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Abstract

Blood formation is believed to occur through step-wise progression of haematopoietic stem cells 

(HSCs) following a tree-like hierarchy of oligo-, bi- and unipotent progenitors. However, this 

model is based on the analysis of predefined flow-sorted cell populations. Here we integrated flow 
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cytometric, transcriptomic and functional data at single-cell resolution to quantitatively map early 

differentiation of human HSCs towards lineage commitment. During homeostasis, individual 

HSCs gradually acquire lineage biases along multiple directions without passing through discrete 

hierarchically organized progenitor populations. Instead, unilineage-restricted cells emerge 

directly from a “Continuum of LOw primed UnDifferentiated hematopoietic stem- and progenitor 

cells” (CLOUD-HSPCs). Distinct gene expression modules operate in a combinatorial manner to 

control stemness, early lineage priming and the subsequent progression into all major branches of 

haematopoiesis. These data reveal a continuous landscape of human steady state haematopoiesis 

downstream of HSCs and provide a basis for the understanding of hematopoietic malignancies.

INTRODUCTION

All mature blood and immune cells are thought to derive from self-renewing and multipotent 

HSCs. According to the current model, initiation of differentiation is associated with the loss 

of self-renewal and generation of discrete multipotent, oligopotent and subsequently 

unipotent progenitor cell stages1,2. These lineage-restricted progenitors are thought to be 

generated in a stepwise manner by several subsequent binary branching decisions leading to 

the classical hierarchical tree-like model of haematopoiesis1-6. However, this model is 

mainly based on analyses of FACS-purified cell populations. Even if followed up by single 

cell assays3,4,7, such analyses derive average properties of predefined cell populations and 

thereby miss both quantitative changes within gates as well as transition states falling 

between often subjectively set gates.

Moreover, the lineage contribution associated with each population is typically determined 

by assays such as colony formation or transplantation. While these assays read out lineage 

potential, the actual cell fate during homeostasis in vivo may be different8,9. Depending on 

the assays and markers used, partly conflicting branching points and hierarchies have been 

proposed10-14.

Recent studies based on novel single-cell approaches have challenged more fundamental 

aspects of this classical model. For instance, unipotent progenitors can derive directly from 

HSCs without proceeding through oligopotent progenitors14,15 and lineage commitment was 

observed in progenitors proposed to be oligopotent 7,10,16. However, many of these studies 

focused on more differentiated compartments7,10,16 or used predefined subpopulations to 

investigate single-cell heterogeneity7,17, impeding the characterization of transitions 

between cell stages. Therefore, it remains unclear how individual HSCs enter lineage 

commitment during homeostasis in vivo. To establish a comprehensive model of 

haematopoiesis that can reconcile previous findings, a combined view of transcriptomic and 

functional changes along the developmental progression of individual cells is required. Here 

we developed an approach that integrates the reconstruction of developmental 

trajectories18,19 with the quantitative linkage between transcriptomic and functional single 

cell data17 and thus provides a detailed view on lineage commitment of individual 

haematopoietic stem and progenitor cells (HSPCs) into all major branches of human 

haematopoiesis.
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RESULTS

Healthy human bone marrow cells were labelled with a panel of up to 11 FACS surface 

markers commonly used to characterize human HSPCs5,6 (see Methods, Supplementary 

Table 1). All HSPCs, defined by the absence of lineage markers (Supplementary Table 1) 

and expression of CD34 (Lin-CD34+), were individually sorted and enriched for immature 

cells (see supplementary methods). The surface marker fluorescence intensities of all 

markers were recorded to retrospectively reconstruct immunophenotypes (CD10, CD38, 

CD45RA, CD90, CD135, and depending on the experiment CD2, CD7, CD49f, CD71, 

CD130, FCER1A, ITGA5 and KEL, Supplementary Fig. 1a). Such index-sorted HSPCs 

derived from the bone marrow of two healthy individuals were subjected to RNA-Seq 

analysis (index-omics, 1034 and 379 single cells; see Supplementary Fig. 1b for the 

distribution of cells within classically defined gates5,6 and Supplementary Fig. 2 for quality 

metrics of single cell RNA-Seq) to determine their transcriptomes or individually cultured ex 

vivo (“index-culture”, 2038 single cells) to quantify megakaryocytic, erythroid and myeloid 

lineage potential. Subsequently, the functional and transcriptomic data sets were integrated 

by regression models using commonly indexed surface marker expression to identify the 

molecular and cellular events associated with the differentiation of human HSCs at the 

single cell level (Fig. 1). To make this data type accessible, we developed indeXplorer, a 

web-based platform that combines features of FACS software (e.g. custom gating) with tools 

for single-cell transcriptomics data analysis (e.g. differential expression analysis, clustering, 

principal component analysis) in a single graphical user interface (Supplementary Fig. 3 and 

http://steinmetzlab.embl.de/shiny/indexplorer/?launch=yes).

Early haematopoiesis is a continuous process

HSCs and their immediate progeny, such as multipotent progenitors (MPPs) or 

multilymphoid progenitors (MLPs), are located in the Lin-CD34+CD38- compartment, 

whereas more differentiated progenitors reside in the Lin-CD34+CD38+ compartment5,7. 

Global gene expression analysis of single cells within these two compartments revealed 

fundamentally different transcriptomic structures. In both individuals, the Lin-CD34+CD38+ 

progenitors could be separated into clusters corresponding to distinct progenitor cell types of 

all major branches of haematopoiesis (Fig. 2a and see below). In contrast, clustering within 

the Lin-CD34+CD38- compartment was largely unstable, as demonstrated by cluster stability 

analysis (Supplementary Fig. 4a), the absence of clusters according to Gap statistics 

(Supplementary Fig. 4b), and a recently published algorithm for the clustering of single 

cells20 (Supplementary Fig. 4c). A simulated series of random steps from an individual cell 

to one of its nearest neighbours (see methods) revealed that the majority of 

Lin-CD34+CD38- cells were highly interconnected, contrasting the disconnected cell types 

from the Lin-CD34+CD38+ compartment (Fig. 2b). Unsupervised visualization of all 

individual cells irrespective of FACS markers by t-SNE confirmed that Lin-CD34+CD38- 

cells formed a single continuously connected entity. In contrast, Lin-CD34+CD38+ cells 

emerged into locally clustered cell populations, with the exception of some phenotypic 

CMPs and CD10+ MLPs, suggesting that the classification based on differential CD38 

expression is excellent, but not absolute (Fig. 2c).
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Notably, the absence of hierarchical structures in the primitive Lin-CD34+CD38- 

compartment was due to the gradual nature of differences between cells in that 

compartment, and not due to insufficient data quality or a lack of transcriptomic 

heterogeneity: A principal component analysis of Lin-CD34+CD38- cells resolved more than 

10 distinct, variable biological processes in this compartment, such as cell cycle activation 

and lineage priming (Supplementary Fig. 4d-f). These processes are tightly correlated to 

surface marker expression (Supplementary Fig. 4g).

