
Human-Guided Simple Search

David Anderson1, Emily Anderson1, Neal Lesh1, Joe Marks1,
Brian Mirtich 1, David Ratajczak1, Kathy Ryall 1;2

——————————
1MERL — Mitsubishi Electric Research Laboratory, Cambridge, MA 02139

2University of Virginia, Dept. of Computer Science, Charlottesville, VA 22903
Contact: lesh@merl.com

Abstract

Scheduling, routing, and layout tasks are examples of hard
operations-research problems that have broad application in
industry. Typical algorithms for these problems combine
some form of gradient descent to find local minima with some
strategy for escaping nonoptimal local minima. Our idea is to
divide these two subtasks cleanly between human and com-
puter: in our paradigm ofhuman-guided simple searchthe
computer is responsible only for finding local minima using
a simple hill-climbing search; using visualization and inter-
action techniques, the human user identifies promising re-
gions of the search space for the computer to explore, and
intervenes to help it escape nonoptimal local minima. We
have applied our approach to the problem of capacitated ve-
hicle routing with time windows, a commercially important
problem with a rich research history. Despite its simplicity,
our prototype system is competitive with the majority of pre-
viously reported systems on benchmark academic problems,
and has the advantage of keeping a human tightly in the loop
to handle the complexities of real-world applications.

Introduction
Most previous research on scheduling, routing, and layout
problems has focused on developing fully automatic solu-
tion methods. There are, however, at least two reasons for
developing cooperative, interactive systems for optimization
problems like these. First, human users may have knowl-
edge of various amorphous real-word constraints and objec-
tives that are not represented in the objective function given
to computer algorithms. In vehicle-routing problems, for
example, human experts may know the flexibility or im-
portance of certain customers, or the variability of certain
routes. The second reason to involve people in the optimiza-
tion process is to leverage their abilities in areas in which
humans (currently) outperform computers, such as visual
perception, learning from experience, and strategic assess-
ment. Although both motivations seem equally important,
we have used the second, more quantitative consideration to
drive our current round of research.

In this paper, we present a new cooperative paradigm
for optimization, human-guided simple search (HuGSS).
In our current framework, the computer performs a very

Copyright c
 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

simple, hill-climbing search. One or more people interac-
tively “steer” the search process by repeatedly initiating fo-
cused searches, manually editing solutions, or backtracking
to previous solutions. When invoking a focused search, the
user determines which modifications to the current solution
should be considered, how to evaluate them, and what type
of hill-climbing search to use.

We have designed and implemented a prototype system
that supports HuGSS for thecapacitated-vehicle-routing-
with-time-windows(CVRTW) problem. Below, we describe
the CVRTW problem and our prototype, and report results
from 48 hours of controlled testing with our system.

Sample Application
Problem Description and Definitions

We chose vehicle routing as our initial problem domain for
three reasons: it is commercially important; it has a rich re-
search history, which facilitates comparison with previous
work; and routing problems are ones for which the human
capabilities of vision, learning, and judgment should be use-
ful. In the CVRTW problem (Solomon 1987), trucks deliver
goods from a single central depot to customers at fixed geo-
graphic locations. Each customer requires a certain quantity
of goods, and specifies a time window within which deliv-
ery of the goods must commence. All trucks have the same
capacity, and travel one unit of distance in one unit of time.
Delivery takes a constant amount of time, and each customer
can receive only one delivery. All trucks must return to the
depot by a fixed time. Asolutionto a CVRTW problem is
an ordered list of customers assigned to each truck, and is
feasibleif it satisfies all the constraints. The optimization
problem is first to minimize the number of trucks required
to construct a feasible solution; and second to minimize the
total distance traveled by the trucks.

As we describe below, users can force the system to con-
sider infeasiblesolutions. Thus we needed to extend the
classical objective function for CVRTW to rank infeasible
as well as feasible solutions. We define themaximum late-
nessof a truck as the maximum tardiness with which it ar-
rives at any of its customers; or if a truck has insufficient
capacity to service its customers, we assign it an infinite
maximum-lateness value. We optimize infeasible solutions
by minimizing the sum of the maximum latenesses over all

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



the routes. We rank any feasible solution as better than any
infeasible solution.

