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Human Identification Using Palm-Vein Images
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Abstract—This paper presents two new approaches to improve

the performance of palm-vein-based identification systems pre-

sented in the literature. The proposed approach attempts to more
effectively accommodate the potential deformations, rotational

and translational changes by encoding the orientation preserving

features and utilizing a novel region-based matching scheme.
We systematically compare the previously proposed palm-vein

identification approaches with our proposed ones on two different

databases that are acquired with the contactless and touch-based
imaging setup. We evaluate the performance improvement in both

verification and recognition scenarios and analyze the influence of

enrollment size on the performance. In this context, the proposed
approaches are also compared for its superiority using single

image enrollment on two different databases. The rigorous experi-

mental results presented in this paper, on the databases of 100 and
250 subjects, consistently conforms the superiority of the proposed

approach in both the verification and recognition scenario.

Index Terms—Biometrics, hand biometrics, multispectral palm-

print, palm-vein recognition, personal identification, vascular bio-

metrics.

I. INTRODUCTION

A UTOMATED human identification is one of the most crit-
ical and challenging tasks to meet growing demand for

stringent security. The usage of physiological and/or behavioral
characteristics of humans, i.e., biometrics, has been extensively
employed in the identification of criminals and matured as an
essential tool for law enforcement departments. The biomet-
rics-based automated human identification is now highly pop-
ular in a wide range of civilian applications and has a become
powerful alternative to traditional (password or token) identifi-
cation systems. Human palms are easier to present for imaging
and can reveal a variety of information. Therefore, palmprint
research has invited a lot of attention for civilian and forensic
usage [1]. However, like some of the popular biometrics (e.g.,
fingerprint [3], [4], iris [5], face [2], [6]), the palmprint biometric
is also prone to sensor level spoof attacks. Remote imaging
using a high-resolution camera can be employed to reveal im-
portant palmprint details for possible spoof attacks and imper-
sonation. Therefore, extrinsic biometric features are expected to
be more vulnerable for spoofing with moderate efforts. In sum-
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Fig. 1. Cross section anatomy of palmer skin [7].

mary, the advantages of easy accessibility of these extrinsic bio-
metric traits also generate some concerns on privacy and secu-
rity. On the other hand, intrinsic biometrics characteristics (e.g.,
DNA, vessel structures) require more challenging efforts to ac-
quire without the knowledge of an individual and, therefore,
more difficult to forge. However, in civilian applications it is
also crucial for a biometrics trait to ensure high collectability
while the user interacts with the biometrics device. In this con-
text, palm-vein recognition has emerged as a promising alterna-
tive for personal identification. It has the advantage of the high
agility but at the same time also ensures that the crucial identity
information is unrevealed, therefore providing higher security
and privacy for the user.
The cross section of human skin which observes three key

components of the skin, i.e., the outermost epidermis, dermis,
and subcutaneous layer, is illustrated in Fig. 1. All three layers
contain fat and blood with different proportions and it is the sub-
cutaneous layer that contains subcutaneous veins and arteries.
Different skin layers have different responses to the wavelength
of the incident illumination [8]. The optical penetration depth 1

for near-infrared imaging at 850 nm is estimated to be 3.57 mm
and such illumination has shown to offer higher contrast for the
subcutaneous veins while imaging [26]. Therefore, the low-cost
palm-vein imaging devices employing infrared illumination and
a convention imaging sensor can acquire subcutaneous vein pat-
terns from the presented palms for secured personal identifica-
tion.

A. Related Work

The palm-vein imaging typically requires infrared illumi-
nation which is one component of multispectral illumination
for the multispectral palmprint imaging. Therefore, the multi-
spectral palmprint images inherently acquire palm-vein details.
However, as compared to the bispectral approaches, such as in

1Tissue thickness at which the light intensity reduces to 37% of its intensity
on the surface [27].
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[10], multispectral methods [11] introduce a significant amount
of additional computations (which often adds to the cost of
device) while achieving very little or marginal performance
improvement. In the following, we briefly summarize the
methods that have been proposed in the literature for human
identification using palm-vein images. The approaches can be
broadly categorized in two categories on the basis of the nature
of extracted features.
1) Holistic approaches using subspace learning: Sub-
space learning has emerged as a powerful technique
in which the palm-vein images are projected into sub-
spaces built from training data. Various subspaces have
been explored for the palm-vein identification: principle
component analysis (PCA) and locality preserving pro-
jection (LPP) in [10], scale invariant feature transform
(SIFT) in [17]. The subspace learning generates sub-
space coefficients (features) which are employed during
the matching stage for the identification.