Collectively, these observations are incompatible with the classical model of early 

haematopoiesis, which assumes a hierarchical tree-like structure of discrete progenitors 

downstream of HSCs. In contrast, our data suggest that HSCs and their immediate progeny 

are initially part of a Continuum of LOw-primed UnDifferentiated (“CLOUD”)-HSPCs 

within the Lin-CD34+CD38- compartment (see also below). Discrete populations are only 

established when differentiation has progressed to the level of restricted progenitors 

typically associated with the up-regulation of CD38.

Lineage-restriction downstream of the HSPC continuum

To characterize the discrete populations in the Lin-CD34+CD38+ compartment, we 

performed gene expression and cell surface marker analyses as well as functional validations 

at the single cell level. Our analyses revealed that these populations correspond to lineage-

restricted progenitors of all major branches of bone marrow haematopoiesis, including B-

cell progenitors of distinct stages, megakaryocyte/erythrocyte committed progenitors (ME, 

Ery, Mk), neutrophil-primed progenitors (Neutro), monocyte/dendritic cell (Mono/DC) 

progenitors, and eosinophil/basophil/mast cell progenitors (Eo/Baso/Mast), as well as 

immature myeloid progenitors (Fig. 3a, Supplementary Table 2). Importantly, populations 

cluster by cell type and not by individual in a cross-individual comparison (Fig. 3b). The 

comparison of the surface marker expression of these populations to the commonly applied 

gating scheme5 using our indexed data set showed that immunophenotypically defined 

oligopotent progenitor populations (megakaryocyte-erythroid progenitors, MEPs; 

granulocyte-monocyte progenitors, GMPs; B cell–NK cell progenitors, B-NKPs) were 

mainly comprised of cell types with unilineage-specific gene expression profiles (Fig. 3c) 

and functional unipotency (Fig. 4a,b).

Cells within the classic GMP compartment were separated into several neutrophil-primed 

progenitors (N0-N3), as well as into monocyte/dendritic cell progenitors (Mono/DC). The 

distinct neutrophil-primed progenitors likely represent progenitors at different 

developmental stages and granule composition (Fig. 4c, Supplementary Fig. 4h)21,22. 

Immunophenotypically, all neutrophil- primed progenitors express the surface markers 

CD135 and CD45RA, which are progressively upregulated during maturation (Fig. 4c). In 

contrast to neutrophil-primed progenitors, Eo/Baso/Mast progenitors did not fall into the 

classical GMP gate but displayed a Lin-CD34+CD38+CD10-CD45RA-CD135mid 

immunophenotpye (Fig. 3c), and expressed transcription factors important for early MEP 

commitment (GATA2 and TAL1) supporting a recent study suggesting that granulocyte 

subtypes might derive from distinct hematopoietic lineages12.
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The MEP gate consisted of megakaryocytic (Mk) progenitors expressing typical Mk genes, 

of erythroid-committed (E1, E2) progenitors of distinct developmental stages, differing in 

haemoglobin and GATA1 expression, as well as of subpopulations showing combined 

expression of megakaryocytic and erythroid genes (M/E). Our single-cell transcriptome data 

suggested CD71 (TRFC) and the red blood cell antigen KEL to be highly indicative for 

erythroid fate, which was confirmed by single-cell culture assays using CD71 and KEL as 

indexing antibodies (Fig. 4d).

For individual 2, two CD10+ B-cell progenitor clusters (small pre-B cells, sB and large pre-

B cells, lB) were observed. sB was characterized by high CD9 mRNA expression, high 

CD10 surface expression and small cell size (FSC), whereas lB showed high expression of 

interleukin-7 receptor (IL7RA) mRNA, intermediate CD10 surface levels, expression of cell 

cycle related genes and large cell size (Fig. 4e, Supplementary Fig. 4i, Supplementary Table 

2). This suggests that sB corresponds to small pre-B cells, and lB to large pre-B cells, 

progenitor populations which have been well characterized in the murine system, but to a 

lesser extent in the human system23. To validate and prospectively isolate large pre-B-cells 

and small pre-B-cells, we used IL7RA and CD9 FACS markers, which allowed us to 

recapitulate the levels of CD10 surface expression, cell size and cell cycle activity as 

predicted from the index-omics data (Fig. 4f, Supplementary Fig. 4j). In contrast to 

individual 2, in individual 1, only small pre-B-cells were observed (Fig. 3b).

For both individuals, we also observed CD38-positive HSPCs with a gene expression profile 

of rather immature cells (Im) (Fig 3a). These clustered globally with the Lin-CD34+CD38- 

compartment in t-SNE analyses, and expressed lower levels of CD38 (Supplementary Fig. 

4k). Most of these cells displayed an immunophenotype typical for CMPs 

(Lin-CD34+CD38+CD45RA-CD135+), however the composition of the cell types present in 

the CMP gate depends strongly on the exact gating strategy applied (see below, 

Supplementary Fig. 5h, i).

Based on these analyses, we provide markers and gating strategies for the prospective 

isolation of several of these newly defined populations using standard flow cytometry.

Developmental trajectories of early human haematopoiesis

To obtain a detailed view on the transition from stem cells to lineage-restricted progenitors 

in the continuous HSPC landscape, we developed STEMNET, a new dimensionality 

reduction algorithm. STEMNET identifies genes specific to the six Lin-CD34+CD38+ 

restricted progenitor populations defined above (Neutro, Eo/Baso/Mast, B-cell, Mono/DC, 

Ery and Mk; see Supplementary Table 3 for a list of genes used by STEMNET) and then 

computes the probability that each primitive (“CLOUD”) HSPC can be assigned to any of 

these classes. STEMNET thereby places the six developmental endpoints on the corners of a 

simplex. This resulted in the arrangement of the least primed HSCs, such as CD49f+ HSCs, 

to the centre, and the remaining HSPCs localizing in between according to their degree of 

priming (Fig. 5a, and see Supplementary Fig. 5a, b for individual 2). To describe the position 

of each cell we computed the predominant direction of priming d as the developmental 

endpoint closest to the cell and the degree of lineage priming Srel as the (Kullback-Leibler) 

distance from the least-primed cell.
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This analysis suggests that HSCs located in the centre of the “CLOUD” gradually acquired 

continuous lineage priming into either of the major branches. While lympho/myeloid and 

megakaryocytic/erythroid priming formed major points of attraction, a clear separation into 

single lineages was not present at this stage (Fig. 5a). In contrast, lineages were clearly 

separated at the level of Lin-CD34+CD38+ progenitors, without further sub-branching in this 

compartment (Fig. 5a, see Supplementary Fig. 5c for CD38 expression). Importantly, these 

results are not due to limitations of the bioinformatics method, as STEMNET is able to 

detect both subsequent branching points and discrete intermediate populations on simulated 

data (Supplementary Fig. 6a-d). Moreover, applying DPT, a different recently published 

method for the inference of developmental trajectories24 to our data confirmed the absence 

of subsequent binary branch points and the direct lineage commitment from CLOUD-

HSPCs along continuous trajectories (Supplementary Fig. 6e).