We define a1-plymove as the transfer of a customer from
its current route onto another route. Such a move requires
that both routes be re-optimized for distance (if feasible) or
maximum lateness (if infeasible).1 An n-ply move is simply
a combination ofn 1-ply moves.

HuGSS for CVRTW
In our system, the user controls the optimization process by
performing the following three actions:

1. Edit the current solution by making a 1-ply move.

2. Invoke a focused local search, starting from the current
solution. The user controls whichn-ply moves are con-
sidered, how they are evaluated, and what type of search
is used.

3. Revert to an earlier solution, or to an initial seed solution
generated randomly prior to the session.

We now describe each type of action in the context of our
implemented system, followed by a description of the visu-
alization and interface (see Figures 1 and 2) that support
these actions.
Manual edits: To edit the current solution manually, the
user simply selects a customer and a route. The system
transfers the customer to the route and re-optimizes both af-
fected routes. Moving the last customer off a truck’s route
eliminates that truck. Also, the user can create infeasible so-
lutions by assigning customers with conflicting constraints,
or with too much total demand, to a single truck.
Focused searches:The principal feature of our system is the
following set of methods for allowing users to repeatedly in-
voke deep, focused searches into regions of the search space
they feel are promising. The user determines which moves
the hill-climbing engine will evaluate by:

� Setting a priority (high, medium, or low) for each cus-
tomer.The user controls which customers can be moved,
and the routes onto which they can be moved, by assign-
ing priorities to them. The search engine will only con-
sider moving high-priority customers, and only consider
moving them onto routes that have no low-priority cus-
tomers. For example, the user can restrict the search en-
gine to exchanging customers between a pair of routes by
setting all the customers on those routes to high priority
and all other customers to low priority.

� Deciding which n-ply moves (1-ply to 5-ply) to enable.In
general, deeper searches are more likely to produce good
results, but take more time.

� Setting an upper bound on the number of moves that the
computer can consider.The search is stopped when all
enabled moves have been considered, or when this user-
supplied upper limit is reached.

1Computing the route for a truck once customers have been as-
signed to it is an instance of the Traveling Salesman Problem with
Time Windows. Although an NP-hard problem, the instances that
arose in our experiments are small enough that exhaustive search is
practical.

Figure 1: The Optimization Table.

Focusing the search dramatically reduces the number of
moves that the search engine evaluates. In one example from
our experiments, we focused the search on two of 12 routes
(20 of 100 customers), which decreased the number of 1-ply
moves considered by a factor of 30, 2-ply moves by a factor
of 222, and 3-ply moves by a factor of 18,432.

In addition to determining which moves are evaluated, the
user determines how they are evaluated by selecting an ob-
jective function. We currently support two objective func-
tions: the standard CVRTW objective function modified to
assess infeasible solutions; and a function we callminimize-
routes, which removes 2� len2 from the cost attributed to
each route that containslen< 6 customers. The idea behind
this objective function is to encourage a short route to be-
come shorter, even if it increases the total distance traveled,
in the hope of eventually eliminating that route.

Finally, the user can select between greedy or steepest-
descent search mode. In greedy mode, the search engine
immediately adopts any move that improves the current so-
lution under the given objective function. It considers 1-ply
moves (if enabled) first, then 2-ply moves (if enabled), and
so on. Within a ply, the moves are evaluated in a random
order. As soon a move is adopted, the search engine begins,
again, to evaluate 1-ply moves.

In steepest-descent mode, moves are considered in the
same order as in greedy mode, but only the best move is
adopted. The best move is defined as the one that decreases
the cost of the solution the most, under the given objective
function. If no move decreases the cost of the solution, then
the best move is the one that increases the cost the least.2

Making the least-bad move provides useful information to
the user, and can always be undone by reverting to the pre-
vious solution.
Switching among candidate solutions:The third type of
action the user can perform is to switch candidate solutions,
either to backtrack to a previous solution, or to load a pre-
computed, “seed” solution. The seed solutions are generated
prior to the session using our hill-climbing search engine.
They are intended to be used both as starting points for find-
ing more optimal solutions and to give users a sense of how
various combinations of customers can be serviced.