2) Line/curve matching using vessel extraction: The
palm-vein images depict vascular structures and, there-
fore, the extraction of such curve- or line-like features
have invited a lot of research focus. The (often) unclear
palm-vein region of interest (ROI) images are extracted
using spatial domain filtering. Several filters have been
investigated for this purpose: Gabor filters [9], orthog-
onal Gaussian filters [11], cutoff Gaussian filters [13],
matched filters [14], [15], and SUSAN edge detector
[16]. The extracted line features are further encoded to
form a template and employed during the identification.

The summary of prior work in the literature suggests the lack
of any study to systematically compare the suitability of dif-
ferent feature representations for the palm-vein over different
imaging setup protocols, such as contact free in [11] and [12]
and constrained in [9], [10], [13], [14], [16], and [17]. In addi-
tion, the prior efforts have been more focused on the multispec-
tral2 palm images, rather than on single (near-infrared) spectrum
palm-vein images. This has motivated us to further explore the
palm-vein identification for real-world applications and ascer-
tain the best possible performance from the near-infrared-based
palm-vein identification.

B. Our Work

A review of prior work on palm-vein identification presented
in the previous section outlines the need for the comparative per-
formance on the most promising palm-vein feature extraction
and matching approaches. In addition, the previous efforts have
been more focused on constrained rather than contactless im-
ages. The contactless palm-vein identification is more hygienic,
can offer higher user acceptability, and preserves the vascular
patterns from distortion and, therefore, deserves further research
efforts.
The key contributions from this paper can be summarized as

follows. First, this paper investigates two new approaches which
extract two different types of palm-vein features and achieves
most promising performance. The Hessian-phase-based ap-
proach investigated in this paper extracts/preserves the vessel

2Using multiple sets of illuminators, where each set peaks the illumination at
a specific wavelength at a time.

structures by analyzing the eigenvalues of second-order deriva-
tive of the normalized palm-vein images. This approach offers
a computationally efficient and most compact (minimum
template size) alternative for generating palm-vein templates
than the existing methods. The neighborhood matching Radon
transform approach achieves the best performance as compared
to the prior palm-vein identification approaches presented in
the literature. Second, we present a systematic and comparative
analysis of the proposed approaches in both contactless and
constrained palm-vein imaging environment and ascertain the
robustness of our methods over these two setups. To the best of
our knowledge, there has not been any study to comparatively
evaluate the approaches for the palm-vein verification and,
therefore, such needed comparison is presented in this paper.
Finally, this paper rigorously evaluates the recognition perfor-
mance and analysis of the influence of enrollment size on the
achievable accuracy. It is well known that minimum numbers
of training samples are desirable in a civilian biometrics system
to ensure better user acceptability. Therefore, we rigorously
evaluate the performance for the palm-vein identification with
the variation in the size of enrollment or training samples
and ascertain the performance. The palm-vein literature has
been highly focused on the verification problem and there are
little or negligible efforts to ascertain the performance for the
recognition problem. Therefore, this paper has also presented
recognition performance from various (also proposed ones)
approaches on the two different databases (please refer to
Section IV) to comparatively ascertain the performance from
various approaches.
The rest of this paper is organized as follows: Section II

presents the details on the preprocessing steps that normalize
the palm-vein images acquired from the completely contactless
imaging. Section III describes our proposed feature extraction
and matching approach for the automated palm-vein identifica-
tion. The experimental results are presented in Section IV and
Section V provides discussion on the observations from our
experimental results, including simulation results for the rank-1
palm-vein identification. Finally, the key conclusions from this
paper are summarized in Section VI.

II. PREPROCESSING

The palm-vein images in contactless imaging present a lot of
translational and rotational variations. Therefore, more stringent
preprocessing steps are required to extract a stable and aligned
ROI. The preprocessing steps essentially recover a fixed-size
ROI from the acquired images which have been normalized to
minimize the rotational, translational, and scale changes. This is
followed by the nonlinear enhancement so that the vein patterns
from ROI images can be observed more clearly.