Within the differentiation continuum, STEMNET analysis located previously defined 

immunophenotypic populations according to their known lineage potential5 (Fig. 5b, see 

Supplementary Fig. 5b for individual 2). For example, GMPs were distributed to the 

neutrophil and monocytic/dendritic cell branches while MEPs located to the megakaryocytic 

and erythroid branches (notice that the localization of CMPs critically depends on the exact 

CD38 and CD135 gating strategy, Supplementary Fig. 5h, i). In contrast, immunophenotypic 

MLPs located close to the separation of lymphoid, neutrophil and monocytic/dendritic cell 

lineages (Fig. 5b, Supplementary Fig. 5b), with individual cells already primed towards 

specific lineages, in line with frequent functional commitment to single lineages in mouse 

LMPPs15. Together, these analyses suggest that developmental stages immediately 

downstream of HSCs such as MLPs and MPPs do not represent discrete cell types located at 

defined branching points, but should rather be considered as transitory states within the 

HSPC continuum with higher probability for commitment to particular lineages.

While undergoing lineage commitment only very few cells acquired a transcriptomic state of 

dual-lineage priming (Supplementary Fig. 5d, e), in accordance with a recent single-cell 

transcriptomic study on mouse GMPs20. However, our analyses suggest that a direct 

transition from a primed multi-lineage towards a uni-lineage transcriptomic state represents 

the main route of lineage commitment, whereas dual-lineages states (such as Gfi1+Irf8+ 

GMPs, Supplementary Fig. 5f) exist, but represent rare exceptions. Importantly, both 

transcriptomic and functional (Supplementary Fig. 5g) lineage-combinations of bipotent 

cells were not restricted to the combinations predicted by the classical model, conflicting 

with a strictly ordered hierarchy of branching events. Along these lines, co-expression of 

opposing pairs of transcription factors, such as IRF8 and PU.1 (SPI1) that have been thought 

to establish an oligopotent state, occurred at much lower frequency than previously expected 

(see Fig. 8aviii, xi)25.

Transcriptomic priming mediates lineage commitment

Single-cell RNAseq protocols require cell lysis and therefore prohibit subsequent functional 

interrogation of the same single cell. However, the use of indexed FACS surface markers 

common to both single-cell ex vivo culture data and single-cell RNAseq data allowed us to 

quantitatively link the amount and direction of transcriptomic priming to functional 
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properties such as lineage potential and proliferative capacity. For example, the STEMNET-

predicted dominant direction of transcriptional priming into the lympho/myeloid versus the 

megakaryocytic/erythroid direction was strongly correlated to the surface marker expression 

of CD135 and CD45RA (Fig. 6ai, ii), which could be used to qualitatively predict the 

predominant cell type in colonies of our single-cell cultures (note that lymphoid progenitors 

do not grow in these conditions, and that myeloid sublineages are not resolved) (Fig. 6aii). 

Utilizing all recorded surface markers for linear models on the single-cell RNAseq data 

allowed us to quantitatively predict the dominant cell type present in the single-cell cultures 

for the Lin-CD34+CD38+ (p = 3.7e-23) and the Lin-CD34+CD38- compartment (p = 

3.7e-22, Fig. 6aiii and Supplementary Fig. 7a for the full specification of regression models). 

Moreover, predicting erythroid and megakaryocytic priming individually revealed that the 

amount of lineage specific priming was linked to functional lineage commitment (Fig. 6b, c, 

Supplementary Fig. 7b, c). However, colonies derived from Mk-primed cells were frequently 

dominated by other cell types due to their lower proliferative capacity ex vivo 

(Supplementary Fig. 7b). STEMNET further predicted 

Lin-CD34+CD38-CD45RA-CD90-CD135- cells to be primed towards megakaryocytic 

differentiation (Fig. 6d, left panel). To functionally validate this prediction in vivo, we 

FACS-sorted these cells, transplanted them into sublethally irradiated NSG mice and 

quantified their lineage output 14 days post transplantation. As predicted, these cells, which 

we termed Mk-primed MPPs, predominantly generated thrombocytes if compared to MLPs 

and HSCs (Fig. 6d, right panel). Together, these analyses revealed that transcriptomic 

priming is linked to the restriction of lineage potential at an early stage in vitro and in vivo.

We next estimated the degree of transcriptomic lineage priming Srel for individual cells from 

the culture experiments (Fig. 7a, b). As expected, committed progenitors with a high degree 

of inferred transcriptomic lineage priming formed small colonies (Fig. 7a) of a single cell 

type (Fig. 7b). In contrast, primitive HSPCs (low inferred Srel) frequently displayed multi- or 

bilineage potential (Fig. 7b) and generated much larger colonies (Fig. 7a). However, not all 

of the primitive HSPCs displayed multipotency, but frequently appeared to be lineage-

restricted while typically retaining a high proliferative capacity comparable to their 

multipotent counterparts (Fig. 7c). These data suggest that proliferative capacity and lineage 

potency are not obligatorily linked.

In order to investigate the ability of cells with various amounts of priming to switch lineage 

potential, we cultured HSPCs in the absence and presence of erythropoietin (EPO). 

Progenitors that formed exclusively erythroid colonies in the presence of EPO were unable 

to give rise to alternative lineages in the absence of EPO (Fig. 7d). Moreover, we cultured 

single HSPCs for one week, split the colonies in four and determined the lineage outcome of 

the daughter colonies two weeks later. In line with the predictions of our model, the degree 

of transcriptomic priming was anticorrelated to the propensity of cells to generate daughters 

with variable lineage composition (Supplementary Fig. 7d, e). Together, these results 

support the hypothesis that early lineage priming of primitive HSPCs coincides with a loss 

of functional plasticity.
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Molecular processes underlying HSC commitment

To characterize stemness, early lineage priming and transcriptional cell type manifestation 

on the molecular level, we identified co-expressed gene modules whose activities were 

associated with the direction and/or the degree of priming. We visualized the activity of 

these gene modules on the differentiation landscape established above (Fig. 8ai) and along 

the progression from HSCs to each of the six lineages (Fig. 8b, Supplementary Fig. 8a, b 

and Supplementary Table 4 for a complete list). Importantly, data from both individuals 

yielded highly comparable results (Supplementary Fig. 8). To gain additional information 

about biological processes associated with HSC differentiation, we determined the mean 

expression of genes for each gene ontology (GO) term, and selected representative examples 

that changed significantly during early lineage priming (Fig. 8c). Together, these analyses 

provide insights into the global molecular and cell biological processes HSCs encounter 

while undergoing continuous lineage priming, unilineage commitment and subsequent 

differentiation.