2However, we never adopt a move that increases the infeasibil-
ity of a solution. Finding and ranking all infeasible moves is not
worth the added computational expense.



Figure 2: A snapshot of our interface.

Interface and Implementation
For our initial implementation we have used a tabletop dis-
play, which we call theOptimization Table(see Figure 1).
We project an image down onto a whiteboard. This allows
users to annotate candidate solutions by drawing or placing
tokens on the board, a very useful feature. In addition, sev-
eral users can comfortably use the system together.

For this kind of problem, creating an effective visualiza-
tion is an intrinsic challenge in bringing the human into the
loop. Figure 2 shows our attempt to convey the spatial, tem-
poral, and capacity-related information needed for CVRTW.
The central depot is the black circle at the center of the dis-
play. The other circles represent customers. The pie slices
in the customer circles indicate the time windows during
which they are willing to accept delivery. The truck routes
are shown by polylines, each in a different color. At the
user’s option, the first and last segments of each route can
be hidden, as they are in the figure, to avoid visual clutter
around the depot. The search-control operations described
in the previous subsection are supported by mouse opera-
tions and pull-down menus. Detailed information about in-

dividual customers and trucks can also be accessed through
standard interface widgets.

The interface was written in Tcl, and the hill-climbing
algorithm in C++. We use a branch-and-bound algorithm
to optimize truck routes during move evaluation. We care-
fully crafted several pruning rules and caching procedures to
streamline this algorithm.

Experimental Investigation

Four test subjects participated in our experiments. Three
of them are authors of this paper. The fourth tester is a
Ph.D. student unaffiliated with this project, who received
five hours of training prior to his first test.

The Solomon datasets (Solomon 1987) were our source
of benchmark CVRTW problems for our experiments. This
corpus consists of 56 problem instances, each with 100 cus-
tomers, divided into three categories according to the spatial
distribution of customers: C-type (clustered), R-type (ran-
dom), and RC-type (a mix of the two.) There are two prob-
lem sets for each category: the C1, R1, RC1 sets have a



narrow scheduling horizon, while the C2, R2, and RC2 sets
have a large scheduling horizon.

As we developed and refined our system, we tested users
informally on a selection of R1 and RC1 problems. In the
second, more controlled, phase of experimentation, we ran
two tests on each of the RC1 problems. During this phase,
subjects worked only on problem instances to which they
had no previous exposure. In each test, the user spent 90
minutes working on the problem without reference to the
precomputed seed solutions. Then, after an arbitrarily long
break, the user spent another 90 minutes working on the
same problem, this time with the precomputed seed solu-
tions available for perusal. We recorded logs for a total of
79.4 hours of test sessions, 48 hours of which were the con-
trolled experiments.

We generated the seed solutions using the settings we
found to be the most effective on a small sample of the
Solomon problem instances. In particular, we used greedy
search with 1-ply and 2-ply moves enabled and all customers
set to high priority; we used the minimize-routes objective
function, and started the search from an initial solution in
which each customer is assigned its own truck, and searched
until we reached a local optimum. Multiple runs produce
varied results due to the random order in which moves are
considered in the greedy search. We ran the algorithm re-
peatedly until we had generated 1000 solutions or a 10-hour
time limit was reached. On average, it took 8.4 hours to
generate the seed solutions for a problem. We ran all our
experiments on a 500 MHz PC.