A. Image Segmentation and Normalization

The key objective while segmenting the ROI is to auto-
matically normalize the region in such a way that the image
variations, caused by the interaction of the user with the imaging
device, can be minimized. In order to make the identification
process more effective and efficient, it is necessary to construct
a coordinate system that is invariant/robust (or nearly) to such
variations. It is judicious to associate the coordinate system
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Fig. 2. Block diagram for personal identification using palm-vein images.

Fig. 3. Key steps in segmenting ROI images from contactless palm-vein images.

Fig. 4. Illustration of segmentation of palm-vein ROI from an (a) acquired
sample image with the illustration of key points, (b) the binarized image of (a),
and (c) the distance from the center of the palm [shown as a red dot in (b)] to
the palm boundary [on the left side of the blue line in (b)].

with the palm itself since we are seeking the invariance corre-
sponding to it. Therefore, two webs are utilized as the reference
points/line to build up the coordinate system, i.e., the web
between the index finger and middle finger together with the
web between the ring finger and little finger [Fig. 4(a)]. These
web points are easily identified in touch-based imaging (using
pegs) but should be automatically generated for contactless
imaging.
The acquired palm images are first binarized [see Fig. 4(b)],

so that we are able to separate the palm region from the back-
ground region. This is followed by the estimation of the dis-
tance from center position of the binarized palm to the boundary
of palm [see Fig. 4(c)]. We locate the two webs by finding the
corresponding local minima from the calculated distance. The
potential scale changes in the contactless environment can be
quite large, and in order to account for this variation, it is wise
to adaptively select the location and size of the ROI according to
certain image-specific measures from the palm. In our approach,
we select these two parameters based on the distance between
the two webs and this process can be illustrated as fol-
lows:

(1)

where denotes the size of the ROI, denotes the dis-
tance between the ROI and the reference line, as shown in Fig. 4,
and represents the distance between the two webs. The
and are the factors that respectively control the location and

Fig. 5. Illustration of image enhancement: (a) original ROI images, (b) corre-
spondingly enhanced ROI images of (a).

size of the ROI, which are determined experimentally from the
training data. The approach employed in [11] may be similar
to that in this work. However, our method is more computa-
tionally efficient since no additional sampling/computations are
required. After segmentation, the ROI images are scaled to gen-
erate a fixed size region and the whole process is illustrated in
Fig. 3.

B. Image Enhancement

The palm-vein images employed in our work were acquired
under near-infrared illumination (NIR); the images generally
appear darker with low contrast. Therefore, image enhancement
to more clearly illustrate the vein and texture patterns is re-
quired.We first estimate the background intensity profiles by di-
viding the image into slightly overlapping 32 32 blocks (three
pixels overlapping between two blocks to address the blocky ef-
fect), and the average gray-level pixels in each block are com-
puted. Subsequently, the estimated background intensity profile
is resized to the same size as the original image using bicubic
interpolation and the resulting image is subtracted from the orig-
inal ROI image. Finally, histogram equalization is employed to
obtain the normalized and enhanced palm-vein image. As can
be observed from Fig. 5, the enhancement has been quite suc-
cessful in improving the details and contrast of the ROI images.

III. FEATURE EXTRACTION AND MATCHING

The normalized and enhanced palm-vein images depict
curved vascular network/patterns, and these vessels can be
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approximated by small line segments which are rather curved.
Therefore, in this paper, we propose to use two new approaches
to extract such line-like palm-vein features. In addition, a
neighborhood matching scheme that can effectively account for
more frequent rotational, translational variations, and also to
some image deformations in the acquired image. This approach
is detailed in Sections IV–VI.

A. Neighborhood Matching Radon Transform

The Radon transform [19] is an effective tool to identify
continuous line structures in the images. The two-dimensional
(2-D) Radon transform of a given function is defined as
follows:

(2)

where is the slope of the line and is the intercept. Equa-
tion (2) illustrates the process of integration, for all the values
from the domain of and , in a given image to locate the lines.
Thus, if the length of the line is significantly shorter than the
image dimension, then the process in (2) may not be able to lo-
cate that line which is really the case in detecting the palm-veins
as line segments. In addition, the vessels may suddenly change
their direction to an almost perpendicular orientation, and there-
fore breaking the long curve into several short line segments. To
overcome this problem, it is intuitive to restrict the transforma-
tion in the local area and select the size of the local region to be
small enough so that the target shortest line segments in the im-
ages can be detected. The localized Radon transform [18], [20],
[21] utilizes this idea, and it further simplifies the transforma-
tion by fixing the intercept term and restricting the integration
in a confined width (linewidth). Mathematically, it can be rep-
resented as in the following equation:

(3)

where represents the normalized 2-D palm-vein image. We
define , where is a positive integer that
indicates the minimum length of the line segment to extract/
detect, and the center of is at . Let represent the
set of points on such that

(4)

where denotes the slope of the line , and
is the line passing through the center of lattice .