The least primed state was characterized by expression of the HOXA3/PRDM16/HOXB6 

module26-28 (Fig. 8aii, 8b, Supplementary Table 4) and associated with typical stem cell 

properties such as cell cycle quiescence, low expression of the entire gene expression 

machinery, low total RNA content (measured by mRNA reads per in vitro spike in RNA 

read), low cellular respiration29, low CD38 and high CD90 surface expression5 (Fig. 8c). 

The expression of the HLF/ZFP36L2 module (which also contains the transcription factors 

MECOM/EVI1, HFL, GATA3) was highest in immature HSCs, but present in the entire 

“CLOUD” (Fig. 8aiii, 8b, Supplementary Table 4)30-32.

Intriguingly, stem cells also expressed genes from the earliest priming modules from both 

the lympho/myeloid (FLT3/SATB1 module) and the megakaryocyte/erythrocyte (GATA2/

NFE2 module)33 lineages in a non-exclusive manner (Fig. 8aiv-v). These data suggest that 

the first transcriptional priming events into the predominantly lympho/myeloid or the 

megakaryocyte/erythrocyte direction are already present in most primitive HSCs, coinciding 

with the occurrence of first functional lineage biases already at this stage (Fig. 6a, b, 7a Srel 

bin 1 and 2). A number of additional gene modules was activated in a combinatorial fashion 

between lineages, similar to previous observations from bulk RNA Seq34 (Fig. 8, 

Supplementary Fig. 8a, Supplementary Table 4).

Upon acquisition of lineage priming, HSCs up-regulate their gene expression machinery, 

mRNA and protein biosynthesis, and respiration29,35, while cell cycle activity increases only 

marginally (Fig. 8c). At this stage, cells start to express lineage-specific gene modules, for 

example the SPI1/GFI1 module for the neutrophil lineage (Fig. 8aviii) or the IRF1/CASP1 

module33 for the B-cell lineage (Fig. 8avi). Other modules active at this stage, however, are 

shared between lineages; for example, the TAL1/HFS1 module is shared between the 

erythroid and the megakaryocytic lineage, whereas the EAF2/KLF4 module is shared 

between the neutrophil and the monocyte lineage. This coincides with the observation that 

most progenitors at this stage display narrow restriction in their developmental potential, 

whereas some progenitor cells remain oligopotent15 (Fig. 7b, Srel bin 3).
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Manifestation of lineage-specific differentiation is accomplished by activation of gene 

modules such as the CEBPA/CEPBD module for the neutrophil lineage, the EBF1/ID3 

module for the B-cell lineage, the IRF8 module for the monocytic/dendritic lineage, the 

GPI1BB/PBX1 module for the megakaryocytic lineage and the GATA1/KLF1 module for 

the erythroid lineage33,36,37 (Fig. 8ax-xv, b). In all cases, this step is accompanied by cell 

cycle activation, CD38 surface marker up-regulation (Fig. 8c) and unipotency (Fig. 7b, Srel 

bin 4 and 5).

Together, our data suggest that HSCs are characterized by the expression of specific stem 

cell modules in combination with early, probably antagonizing priming modules. During the 

continuous priming and differentiation process the stem cell modules and certain (but not 

all) early priming modules already expressed in HSCs are turned off, while specific lineage 

modules become reinforced to drive differentiation towards lineage commitment and 

manifestation (Fig. 8a, b). Transcription factors from upstream modules may trigger 

expression of downstream modules, as in case of GATA2, TAL1 and GATA133. In contrast, 

transcription factors from mutually exclusive downstream modules may inhibit each other, 

for example IRF8 is known to repress CEBPA38. Such inhibitory interactions may render 

oligopotent progenitors unstable7,10,15, and thus less abundant than previously anticipated 

(Fig. 7b). In contrast, in cells with low amount of priming, expression levels of mutually 

exclusive modules are sufficiently small to allow uni-, oligo- or multipotency.

DISCUSSION

In summary, we provide a global view of the early human haematopoiesis during 

homeostasis. Our dataset combines both information on the lineage potential of HSCs 

(index-culture) and insights into the unperturbed lineage commitment of HSCs during 

human haematopoiesis (reconstruction of developmental trajectories from static single cell 

expression data), where lineage tracing approaches8,9 are not possible. Here, we rely on 

single-cell culture data and xenotransplantation for functional validation, which unlike gene 

expression or cellular barcoding measure developmental potential, not fate.

Our results are incompatible with fundamental aspects of the differentiation-tree model, in 

which HSCs are required to pass through discrete and definable intermediate progenitor cell 

stages by subsequent binary cell fate decisions made on branching points. Instead, we 

propose that early haematopoiesis is represented by a cellular Continuum of LOw-primed 

UnDifferentiated (“CLOUD”)-HSPCs. This HSPC continuum contains phenotypic MPPs 

and MLPs, which do not constitute discrete progenitor cell types, but rather transitory states. 

CLOUD-HSPCs gradually acquire transcriptomic lineage priming in a combination of 

multiple directions, with some cell state transitions and lineage combinations more likely to 

occur than others. Distinct lineages emerge directly from CLOUD-HSPCs, earlier than 

previously anticipated and without passing through a series of discrete, stable progenitors. 

Our data suggest a multidimensional molecular and cellular landscape of steady state human 

haematopoiesis defined by a continuous flow of differentiation and emergence of lineage 

trajectories independent of each other. This landscape can be visualized by using the 

classical Waddington’s landscape as a blueprint39-41, which more appropriately reflects the 

continuous nature of haematopoiesis than a “cell type tree” (Fig. 8d). Haematopoietic stem 
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cells reside in a flat valley at the top. Barriers separating individual lineages emerge early 

and deepen gradually, illustrating the acquisition of lineage biases driven by small 

differences in gene expression of early fate mediators. When barriers become 

insurmountable, cell type manifestation and lineage commitment are established.

While our study provides detailed insight into lineage commitment from HSCs into all 

branches of human bone marrow haematopoiesis, it does not cover lineage decisions 

occurring further downstream or outside the bone marrow, such as T-cell development. 

Given the low frequency of Eosinophil/Basophil/Mast cell and Monocyte/Dendritic Cell 

progenitors within the CD34+ bone marrow compartment, our study cannot fully resolve the 

separation and maturation of these lineages.

Together, our data determine a comprehensive continuum-based model of early human 

haematopoiesis, which will likely have important implications for the aetiology of 

haematologic disorders and which may serve as a paradigm for other adult stem cell 

systems.

