippocampus” that is available in

the Kang et al. dataset with hippocampal oscillatory data, we

find that the number of genes correlated with delta, low

gamma, and high gamma increases (data not shown). Since the

gene expression data are not distinguished at the level of hip-

pocampal subfields, these findings await further exploration

with such refined human expression datasets.

An important theory of information processing stimulated

by such findings from intracranial EEG is the “information via

desynchronization” hypothesis (Hanslmayr and Staudigl 2014).

We identified a subset of genes that are correlated with oscilla-

tions in multiple frequency bands, lending support to the view

that common neurophysiological mechanisms underlie

changes across the spectrum. Our results immediately suggest

several follow up analyses such as the identification of gene

correlates of attentional processes that support memory

encoding (especially 3 Hz synchrony, see Haque et al. (2015)),

genes associated more specifically with the primacy effect for

episodic memory (Sederberg et al. 2006), and working (and rec-

ognition) memory (Axmacher et al. 2008).

The large fraction of genes correlated with beta frequency

oscillations may be an indication of the relative importance of

desynchronization at these frequencies to information proces-

sing in the cortex (Engel and Fries 2010; Hanslmayr et al. 2016).

The contributions of beta oscillations to mnemonic processing

have been studied in nonhuman primates (Siegel et al. 2009)

and human intracranial oscillations as well as surface EEG

(Haenschel et al. 2000; Hanslmayr et al. 2014). Beta oscillations

have been characterized most comprehensively via their con-

tribution to movement, where pathological beta frequency

activity has been linked to abnormalities in Parkinson’s

Disease. This observation and others led to the hypothesis

from Engel and Fries that beta frequency activity signals base-

line “status quo” activity in the cortex (Engel and Fries 2010).

However, primate studies examining frontal cortex spike-field

coherence during working memory and work by Hanslmayr

(Siegel et al. 2009; Hanslmayr et al. 2016) has suggested there

may be unique contributions to mnemonic processing from

oscillations within the beta range. Our results support the latter

conclusion. Our data may also reflect a role for beta oscillations

in both desynchronization and local activation, as beta-to-

gamma oscillatory changes are hypothesized to support mem-

ory encoding (Engel and Fries 2010), or an attention-related

contribution to encoding success in tasks such as free recall

(Donner and Siegel 2011; Kopell et al. 2014).

When formulating methods for this experiment, we con-

sidered the issue of combining data across frequency bands. The

exact frequency range that defines a band is often subject for

debate, and previous work has suggested that different indivi-

duals and brain areas exhibit oscillations with similar functional

properties as slightly different frequencies (Zhang and Jacobs

2015). This heterogeneity in the edges of frequency bands is

another reason we favored preserving SME information for as

long as possible within our analysis before calculating a single

test statistic for each brain area (see Methods), but averaging

effects across the bands allowed us to make more straightfor-

ward comparisons with gene expression. For example, the genes

TBR1 and TWIST1 are correlated with beta and gamma sepa-

rately. Both genes encode transcription factors and while much

work has been done to study the role of TBR1 in brain

development and cognitive disorders such as ASD, there is little

known about the functional relevance of TWIST1 to human brain

development and function. Moreover, TBR1 is also enriched in

synapses in the adult brain (Hong and Hsueh 2007), and thus its

correlation with SMEs in adult human brain might be linked to

the synaptic function of TBR1. Averaging across bands allows us

to prioritize genes that exhibit preferentially high or low fre-

quency effects for future functional analyses.

Given the differences in memory and math-related tasks

that we contrasted using gene expression correlations, we

would have been surprised if the correlated genes overlapped

as this would have diminished the reliability of our claim to

have identified genes related to memory for future experimen-

tal exploration. However, investigation of the few overlapping

genes between SMEs and math suggest several interesting ave-

nues of research such as whether these specific genes are rele-

vant to attentional networks in the brain. Again, future studies

in animal models on these genes are warranted.

Finally, these data are the first to demonstrate that gene

expression patterns linked to specific cognitive tasks such as

memory encoding can be identified in humans. Such correla-

tions are essentially limited only by the quantitative measures

that can be obtained during a given behavior. The excellent

spatial and temporal resolution and favorable signal to noise

characteristics of intracranial EEG likely facilitated the identifi-

cation of robust correlations in our data. However, analyses

performed using noninvasive modalities such as MEG may also

prove fruitful and deserve investigation. In either case though,

comparisons to gene expression will primarily be limited to

postmortem tissue where temporal changes in gene expression

cannot be assessed. Such a caveat might someday be overcome

by new technology such as molecular fMRI (Bartelle et al. 2016),

however this technology is far from being used in humans.

There are many other possible sources of variation in gene

expression that could serve as the basis of this type of analysis;

investigators are limited only by the nature the available data.

The only human gene expression datasets currently available

utilize brain samples with relatively broad spatial specificity,

and as such we developed methods for quantifying and aggre-

gating SME data that matched the spatial scale of these gene

data. Other types of variation in gene expression, such as varia-

tion within a region across subjects, or variation across time

within a region during cognition, will be exceptionally interest-

ing avenues for future investigation as these data become

available. While finer-scale gene expression data is desirable,

the brain regions we included have been shown to participate

in memory networks in previous studies. Finally, our results

are necessarily limited by the fact that only patients suffering

from intractable epilepsy undergo invasive electrode implanta-

tion. It is possible that the gene/memory effect correlations we

observed are unique to epilepsy patients. However, our meth-

ods of excluding electrodes in epileptogenic cortex, our imposi-

tion of a conservative artifact rejection algorithm, and the

properties of the genes we identified (genes implicated in learn-

ing and memory in humans) provide some confidence of the

wider generalizability of our findings.
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