Observations
User strategies: During a session, the user repeatedly in-
vokes the hill-climbing engine to perform focused searches.
This simple mechanism supports a surprisingly broad range
of optimization strategies. For example, consider the goal of
truck reduction. A user might start by browsing the precom-
puted seed solutions for one with a “vulnerable” route, e.g.,
one that might be eliminated because it has a small num-
ber of loosely constrained customers, and nearby routes that
have available capacity and slack in their schedules. Having
identified such a solution, the user can shift customers off
the vulnerable route by invoking a steepest-descent search:
setting the route’s customers to high priority and the cus-
tomers of nearby routes to medium priority will cause the
search algorithm to return the least costly feasible move of a
customer off the vulnerable route and onto one of the nearby
routes. An alternative strategy for shortening and eliminat-
ing routes is to set all the customers in the neighborhood of
a vulnerable route to high priority, and to use the minimize-
routes objective function and a high search ply: a search
with these parameters would consider compound moves, in-
volving multiple customers on different routes, that have the
net effect of shortening the vulnerable route. A third alterna-
tive, which users often had to resort to, is to manually move
a customer off a vulnerable route, even if the move produces
an infeasible solution; fixing the resulting infeasibility then
becomes a subproblem for which there is another suite of
strategies.
User behaviors:During test sessions, our users spent more

User Moves Searches Percent Percent
per per steep in infeasible
hour hour searches space

A 53 47 30 78
B 46 53 99 52
C 107 101 87 60
D 26 72 99 76

Table 1: User styles: action and mode

User Customer priority Search ply used
high med. low 1 2 3 4 5

A 34 50 16 83 84 87 84 83
B 16 8 77 100 95 81 76 65
C 17 13 70 94 89 53 26 11
D 40 29 31 99 99 39 10 0

Table 2: User styles: depth and focus. The numbers indicate
the fraction of customers assigned high, medium, or low pri-
orities, and the frequency with which the various ply moves
were enabled. E.g., on average, subject A assigned 34%
of the customers to have high priority, and included 3-ply
moves 87% of the time.

time thinking than the search algorithm spent searching. On
average, the search algorithm was in use 31% of the time; the
range was 11% to 61%. Solution improvements were made
throughout the sessions. Averaging over all the test runs, a
new best solution was found a little over five times per hour.
Of course, improving the current solution was much more
common than finding a new best solution. Focused searches
yielded an average of 23 improvements per hour, and manual
adjustment yielded an average of 20 improvements per hour.

Tables 1 and 2 show what features of the system were
used, as well as how usage varied among the test subjects.
(Note that some of the variation is very likely due to dif-
ferences in the nature of the individual problems.) Three
of the four users primarily used steepest-descent search in-
stead of greedy search. We feel that steepest-descent mode
was preferred largely because it makes the least-bad move
if no good move is available, which turned out to be a very
useful feature for shifting customers onto or off of specific
routes. The minimize-routes objective function was almost
never used. Everyone spent at least half of the time working
on infeasible solutions. All four users made substantial use
of 1-ply, 2-ply, and 3-ply searches, but only two users fre-
quently used 5-ply search. There was a wide range among
the users in terms of how often the different priorities were
used, and in how many searches were invoked, on average,
per hour.

During the controlled experiments, each user did better
than some other user on at least one data set. The one user
who was not an inventor of the system (User D in the tables)
turned out to have the best record. He generated three of the
eight best results on the RC1 problem instances, which are
shown in Table 3.

Quantitative results
HuGSS vs. unguided simple search:Our results show that
human guidance provided a significant boost to the simple



Best found Best found by Best pub.
by simple human-guided solution

search simple search
Veh. Dist. Veh. Dist. Veh. Dist.

RC101 15 1631 15 1662 14 1669
RC102 13 1499 12 1569 12 1555
RC103 11 1293 11 1224 11 1110
RC104 10 1156 10 1136 10 1136
RC105 14 1558 13 1691 13 1637
RC106 12 1407 11 1475 11 1432
RC107 11 1247 11 1236 11 1231
RC108 10 1191 10 1185 10 1140
Ave. 12.0 1373 11.63 1397 11.50 1364

Table 3: Best solutions found during 800 hours of simple
search compared to 67.2 hours of precomputation and 79.4
hours of human-guided search. The best published solutions
are shown for comparison.

search in almost all cases. Table 3 compares the best scores
on the RC1 datasets found by the hill-climbing engine alone
with the best scores found using the HuGSS system.3 For the
hill-climbing engine, the scores are the best found in approx-
imately 100 hours of computation on a 500 MHz Pentium
PC. The scores for the HuGSS system are the best found in
at most 10 hours of precomputation and 10 hours of guided
searching. (The table includes scores from all logged testing
and training sessions, as well as those from the controlled
experiments.) On three of the problems, the human-guided
solution uses one fewer truck; on four of the five remaining
problems, the human-guided solution has a lower distance
value. The only dataset on which the unguided hill-climbing
search prevailed was RC101, which is the most heavily con-
strained of all the problems. The very narrow time windows
facilitate extremely fast computer searches (a new local op-
timum is found every six seconds), while making visualiza-
tion more difficult.