Note that the center of is not necessarily a single point but it
should have the same parity as so that the line can be properly
placed in the lattice. For example, in case of ,
can be four points , but cannot be one or nine points, and
the size of (or ) represents the width of the line . Finally,
the line in the lattice is encoded in the following manner:

(5)

Fig. 6. Illustration of NMRT feature extraction.

where the represents the estimated direction of pixel
, and denotes the number of line directions/slopes.

This operation is repeated as the center of lattice moves over
all the pixels in the image. At each position, the dominant orien-
tation is recorded to form the feature vector of the palm-vein
image. Since the veins appear darker in the palm-vein images,
the line direction that results in the minimum summation (inte-
gration) value is encoded as the dominant direction. It should
be pointed out that this encoding scheme also accounts for the
potential rotational changes to some extent, since it quantizes
the directions of lines to only an number of orientations ( is
fixed to six in our experiments), and thus as long as the variation
in orientation is not so severe (e.g., not more than in case of
six directions), the resulting code will not be altered. Hence, the
degree of robustness against rotational variations also depends
on the number of orientations: a value that is too small will only
be sensitive to larger variations, and as a result, the encoded
template is not distinguishable. On the contrary, a value that is
too big will lead to noisy templates that make the genuine match
worse.
The resulting template size is inversely proportional to

the linewidth, since each of the possible orientations of line
segment is just encoded into one code, for a given/certain
linewidth. This procedure is diagrammatically illustrated in
Fig. 6 for a linewidth of two pixels, six orientation, and a lattice
size 16 16.
The generation of matching scores between two encoded

palm-vein templates can be quite straightforward using the
following equation:

(6)
where represents the registered palm-vein template,
denotes the unknown test template translated by and pixels
in horizontal and vertical directions, hamdist generates the
hamming distance between two templates, i.e., summation of
the number of positions that are different, and control
the amount of translation in horizontal and vertical directions,
respectively, and is the cardinality operator. However,
the matching score generated from (6) does not exploit local
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information, which can be more stable and robust to imaging
variations of image deformations. Therefore, we develop a new
approach to robustly and reliably generate the matching scores
using the local neighborhood information, which is shown to
significantly improve the performance and described in the
following.
Let and represent the palm-vein templates generated

during the registration and validation/probe stages, respectively,
and denote the connected subregion separated from

the template with width and height , represents for the
total number of partitions, and then the region partitioning can
be described by equation (7), shown at the bottom of the page.
After partitioning the templates into disjointed subregions, we
can use (8) to match the corresponding partitions

(8)

By using (8), the matching takes the possible local variations
into account by matching the subregions correspondingly with a
small amount of shifting. Therefore, this approach is expected to
be more robust against potential changes, that may occur more
frequently with contactless imaging.

B. Hessian-Phase-Based Feature Extraction

The local palm-vein image characteristics can be observed
using Taylor series expansion in the neighborhood of a point.
The local characteristic of an image considering its Taylor
expansion in the neighborhood of a point is shown as follows
[22]:

(9)

The above equation estimates the structure of the image up to the
second order in scale , where and denote for the Jacobian
and Hessian matrix, respectively. The differentiation is defined
as a convolution with the derivatives of the Gaussian functions

(10)

(11)

where is the convolution operator and is the -dimensional
Gaussian function at scale . Recall that the eigenvector of a
matrix corresponds to the basis/principal directions of the ma-
trix, and thus the magnitude of the corresponding eigenvalues

of the Hessian matrix (second-order derivative) will reflect the
curvature of the principal orientation in the local image. Let
denote the eigenvalue with the th smallest magnitude, for an
ideal vessel-like structure in a 2-D image the eigenvalues should
have the form as shown follows:

(12)

(13)