Methods

Bone marrow aspirations

Bone marrow aspirates from healthy individuals between 25 and 39 years of age were 

obtained at the University clinics in Heidelberg and Mannheim after written informed 

consent. The use of human samples for RNA-Sequencing and functional studies was 

approved by the local ethics committees in accordance with the Declaration of Helsinki. 

Bone marrow mononuclear cells were isolated by gradient centrifugation using 

Histopaque-1077 (Sigma).

Flow Cytometry

Bone marrow mononuclear cells were stained with surface markers for 30 minutes on ice 

according to standard protocols. For FACS-sorting BD FACS Aria II/III or Fusion flow 

cytometers (BD Bioscience) equipped with 405nm, 488nm, 561nm and 633nm (Aria) / 

642nm (Fusion) lasers were used. For flow cytometric analyses LSRII and LSRFortessa 

flow cytometers (BD Biosciences) equipped with 350nm, 405nm, 488nm, 561nm, and 

640nm lasers were used. For Ki67-Hoechst cell cycle analysis, surface staining was 

performed as described43. Subsequently, cells were fixed and permeabilized using cytofix-

cytoperm buffer (BD Bioscience), and incubated with Ki67 antibody overnight at 4°C. Cells 

were stained with 2μg/mL Hoechst 33342 (Invitrogen) and analyzed. Data were analyzed 

using FlowJo (TreeStar), indeXplorer or R.

Single-cell liquid cultures (“index-cultures”)

Fresh human bone marrow mononuclear cells were stained as described above with 

fluorescence labeled antibodies against CD2, CD34, CD38, CD45RA, CD71, CD90, 

CD130, CD135, CD238 (KEL), Fc$\epsilon$RI and a lineage cocktail consisting of CD4, 

CD8, CD11b, CD14, CD19, CD20, CD56, CD235a plus CD10. Single 

Lin-CD34+CD38+CD10- and Lin-CD34+CD38-CD10-HSPCs were sorted into ultra-low 
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attachment 96 well-plates (Corning) containing 100μL StemSpan SFEM media (Stem Cell 

Technologies), L-glutamine (100ng/mL), penicillin/streptomycin (100ng/mL) and the 

following human cytokines: SCF (20ng/mL, Peprotech), Flt3-L (20ng/mL, Peprotech), TPO 

(50ng/mL, Peprotech), IL-3 (20ng/mL, Peprotech), IL-6 (20ng/mL, Peprotech), G-CSF 

(20ng/mL, Peprotech), IL-5 (20ng/mL, Peprotech), M-CSF (20ng/mL, Peprotech), GM-CSF 

(20ng/mL, Peprotech) and EPO (4U/mL, R&D). For the experiment displayed in Fig. 7d, 

Epo was left out from the medium. Note that the CD38+ and CD38- gates were set to touch 

(see also Supplementary Fig. 1a).

Fluorescence intensities were recorded for every channel for each sorted cell and used to 

retrospectively reconstruct immunophenotypic populations. Cells were cultured for 21 days 

at 5% CO2 and 37°C. To characterize clonal progeny, colonies were imaged by microscopy 

and subsequently analyzed for CD15, CD33, CD41a and CD235a expression by flow 

cytometry. Note that under these conditions, only myeloid (CD33), erythroid (CD235a) and 

megakaryocytic (CD41a) colonies are efficiently generated. Colonies were judged based on 

their visual morphology and expression of surface markers. Colony size and lineage-output 

were based on flow cytometry and confirmed by microscopy. A colony was determined to be 

positive for a particular lineage if ≥10 cells of the respective cell type were detected.

For the `split-in-four’ experiment (Supplementary Fig. 7d, e), colonies were evaluated 7 

days after seeding of single cells and colonies with more than 50 cells were equally split into 

4 wells and cultured for additional 14 days before colony-size and lineage output were 

scored.

Mouse experiments

NSG mice were bred and housed under specific pathogen-free conditions at the central 

animal facility of the German Cancer Research Center. All animal experiments were 

approved by the Regierungspräsidium Karlsruhe under Tierversuchsantrag numbers 

G108/12 and G210/12. 17,000 FACS-sorted HSCs (Lin-CD34+CD38-CD90+CD45RA-), 

MLPs (Lin-CD34+CD38-CD45RA+) or MK-primed MPPs 

(Lin-CD34+CD38-CD90-CD135-) from healthy bone marrow were injected into the femoral 

bone marrow cavity of female mice 15 weeks of age that had been sublethally irradiated 

(200 cGy) 24 hours before injection.

2 weeks after xenotransplantation lineage specific human engraftment in the injected femur 

was evaluated by flow cytometry using anti-human-CD45-PE, anti-human-CD235a-APC 

and anti-human-CD41a-FITC antibodies.

Single-cell transcriptome sequencing (“index-omics”)

A 25-year old male donor (Individual 1) and a 29-year old female donor (Individual 2) were 

selected for single-cell RNA Sequencing. Fresh bone marrow mononuclear cells were 

stained as described above with fluorescence-labeled antibodies against CD34, CD38, 

CD45RA, CD90, CD49f, CD135, CD10, CD7 and a lineage cocktail consisting of CD4, 

CD8, CD11b, CD14, CD19, CD20, CD56 and CD235a. Fluorescence intensities were 

recorded for every channel for each sorted cell and used to reconstruct immunophenotypic 

populations subsequently.
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While the frequently used smart-seq2 protocol44 failed to amplify transcriptomes from bone 

marrow derived human HSPCs, both the QUARTZ-seq protocol45 and a modified smart-

seq2 protocol (see below) yielded good-quality cDNA (Supplementary Fig. 2a). To avoid 

method-specific biases, data were generated using both QUARTZ-seq (Individual 2) and 

smart-seq2.HSC (Individual 1), and all findings were systematically compared between 

individuals (Fig. 2, 3b, Supplementary Figures 4a, b, 5a,b, 8c).

For individual 1, eight plates of Lin-CD34+CD38- and six plates of Lin-CD34+CD38+ 

HSPCs were sorted and whole transcriptome amplification was performed using the smart-

seq2 protocol44, but using 5μL of a modified RT buffer containing 1x SMART First Strand 

Buffer (Clontech), 1mM DTT (Clontech), 1μM template switching oligo (Exiqon), 10U/μL 

SMARTScribe (Clontech) and 1U/μL RNASin (Promega). ERCC spike-ins were included at 

a final dilution of 1:1,000,000. Libraries were constructed using a home-made Tn5 

transposase (based on ref. 46). Note that the CD38+ and CD38-gates were set to touch (see 

also Supplementary Figure 1a).

For individual 2, eight plates of Lin-CD34+CD38-, one plate of 

Lin-CD34+CD38-CD90+CD45RA- and four plates of Lin-CD34+CD38+ HSPCs were sorted 

and whole transcriptome amplification was performed using the QUARTZ-Seq protocol45. 