The HuGSS results in Table 3 reflect the combined bene-
fit of precomputed seed solutions and human-guided search.
To tease these two factors apart, we considered the solu-
tions produced by the first 90 minutes of each controlled
experiment, during which precomputed seed solutions were
not available to the user. In Table 4 we report these re-
sults in two ways: the average of the two scores available
for each dataset represents what can be achieved with 1.5
hours of pure guided search (i.e., guided search without the
benefit of precomputed seed solutions); the best of the two
scores for each dataset represents what can be achieved in
3.0 hours of pure guided search, albeit using two people for
separate 1.5-hour sessions. The table also shows the average
results obtained by the hill-climbing engine without human
guidance.4 From this data we can conclude that 1.5 hours

3To interpret the scores correctly, it is important to recall that
the primary objective is to minimize the number of trucks, which
often works against the secondary concern of minimizing total dis-
tance traveled. Additionally, it is standard practice in the literature
to report results by averaging the trucks and distances over many
problem instances.

4We estimated the average value of computer-only search for
N hours of computation by taking the best score found inN hours

of pure human-guided searching is comparable to about 5.0
hours of unguided hill climbing. However, 3.0 hours of pure
guided searching is better than 20.0 hours of unguided hill
climbing, which indicates that additional time is of more
benefit to the guided regime than to the unguided one. The
average score for 3.0 hours of guided search with precom-
puted seed solutions is also shown: the seed solutions impart
a distinct benefit, but are not the sole factor behind the dom-
inance of HuGSS over unguided simple search.

Time Veh. Dist.
Our hill- 1 hour 12.35 1424
climbing 2 hours 12.23 1416
search engine 5 hours 12.15 1403
alone 8.4 hours 12.13 1390

20 hours 12.06 1388
HuGSS 1.5 hours 12.13 1432
(w/out seeds) 3 hours 12.00 1413
HuGSS 10 hours precomp- 11.88 1389
(with seeds) utation and 3 hours

guided search on
500 MHz machine

HuGSS 90 min. precomp- 11.88 1380
(pilot experi- utation and 90 min.
ments with guided search on
newest system) 500 MHz machine
Carlton’95a - 13.25 1402
Rochat and 44 min. on 100 12.38 1369
Taillard’95 MHz machine
Chiang and - 11.88 1397
Russell’97b

Taillard 3.1 hours on 50 11.88 1381
et. al.’97 MHz machine
De Backer and - 14.25 1385
Furnon’97
Shaw’98 1 hour on 100 12.00 1361

MIPS machine
Shaw’98 2 hours on 100 12.00 1360

MIPS machine
Cordone and 12.1 min on 12.38 1409
Wolfer-Calvo’98c 18 Mflops Pentium
Gambardella 30 min on 11.92 1388
and Taillard’99 167MHz, 70 Mflops

Sun UltraSparc
Kilby, 48.3 min. on 12.12 1388
Prosser and 25 Mflops/s
Shaw’99c Digital Alpha
Homberger and 5 hours on 200 11.5 1407
Gehring’99 MHz machine
Best published About 15 years 11.5 1364
solutions on multiple machines

a As reported by (Taillardet al. 1997).
b As reported in (Homberger & Gehring 1999).
c As reported in (Gambardella, Taillard, & Agazzi 1999).

Table 4: Reported results. The numbers are averages over
the eight instances in Solomon’s RC1 problem set.

of computation randomly sampled from the 100 hours of unguided
search we recorded for each problem instance. We repeated this
1000 times for each problem and report the average result.