Two local characteristics of image can be measured by ana-
lyzing the above two equations. First, the norm of the eigen-
values will be small at the location where no structure infor-
mation is shown since the contrast difference is low, and it will
become larger when the region occupies higher contrast since
at least one of the eigenvalues will be large. Second, the ratio
between and will be large when the blob-like structure
appears in the local area, and will be very close to zero when the
structure shown is line-like. Mathematically, the two measures
is represented as follows:

(14)

(15)

where and are the measures of the local structure and
local line characteristics with denoting the dimension of the
image. Therefore, the local “vesselness” of position in scale
is assigned using the following equations [22]:

if
(16)

(17)

where is fixed to 0.5 and equals to half of the maximum Hes-
sian norm, represents for the enhanced image, and is the
set which contains all the defined scales. The enhanced image is
then binarized to form the template (Hessian phase), the global
thresholding does not give good performance in our experiment,
since the enhanced vessel image occupies a relatively broad in-
tensity range. Therefore, a localized binarization scheme [23]
was investigated. Essentially this scheme creates two local win-
dows, i.e., inner and outer window, and the local threshold value
is selected based on the follows [23]:

(18)

(19)

(7)
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Fig. 7. Samples of image representation of extracted features, (a) the enhanced ROI image, (b) features extracted from (a) using LRT, (c) multiscale vessel
enhancement of (a), (d) phase extracted from (c), (e) ordinal representation [11] of (a), (f) competitive code [9] representation of (a), (g) key points (in green)
extracted by SIFT [17], and (h) Laplacian palm [10] representation of (a).

where , , and are the mean, standard deviation, and
the minimum intensity value of the inner window, rep-
resents for the standard deviation of the outer window, , ,
, and are constants and fixed to values 0.1, 0.25, 0.04, and

3, respectively, in this experiment. By using this binarization
scheme, the threshold in the local area will have greater values
where the vein structures appear, since the ratio of the standard
deviation in the second and third term will be larger when the
inner window covers the vein structure. In addition, in the area
where no vein appears, the threshold is expected to be higher
than the mean value so as to depress the possibility of noise
enhancement from the true background regions. Fig. 7(d) illus-
trates the sample results from this approach. It can be noticed
that the true vein structures are quite well preserved in the re-
sulting binarized image. Equation (6) is then employed for com-
puting the matching score between the binarized templates.

IV. EXPERIMENT AND RESULTS

In order to ascertain the effectiveness and robustness of
the proposed approach for the palm-vein identification, we
performed rigorous experiments on both contactless and con-
tact-based databases. The extraction of palm-vein features
using Gabor filters [9], Ordinal Code [11], and Laplacian palm
[10] have been suggested in the literature with promising
results. Scale invariant feature transform (SIFT) [12] has also
been investigated in [17] and shown to offer high performance.
Therefore, we systematically evaluated and compared all these
methods together with our proposed ones, so that we can get
more insights into the problem of palm-vein identification.

A. Database

In this work, we first the employed CASIA Multi-Spec-
tral Palmprint Image Database V1.0 (CASIA database) [24]
which has been acquired from the contactless palm imaging of
100 subjects. All the images have been acquired in two data
acquisition sessions with a minimum interval of one month,
and at each time three samples were acquired from each user.
The second database employed in this work is the PolyU
Multispectral Palmprint Database (PolyU database) [9], and
all the images were acquired with a constrained device with

finger-pegs, and is composed of images from 250 individuals
with 12 images from each individual. These images were
captured in two sessions (six images in each session) with
an average interval of nine days. We employed these two
databases, which are rather from an independent imaging setup,
in our study so as to comparatively evaluate the performance
from various methods and ascertain the robustness of our
methods on different imaging setups. Since the focus of our
work is on palm-vein identification, and the palm-vein images
are largely observed in NIR, only the images that were acquired
under 850-nm wavelength illumination from the CASIA data-
base and near-infrared images from the PolyU database were
used in the following experiments.