ERCC spike-ins were included into the lysis buffer at a final dilution of 1:2,000,000. 

Libraries were constructed using Nextera Tn5 (Illumina) following the protocol provided, 

but using 1/4 of all volumes. Libraries were then sequenced on an Illumina HiSeq 2500 

platform.

Raw data processing and quality control

Reads were demultiplexed and, where applicable, the remaining poly-A tail of the mRNA 

was trimmed off. Reads were then aligned to the Homo Sapiens genome (build 37.68, also 

containing the ERCC spike in sequences) using GSNAP47, with the expected paired-end 

length set to 400bp and the allowable deviation from the expected paired-end length set to 

100bp. Reads overlapping uniquely with mRNA genes were counted using HTSeq48. As a 

first filtering step, we retained all cells in which we observed more than 750 genes at a 

minimum of 10 reads each, and a total of at least 150,000 reads. We removed all genes from 

the dataset that were not observed by at least 10 reads in at least 5 cells. Statistics on these 

filtering steps are displayed in Supplementary Fig. 2.

We then fitted error models49 to the readcount data (see also below). In 35 cells of individual 

2 and 1 cell of individual 1, we observed an extreme overdispersion of the genes classified as 

non-dropout events. These cells were removed. In Individual 1, we further excluded 13 cells 

with an abnormal CD38-CD90high immunophenotype (Supplementary Fig. 1a). These cells 

were clear outliers also with regard to gene expression, as they mostly expressed genes 

associated with various types of mature immune cells (not shown).

Data normalization using Posterior Odds Ratio

We designed a normalization method to address the following two challenges:

• Single-cell transcriptomics has large technical variability
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• Human hematopoietic stem and progenitor cells largely differ in RNA content 

(Supplementary Fig. 2h).

While lowly expressed genes are sometimes observed in cells with high total RNA content, 

they are almost never seen in cells with low total RNA content (Supplementary Fig. 2i). As 

this effect is the same for all genes of low expression level, it will induce some correlation 

structure on the data. In our data set, the first principal component was correlated to the 

library size and mRNA content, which may dominate over the effects of developmental 

transitions (Supplementary Fig. 2j, panel i). Normalization through division by total library 

size or harmonic mean estimator does not resolve this issue, as lowly expressed genes are 

still unobserved (zero) in cells of low mRNA content (Supplementary Fig. 2i,j panel ii). We 

and others have therefore used hierarchical models which assume that molecule counts are 

created by sampling from the true amount of mRNA molecules with cell-specific sampling 

efficiencies50,51. To adapt these approaches to the case where no molecular barcodes were 

used, we here use the error model of Kharchenko et al.49, which describes the posterior 

probability of a gene expression level x in a cell c as

where pd is the probability of a dropout event at gene expression x, pNB is the probability of 

observing rc reads in case of no dropout and pPoisson(x) is the the probability of observing rc 

spurious reads in case of a dropout. Ωc is a vector of cell-specific and numerically optimized 

parameters:

• The slope and intercept of pd as a function of rc

• The slope and intercept of x as a function of rc

• The dispersion of the negative binomial distribution pNB(x|rc)

• The background frequency λ of the Poisson distribution, which was fixed to 0.1

The maximum posterior average expression across all cells is then given by

While the mean of Πc p(x∣rc, Ωc) describes the expression magnitude of a gene in a given 

cell, its spread describes the uncertainty due to technical noise. To obtain a single number 

that weighs expression magnituide by confidence level, we compute a Posterior Odds Ratio 

(POR):

POR can be interpreted as the evidence (in bits) that a specific gene in a specific cell is 

expressed more highly (or lowly) than in the average cell. The use of POR scores in 

principal component analysis solved the problems associated with the above-mentioned 
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normalization strategies (Supplementary Fig. 2j, panel iii) POR scores were used as the 

measure of gene expression for all analyses.

Clustering

For hierarchical clustering, we selected the 1000 most variable genes of each population. We 

then used Ward linkage on euclidean distances. Gap-statistics was computed on the same 

hierarchical clustering function using the R package cluster. Random walk analysis52 was 

performed by constructing a 5-nearest neighbor graph on correlation distances, initializing at 

a random node, and then simulating a series of random steps on the 5-connected graph. The 

local clustering coefficient of a node in such a graph quantifies the extent to which the 

neighbors of two connected cells are themselves connected to each other. It was computed 

using the transitivity function of the igraph package53

STEMNET

Basic setup

To identify processes associated with the transition of HSCs to progenitor cell types, we 

sought a lower-dimensional representation of the HSPC data that reflects lineage priming. 

We therefore trained an elastic-net regularized generalized linear model (GLMNET) of the 

multinomial family on the most mature populations (N1-3, EBM, MD, spB1/2, E1/2 and Mk 

from Fig. 2a for individual 1, or lpB, EBM, N, ME and MD for individual 2), using class 

membership as the response variable. During this step, a number of population-specific 

genes was identified (Supplementary Table 3). The classifier then used the expression of 

these genes in all cells to estimate the probability pij that a cell i belongs to class j. From 

these probabilities, we compute the Kullback-Leibler distance from the average HSPC, 

which can be interpreted as the amount of lineage information a given cell has acquired:

whre p ̅j is the average probability of a cell to belong to class j. We further assign each cell a 

predominant direction of priming as

For displaying the six-dimensional vector pi in two dimensions, the developmental endpoints 

are arranged on the edge of a circle and all cells are placed in between. Each endpoint k is 

assigned with an angle αk. The class probabilties pik are then transformed to cartesian 

coordinates by
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and

To find the optimal arrangement of the developmental endpoints on the circle, lineages with 

common precursor stages are placed next to each other. The proximity between lineages l 
and k is computed by

All arrangements are tested and the arrangement with the highest proximity is chosen. This 

approach is based on a method termed ’circular a posteriori projection’ (CAP)51.

Data simulation

To test the ability of the STEMNET method to uncover binary branching events and discrete 

sub-populations, we quantitatively specified alternative models of cell fate specification and 

reshuffled our original data according to these models (Supplementary Fig. 6). In particular, 

we assumed that each cell is located on a binary tree, where nodes represent branching 

points and edges between nodes represent developmental trajectories. Each node Vi is 

specified by a tuple (E1, E2, p1, p2, h) with E1,2 pointing to the left and right child, p1,2 

giving the probability that a cell adapts the fate associated with the left and right child (p1 + 

p2 = 1), and h ∈ (0, 1) giving the height of the node (for developmental endpoints, h=1, and 

for the root, h=0). A cell is then defined by the tuple (h, E), where E points to the next node 

downstream of the cell.