HuGSS vs. state-of-the-art techniques: The Solomon
datasets are a very useful benchmark for comparing all the
different heuristic-search techniques that have been applied
to the CVRTW problem, including tabu search and its vari-
ants, evolutionary strategies, constraint programming, and
ant-colony optimization. Table 4 includes performance data
for these techniques and others. The scores we obtained with
the full HuGSS approach (i.e., with precomputed seed solu-
tions) are competitive with those obtained by the state-of-
the-art techniques, dominating several of them, and being
clearly dominated only by the results from a recent genetic
algorithm (Homberger & Gehring 1999).

However, the full HuGSS technique uses between one
and two orders of magnitude more computational effort than
other techniques. Other algorithms may benefit from a com-
parable amount of computation, but there is not enough in-
formation in the cited papers to accurately assess how much
benefit to expect, if any.

To test whether the HuGSS approach for this problem can
be effective with less computational effort, we ran a pilot set
of experiments with the latest version of our system (its im-
provements over the system described above are listed in the
concluding section of this paper). In these experiments, we
used only 90 minutes of precomputation and 90 minutes of
guided search. We ran one test per problem, with three of
the test subjects from the first set of experiments. (In some
cases, the subjects worked on a problem instance that they
had worked on some months earlier.) As shown in Table 4,
we achieved comparable results with our new system with
significantly less computational and human effort, thus clos-
ing the gap with the state-of-the-art systems.

In summary, these results suggest that human guid-
ance can replace the painstakingly crafted, problem-specific
heuristics that are the essence of other approaches without
significant compromise in the quality of the results.

Versatility
Because the user is directing the search, our system can be
used for tasks other than the classic CVRTW optimization
task. For example, it can be used to balance routes. Many of
the best solutions found by state-of-the-art methods might be
unsuitable for real use because they assign only one or two
customers to a truck. The users of our system can direct the
hill-climbing engine to find the lowest cost way of moving
N customers to a particular truck, by only enablingN-ply
moves and setting the priorities so that the search engine
only considers moving customers onto the target truck.

Alternatively, it may be desirable to have a lightly loaded
truck as a backup if other trucks encounter significant de-
lays. This can be accomplished by the same means used
in attempting to eliminate a truck. Similarly, if there simply
are not enough trucks to satisfy all the customers’ needs, our
system can be used to explore various infeasible options. It
is often easy to shift the infeasibility around the board, if in
fact some customers are more flexible than others.

Of course, other algorithms might be modified to solve
any of these tasks. The ability of our system to handle these

tasks without any recoding (or even recompiling!) suggests
that it will be more effective at handling new tasks as they
arise. Furthermore, it demonstrates that our system can be
used to pursue an objective function that is known by the
human users but is difficult to describe to the computer al-
gorithm. In this regard, HuGSS is distinctly more versatile
than the algorithms cited in Table 4.

Related Work
The HuGSS paradigm is one way of dividing the work be-
tween human and computer in a cooperative optimization or
design system. Other interface paradigms organize the co-
operation differently.

In an iterative-repair paradigm, the computer detects and
resolves conflicts introduced by the human user. In a system
for scheduling space-shuttle operations (Chienet al. 1999),
the computer produces an initial schedule that the user iter-
atively refines by hand. The user can invoke a repair algo-
rithm to resolve any conflicts introduced.

Another way for the computer to address conflicts or
constraint violations is to not let the user introduce them
in the first place. Constraint-based interfaces are popu-
lar in drawing applications, e.g., (Nelson 1985; Gleicher &
Witkin 1994; Ryall, Marks, & Shieber 1997). Typically
the user imposes geometric or topological constraints on a
nascent drawing such that subsequent user manipulation is
constrained to useful areas of the design space.

The interactive-evolution paradigm offers a different type
of cooperation: the computer generates successive popula-
tions of novel designs based on previous ones, and the user
selects which of the new designs to accept and which to re-
ject (Kochhar & Friedell 1990; Sims 1991; Todd & Latham
1992).