B. Identification Experiments

In order to reliably ascertain the performance of our proposed
approach, we rigorously evaluated and compared the identifica-
tion performance on two different databases. The samples from
the first session were used as the gallery (i.e., the first three im-
ages from the CASIA database and first six images from the
PolyU database), and the rest of the images served as the probe.
The capability to achieve higher performance with a smaller
number of training samples or registration samples is highly de-
sirable in any biometrics system. In this context, the average per-
formance evaluation with just one (minimum) training sample
can be highly representative for the comparative performance
evaluation. Therefore, in this study, we also present analysis of
various palm-vein identification approaches when the numbers
of training samples are varied.
We performed four experiments on each of the two databases;

first the recognition performance from the individual (left and
right hands) palm-vein image samples was investigated;
second, we ascertained the performance by combining the left-
and right-hand palm-vein samples while considering them as
belonging to different classes; third, several image samples,
i.e., images from the last ten subjects in the CASIA dataset
and the last 50 subjects in the PolyU dataset, were removed
from the gallery and their corresponding query samples were
used as unknown subjects, i.e., subjects not registered in the
gallery, and the experiments were repeated in a similar manner
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Fig. 8. Cumulative match characteristics of palm-vein images from the CASIA database with a different number of gallery samples for each subject: (a) and
(b) show the performance from left palm using 1- and 3-gallery samples respectively; (c) and (d) show the performance from right palm using 1- and 3-training
samples; and (e) and (f) show the performance from right and left palm using 1- and 3-gallery samples.

as the previous two cases. The key purpose of the third and
fourth experiments is to ascertain the potential influence of
unregistered users (outliers) to the performance of the system
and to test the robustness of the individual method in such
circumstances. The average rank-1 identification rates from
the CASIA database are illustrated in Tables I–VI, and the
cumulative match characteristics (CMCs) are shown in Fig. 8.
It can be observed from the presented results that our

neighborhood matching Radon transform (NMRT) approach
consistently outperforms other promising methods in all four

experiments, especially in the case of a smaller number of
gallery images for each class, which is contributed by the
localized matching. Unlike other matching methods, the neigh-
borhood matching scheme searches for the best match by
translating/shifting in the local area between the corresponding
region, which makes more effective use of the local informa-
tion and, therefore, can accommodate higher deformation and
image variations. In addition, it virtually increases the training
samples by partitioning the template into separate regions (con-
sidering each region as training samples) and thus this scheme
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TABLE I
RANK ONE IDENTIFICATION RATE FROM ALL LEFT PALMS IN THE CASIA DATABASE USING DIFFERENT

APPROACHES WITH VARYING NUMBERS OF GALLERY IMAGES PER CLASS

TABLE II
RANK ONE IDENTIFICATION RATE FROM ALL RIGHT PALMS IN THE CASIA DATABASE USING DIFFERENT

APPROACHES WITH VARYING NUMBERS OF GALLERY IMAGES PER CLASS

TABLE III
RANK ONE IDENTIFICATION RATE FROM ALL LEFT AND RIGHT PALMS IN THE CASIA DATABASE USING DIFFERENT

APPROACHES WITH VARYING NUMBERS OF GALLERY IMAGES PER CLASS

TABLE IV
COMPARATIVE RANK ONE IDENTIFICATION RATE FROM FIRST 90 LEFT PALMS IN THE CASIA DATABASE WITH 10 UNKNOWN

SUBJECTS WITH VARYING NUMBERS OF GALLERY IMAGES PER CLASS

TABLE V
COMPARATIVE RANK ONE IDENTIFICATION RATE FROM FIRST 90 RIGHT PALMS IN THE CASIA DATABASE WITH 10 UNKNOWN

SUBJECTS WITH VARYING NUMBERS OF GALLERY IMAGES PER CLASS

performs very well even under the minimum number of training

cases (i.e., only one gallery sample for each class). As expected,
the identification performance improves as the training samples
increase, especially when the number of training samples was
increased from one to two, all the methods have a signifi-
cant improvement (about 10% increment in recognition rate).
Therefore, for the dataset that is likely to have higher intraclass
variations (e.g., contactless and unconstrained acquisition at a
distance) as in the CASIA database, it is judicious to use more
than one training sample for each class, since it is quite likely
that the user may interact with the device differently at each
time which will introduce intraclass variations. Therefore, the
additional training samples in such contactless acquisition are
more likely to contribute complementary information of the
same class. The Laplacian palm method does not perform well
in such cases, and a possible reason for its limited performance
may lie in the fact that it utilizes only global features and
does not account for the rotational and translational variations,
which are quite common in this database.
The rank one identification rate from the experiments using

the PolyU database is shown in Tables VII–XII. Unlike the
CASIA experimental results, the performance improvement