For the scenario depicted in Supplementary Fig. 6a, cells were generated by randomly 

drawing values h from a Beta distribution with parameters (2,3). E was assigned by moving 

down a distance of h from the root and randomly choosing a branch according to p1,2 at each 

node that was passed. For the scenario depicted in Supplementary Fig. 6d, cells were then 

scattered around the nearest node assuming an average distance of 0.01. The developmental 

distance D(ci,Vj) between a cell ci and a node Vj is then computed by traversing through the 

tree and summing all distances h that are passed along the way. For example, the distance 

between two developmental endpoints that diverge at a node with h=0.6 is 0.8. To generate 

synthetic data from these cell fate specification models, we extracted the coefficients of the 

STEMNET classifer (Supplementary Table 3), and for each developmental endpoint j 
compiled lists of genes with nonzero coefficient. Gene expression values for these genes 

were then reordered across cells i to follow the developmental distance D(ci,Vj) (i.e. 

assuming that gene expression of lineage specific genes was entirely determined by 

developmental distance, Supplementary Fig. 6a). Alternatively, gene expression values were 

randomly reshuffled such that the correlation between developmental distance from Vj and 

gene expression equals the empirically observed correlation between gene expression and pj 

from the STEMNET classifier (Supplementary Fig. 6b-d).
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Quantitative link between single-cell transcriptomics and single-cell culture

To quantitatively link single-cell transcriptomic properties (such as the amount or direction 

of priming) to single-cell functional properites, we made use of FACS markers used in both 

experiments. In particular, for each transcriptomic property, we constructed a regression 

model with logicle transformed flow cytometry markers as explanatory variables and the 

property as response variable. To achieve greater robustness than in standard linear 

regression, we applied GLMNET models of the normal family for this task, and used 10-fold 

cross validation to determine the regularization parameter λ. The regression coefficients of 

these models are shown in Supplementary Fig. 7a, together with the R2 these models achieve 

in 10-fold cross validation if applied to the single cell transcriptomic data. We then applied 

these classifiers to logicle transformed flow cytometry data from the single-cell culture 

experiment to estimate the magnitude of single-cell transcriptomic properties in that 

experiment. To further improve the classifier, we also included rank-transformed mRNA 

expression levels of TFRC (CD71) and KEL in the the training data, and rank-transformed 

flow cytometry data of CD71 and KEL in the single-cell culture experiment.

Identification of gene clusters associated with lineage priming

We then identified genes whose expression depends on Srel, d, or both, by separately fitting 

four different linear models to the expression data of each gene:

• The first model describes gene expression as a function of the predominant 

direction d, which is a categorial variable. It best fits to genes that are up- or 

downregulated early during developmental progression in a certain direction and 

stay unchanged until the end.

• The second model describes gene expression as a function of a 3rd degree 

polynomial through log10 Srel. It best fits to genes that are up- or downregulated 

at a specific stage of developmental progression, independent of the 

developmental direction.

• The third model describes gene expression as a function of d, a 3rd degree 

polynomial through log10 Srel and the interaction of d and log10 Srel. It best fits 

to genes that are up- or downregulated at a specific stage of development in a 

specific direction.

• The fourth model describes gene expression as a constant. It best fits to genes 

that do not change systematically during acquisition of lineage fate.

For each gene, we identified the optimal model by comparing the models’ Bayesian 

Information Criteria (BIC). For each class of genes (dependent on log10 Srel, d or both) 

separately, we identified subgroups of genes that display similar dependencies on log10 Srel 

and d by performing hierarchical clustering using correlation distance and complete linkage 

on the fitted values from the preferred model.
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Code availability

Most analyses were performed in indeXplorer, a custom made software for the analysis of 

single cell index-sorting/transcriptomic datasets. indeXplorer was written in R and relies on 

the package shiny; code is available from https://git.embl.de/velten/indeXplorer/

For analyses that were not performed in indeXplorer directly, we provide an R package 

containing all code at https://git.embl.de/velten/STEMNET

Statistics and Reproducibility

Single cell RNA-Seq was performed on two different individuals. 1034 (for I1) and 379 cells 

(for I2) were included into the study. Single cell culture was performed for 2038 cells. As 

indicated in the figure legends, p-values are computed from Pearson product moment 

correlation test, Kernel density based global two sample comparison test or two-tailed 

unpaired t-test.

For animal experiments, no statistical method was used to predetermine sample size. The 

experiments were not randomized. The Investigators were not blinded to animal allocation 

during experiments and outcome assessment.

Data availability

RNA–seq data that support the findings of this study have been deposited in the Gene 

Expression Omnibus (GEO) under accession code GSE75478. Processed data are available 

at http://steinmetzlab.embl.de/shiny/indexplorer/?launch=yes for browsing. All other data 

supporting the findings of this study are available from the corresponding author upon 

reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Experimental strategy

Adult human HSPCs were stained with antibodies against up to 11 surface markers and 

individually sorted for either single-cell RNA-seq or single-cell cultures. Data from the two 

experiments were then integrated based on surface marker expression to reconstruct 

developmental trajectories of haematopoiesis.
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Fig. 2. A stem and progenitor cell continuum precedes the establishment of discrete lineages at 
the CD34+CD38+ stage

(a) Hierarchical clustering of Lin-CD34+CD38- (Individual 1: 467 cells, Individual 2: 261 

cells) and Lin-CD34+CD38+ (I1: 567 cells, I2: 118 cells) compartments for both individuals. 

Clustering was performed on the most variable 1000 genes of each population. The most 

variable 100 genes were displayed in the heatmap. The asterisk indicates that 3 putative 

Eosinophil/Basophil/Mast cell progenitor subclusters of <5 cells were merged. (b) Random 

walk analysis of Lin-CD34+CD38- and Lin-CD34+CD38+ compartments for both 

individuals. 100 random walks, i.e. series of random steps from one cell to any of its 5 

nearest neighbours in correlation distance space, were simulated and the number of cells 

reached was evaluated in relation to the total number of cells. 5-Nearest-neighbour networks 

Velten et al. Page 21

Nat Cell Biol. Author manuscript; available in PMC 2017 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are depicted on the right. (c) t-SNE visualization of all cells (individual 1) highlighting the 

degree to which cells are associated with local clusters (left panel, see also methods) and the 

immunophenotype (right panel).
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Fig. 3. The Lin-CD34+CD38+ compartment consists of distinct lineage-restricted progenitors

(a) Overview of putative cell types in individual 1 (see panel b for a comparison between 

individuals). Classes obtained from hierarchical clustering of the Lin-CD34+CD38+ 

compartment (Fig. 2a) were assigned to putative cell types based on analyses of gene- and 

surface marker expression. The asterisk indicates that 3 putative Eosinophil/Basophil/Mast 

cell progenitor subclusters of <5 cells were merged for this analyses. (b) Averaged gene 

expression profiles for cell types from both individuals defined in Fig. 2a were clustered 

based on the 1000 most variable genes. Only the most variable 100 genes are shown in the 

heatmap. (c) Index-omics display of Lin-CD34+CD38+ progenitors. Sequenced single 

Lin-CD34+CD38+ cells were arranged according to their cell surface marker expression in 

classical FACS gating strategies to identify B- and NK cell progenitors (“B-NK”), 