A related but very different line of inquiry takes human-
human collaboration as the model for cooperative human-
computer interaction, e.g., (Ferguson & Allen 1998). The
emphasis in this work is on mixed-initiative interaction be-
tween the user and computer in which the computer has
some representation of the user’s goals and capabilities, and
can engage the human in a collaborative dialogue about the
problem at hand and approaches to solving it.

The HuGSS paradigm differs significantly from the
iterative-repair, constraint-based, and interactive-evolution
paradigms in affording the user much more control of the
optimization/design process. By setting customer priorities
and specifying the scope of the local search, the user decides
how much effort the computer will expend on particular sub-
problems. And there are no dialogue or mixed-initiative el-
ements in our system: the user is always in control, and the
computer has no representation of the user’s intentions or
abilities.

Other researchers have also allowed a user to interact with
a computer during its search for a solution to an optimization
or constraint-satisfaction problem, e.g., (Choueiry & Falt-
ings 1995; Smith, Lassila, & Becker 1996); one group has
even applied this idea to a vehicle-routing problem (Brack-
low et al. 1992). We believe, however, that HuGSS em-
bodies a stronger notion of human guidance than previous



efforts. Furthermore, our work is the first rigorous investi-
gation of how human guidance can improve the performance
of an optimization algorithm.

Future Work And Conclusions
The contributions of this work are novel mechanisms for the
interactive control of simple search, an application of these
mechanisms to a vehicle-routing problem, and an empirical
study of that application.

We are currently making our hill-climbing engine more
efficient and our interface more interactive. The user now re-
ceives feedback from the hill-climbing engine that indicates
the current depth of the search and the best move found to
that point. The user can halt the search at any time, at which
point the system returns the best solution found so far. This
gives the user a much higher degree of control of the sys-
tem and effectively removes the need to decide, in advance,
the search depth, the maximum number of moves to evalu-
ate, and blurs the distinction between greedy and steepest-
descent search. Our pilot experiments (see Table 4) indicate
that these changes greatly improve our system.

We had two principal motivations for investigating
human-guided search: to exploit human perceptual and
pattern-recognition abilities to improve the performance of
search heuristics, and to create more versatile tools for solv-
ing real-world optimization problems. Our initial investi-
gations show that human guidance improves simple hill-
climbing search to world-class levels for at least one opti-
mization task. We are also encouraged by the system’s plia-
bility and transparency: users pursued a variety of strategies,
developed their own usage styles, and were highly aware of
what the search engine was doing and why.

The separation made in HuGSS between the human’s and
the computer’s roles has several pleasant consequences. The
optimization engine is more generic and reusable than those
used in state-of-the-art, problem-specific systems; and many
of the user-interface concepts are also easily generalized to
other problems. This raises the possibility of developing a
general toolkit for creating a family of human-guided opti-
mization tools.

Acknowledgments
We are very grateful to Wheeler Ruml for his help in making
our experiments possible and his prowess at optimization,
and to Kori Inkpen, Ken Perlin, Steve Powell, and Stacey
Scott for their comments and discussion.

References
Bracklow, J. W.; Graham, W. W.; Hassler, S. M.; Peck,
K. E.; and Powell, W. B. 1992. Interactive optimization
improves service and performance for Yellow Freight sys-
tem. INTERFACES22(1):147–172.
Carlton, W. 1995.A Tabu Search Approach to the General
Vehicle Routing Problem. Ph.D. Dissertation, The Univer-
sity of Texas at Austin, Texas.
Chiang, W.-C., and Russell, R. 1997. A reactive tabu
search metaheuristic for the vehicle routing problem with
time windows.INFORMS J. on Computing9:417–430.

Chien, S.; Rabideau, G.; Willis, J.; and Mann, T. 1999. Au-
tomating planning and scheduling of shuttle payload oper-
ations.J. Artificial Intelligence114:239–255.

Choueiry, B. Y., and Faltings, B. 1995. Using abstractions
for resource allocation. InIEEE 1995 International Con-
ference on Robotics and Automation, 1027–1033.

Cordone, R., and Wolfler-Calvo, R. 2000. A heuristic
for the vehicle routing problem with time windows.J. of
Heuristics, forthcoming.