Megakaryocytic-Erythroid Progenitors (“MEP”), Common Myeloid Progenitors (“CMP”) 

and Granulocyte-Monocyte Progenitors (“GMP”). Cells were colour-coded based on their 

cell type identity from Fig. 3a.
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Fig. 4. Characterization of Lin-CD34+CD38+ lineage restricted progenitors

(a) Index-culture display of Lin-CD34+CD38+ HSPCs. Single HSPCs were cultured for 3 

weeks and the resulting colony type was plotted in relation to CD45RA and CD135. (b) 

Single cells from the ex vivo culture assay were scored as unipotent (gave rise to one 

lineage) or mixed (gave rise to more than one lineage). (c) Neutrophil-primed 

subpopulations in relation to CD45RA and CD135 surface marker expression. (d) 

Megakaryocytic/Erythroid primed subpopulations in relation to TFRC (CD71) mRNA and 

KEL mRNA expression (left panel) and erythroid colony output in relation to CD71 and 

KEL surface marker expression (right panel). (e) Pre B-cell subpopulations from individual 

2 in relation to CD10 surface expression and forward scatter (FSC). (f) Prospective isolation 

of B-cell subpopulations sB and lB using classical flow cytometry. FACS markers for IL7R 

and CD9 permit the separation of two populations with forward scatter (FSC)/CD10 profiles 

corresponding to sB and lB, as suggested from gene expression data.
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Fig. 5. Visualization of the HSPC continuum

(a) The similarity of every cell to each of the progenitor classes was computed by 

STEMNET (see methods), projected on a unit circle, and used to quantify the degree and 

direction of transcriptomic priming. Data from individual 1 is shown, for individual 2 see 

Supplementary Fig. 5a, b. (b) Immunophenotypic populations5,6 were highlighted on the 

HSPC continuum. P-values were calculated by kernel-density based tests comparing each 

population to CD49f+ HSCs. For CMPs, see Supplementary Fig. 5h,i. For CD49f+ HSCs, 

n=101 single cells; CD49f- HSCs, n=117; MPPs, n=176; CD10- MLPs, n=52; CD10+MLPs, 

n=16; B-NKs, n=26; GMPs, n=244; MEPs, n=231

Velten et al. Page 25

Nat Cell Biol. Author manuscript; available in PMC 2017 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. The direction of transcriptomic priming is quantitatively linked to functional lineage 
potential

(a) Comparison of the predominant direction of priming d (lympho/myeloid versus 

megakaryocyte/erythroid) obtained from single-cell transcriptomics to the dominant cell 

type observed in colonies from single-cell culture. (i) Illustration. (ii) Qualitative comparison 

of the two quantities with respect to CD45RA and CD135 surface marker expression. (iii) 

Quantitative link. The most likely dominant direction of priming was estimated for each 

founder cell from index-culture based on regression models constructed on all surface 

markers and compared to the observed colony composition (see Supplementary Fig. 7a). p 

values are from a Fisher test with n=434 cells (left panel) and n=193 cells (right panel). (b) 

Comparison between inferred amount of transcriptomic Mk-priming and the percentage of 

CD41+ Mk-cells per colony. Errors bars denote S.E.M. p-value is from a Pearson product 

moment correlation test with n=627 single cells that formed colonies. See also 

Supplementary Fig. 7c. (c) Comparison between inferred amount of transcriptomic 

erythroid-priming and the percentage of CD235+ erythroid cells per colony. See also 

Supplementary Fig. 7c. Errors bars denote S.E.M. p-value is from a Pearson product 

moment correlation test with n=627 single cells that formed colonies. (d) 

Xenotransplantation validating a Mk-primed MPP population identified by STEMNET. 

HSCs, MLPs, and a population of putatively Mk-primed MPPs 

(Lin-CD34+CD38-CD45RA-CD90-CD135-) were sorted, transplanted into 

immunocompromised mice and chimerism of human lymphomyeloid cells (CD45+), 

thrombocytes and erythrocytes was determined 2 weeks post transplantation. Experimental 

setup (top right panel), localization of populations in STEMNET (left panels), and human 

engraftment (right panels, error bars denote SEM) are indicated. Relative contribution of 

thrombocytes was significantly higher in MK-primed MPPs compared to HSC (p=0.0031) 
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and MLPs (p=0.0002, two-tailed unpaired t test, n=6 HSCs, n=4 Mk-primed MPPs, n=3 

MLPs)
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Fig. 7. The degree of transcriptomic priming is quantitatively linked to multipotency and 
proliferative capacity

(a) Comparison between the inferred amount of transcriptomic priming Srel of the founder 

cell and the resulting colony size (cell number). (i) illustration, (ii) qualitative link and (iii) 

quantitative link. Errors bars denote S.E.M. p-value is from a Pearson product moment 

correlation test with n=1031 single cells. (b) Comparison between the inferred amount of 

priming Srel of the founder cell and the number of cell types in the colony. p-value is from a 

Pearson product moment correlation test with n=1031 single cells. (c) Inferred 

transcriptomic degree of priming Srel (x-axis) in relation to the colony size (y-axis) and the 

number of cell types per colony (colour-code). (d) Distribution of colony types in relation to 

the presence or absence of erythropoietin (EPO) in the culture medium.
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Fig. 8. Lineage commitment is a layered multi-step process

(a, b) Activity of gene modules associated with developmental progression of HSPCs. 

Genes depending on the degree and/or direction of priming were identified and clustered 

into modules displaying similar expression patterns (see methods). Averaged gene 

expression of selected modules from individual 1 was highlighted in the HSPC 

differentiation continuum (a) or smoothened and plotted against the degree of lineage-

specific priming (b). For a complete list of modules and individual 2, see Supplementary 

Fig. 8 and Supplementary Table 4. (c) Gene ontology and FACS marker changes along the 

early priming of HSPCs (Srel < 0.4). During later stages of priming, GO activity and FACS 

marker expression additionally depend on the direction of priming (not shown). (d) 

Graphical summary of a continuum-based model of bone marrow haematopoiesis. Due to 

the interactions of gene regulatory networks, some cell states and transitions are more likely 

than others, represented by a lower elevation within a Waddington landscape. During early 

lineage commitment, small barriers between lineages arise early, thereby creating lineage 

biases in HSCs. At the progenitor stage these barriers are already more pronounced, making 
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the oligopotent stage less likely. Note that T- and NK-cell development predominantly 

occurs outside the bone marrow42.
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