De Backer, B., and Furnon, V. 1997. Meta-heuristics in
constraint programming experiments with tabu search on
the vehicle routing problem. InProc. of the 2nd Int’l Con-
ference on Metaheuristics (MIC 97), 1–14.

Ferguson, G., and Allen, J. 1998. Trips: An integrated
intelligent problem-solving assistant. InProc. 15th Nat.
Conf. AI, 567–572.

Gambardella, L.-M.; Taillard, E. D.; and Agazzi, G. 1999.
MACS-VRPTW: A multiple ant colony system for vehicle
routing problems with time windows. Technical Report
IDSIA-06-99, IDSIA.

Gleicher, M., and Witkin, A. 1994. Drawing with con-
straints.Visual Computer11:39–51.

Homberger, J., and Gehring, H. 1999. Two evolutionary
metaheuristics for the vehicle routing problem with time
windows. INFORMS J. on Computing37(3):297–318.

Kilby, P.; Prosser, P.; and Shaw, P. 1999. Guided local
search for the vehicle routing problem with time windows.
In Meta-heuristics - Advances and Trends in Local Search
Paradigms for Optimization. Kluwer Academic Publishers.
chapter 32, 473–486.

Kochhar, S., and Friedell, M. 1990. User control in coop-
erative computer-aided design. InProc. of the 1990 ACM
SIGGRAPH Symposium on User Interface Software and
Technology (UIST ’90), 143–151.

Nelson, G. 1985. Juno, a constraint based graphics system.
Computer Graphics (Proc. of SIGGRAPH ’85)19(3):235–
243.

Rochat, Y., and Taillard, E. D. 1995. Probabilistic diversi-
fication and intensification in local search for vehicle rout-
ing. J. of Heuristics1(1):147–167.

Ryall, K.; Marks, J.; and Shieber, S. 1997. Glide: An
interactive system for graph drawing. InProc. of the 1997
ACM SIGGRAPH Symposium on User Interface Software
and Technology (UIST ’97), 97–104.

Shaw, P. 1998. A new local search algorithm providing
high quality solutions to vehicle routing problems. Techni-
cal report, APES group, University of Strathclyde.

Sims, K. 1991. Artificial evolution for computer graphics.
Comp. Graphics (Proc. of SIGGRAPH ’91)25(3):319–328.

Smith, S.; Lassila, O.; and Becker, M. 1996. Configurable,
mixed-initiative systems for planning and scheduling. In
Tate, A., ed.,Advanced Planning Technology. Menlo Park,
CA: AAAI Press. ISBN 0-929280-98-9.

Solomon, M. M. 1987. Algorithms for the vehicle routing



first session second session pilot experiments
user seedless seeded user seedless seeded with new system

Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist. Veh. Dist.
RC101 C 15 1678 15 1666 B 15 1690 15 1662 C 15 1629
RC102 D 12 1617 12 1569 A 13 1528 13 1528 B 13 1559
RC103 B 11 1323 11 1293 D 11 1420 11 1224 A 11 1281
RC104 C 10 1136 10 1136 B 10 1146 10 1140 B 10 1148
RC105 D 14 1733 13 1691 A 15 1707 14 1582 B 13 1642
RC106 A 12 1591 12 1385 C 12 1395 12 1395 C 12 1397
RC107 B 11 1284 11 1236 D 11 1359 11 1242 C 11 1232
RC108 C 11 1134 10 1218 A 11 1193 10 1246 A 10 1148

Table 5: Detailed results of the experiments

and scheduling problems with time window constraints.
Operations Research35(2):254–265.
Taillard, E. D.; Badeau, P.; Gendreau, M.; Guertin, F.; and
Potvin, J. 1997. A tabu search heuristic for the vehicle
routing problem with soft time windows.Transportation
Science 31170–186.
Todd, S., and Latham, W. 1992.Evolutionary Art and
Computers. Academic Press.

Appendix
Table 5 shows the actual scores attained during our con-
trolled experiments and the pilot experiments for our new
system.