from the PolyU database may not be significant with the
number of training samples increasing (except the case of
Laplacianpalm), especially when the number of training sam-
ples is higher than three, and the plausible explanation for this
could be due to the following reasons. First, as the finger-pegs
were employed by the imaging device in the PolyU database,
the image variations3 from the same subject are observed to be
much smaller than those from the CASIA database. In other
words, the additional training sample does not bring much
complementary/useful information and thus the resulting per-
formance improvement is much smaller. On the contrary, the
misplaced/improper samples can indeed deteriorate the perfor-
mance (skew the matching scores generated from the matcher).
Additionally, it should be pointed out that the performance
from the PolyU database is already relatively high with smaller
training cases, so the room for the noticeable improvement is
much less as compared to the previous case. However, there is
consistent performance gain from the Laplacian method; this
may corresponds to the nature of locality preserving projection

3The absolute mean rotational variation estimated by our normalization ap-
proach from the left-hand palm-vein samples in the CASIA database is 21.0
but 3.1 in the PolyU database.
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TABLE VI
COMPARATIVE RANK ONE IDENTIFICATION RATE FROM FIRST 90 LEFT AND FIRST 90 RIGHT PALMS IN THE CASIA DATABASE

WITH 20 UNKNOWN SUBJECTS WITH VARYING NUMBERS OF GALLERY IMAGES

TABLE VII
RANK ONE IDENTIFICATION RATE FROM ALL LEFT PALMS OF THE POLYU DATABASE USING DIFFERENT

APPROACHES WITH VARYING NUMBERS OF GALLERY IMAGES PER CLASS

TABLE VIII
RANK ONE IDENTIFICATION RATE FROM ALL RIGHT PALMS OF THE POLYU DATABASE USING DIFFERENT

APPROACHES WITH VARYING NUMBERS OF GALLERY IMAGES PER CLASS

TABLE IX
RANK ONE IDENTIFICATION RATE FROM ALL LEFT AND RIGHT PALMS OF THE POLYU DATABASE USING DIFFERENT

APPROACHES WITH VARYING NUMBERS OF GALLERY IMAGES PER CLASS

TABLE X
RANK ONE IDENTIFICATION RATE FROM FIRST 200 LEFT PALMS OF THE POLYU DATABASE WITH 50 UNKNOWN

SUBJECTS WITH VARIATION IN NUMBERS OF GALLERY IMAGES PER CLASS

TABLE XI
RANK-1 IDENTIFICATION RATE FROM FIRST 200 RIGHT PALMS OF THE POLYU DATABASE WITH 50 UNKNOWN

SUBJECTS WITH VARYING NUMBERS OF GALLERY IMAGES PER CLASS

that utilizes the neighborhood features to preserve the local
structure. Obviously, the more (representative) samples for the

specific class, the preserved local structures can be more stable
which can more reliably identify the probe samples.
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TABLE XII
RANK-1 IDENTIFICATION RATE FROM FIRST 200 LEFT AND FIRST 200 RIGHT PALMS OF THE POLYU DATABASE

WITH 100 UNKNOWN SUBJECTS WITH VARYING NUMBERS OF GALLERY IMAGES

Fig. 9. Relationship between partition size of NMRT with (a) equal error rate, (b) decidability index, and (c) rank-1 recognition rate on the CASIA database.

C. Verification Experiments

We also performed rigorous experiments to evaluate the per-
formance for the verification problem. First we investigate the
comparative performance from the individual palms separately
using various methods while varying the number of training
samples. This resulted in 300 genuine scores and
29 700 imposter scores on the CASIA database,
and 1500 and 373 500 genuine and im-
poster matching scores, respectively, from the PolyU database.
We also ascertain the performance from two different hands of
an individual (left and right) as belonging to different subjects,
which result in 600 genuine, 119 400
imposter scores, and 3000 genuine, 1 497 000

imposter scores from the CASIA and PolyU databases,
respectively.
The selection of appropriate partition size for NMRT is crit-

ical in achieving higher performance; if the selected size is too
small, the partition may represent a lot of noise and thus not rep-
resentative to the true dominant feature in the particular area. In
other words, partitions which are too small in size tend to have
higher genuine matches; however, it also leads to higher im-
poster/noisy matches which deteriorates the performance. On
the contrary, partitions which are too large in size will sup-
press the representative local features and instead emphasize
on the global ones, which is contrary to the motivation for our
matching approach and is thus expected to deteriorate the per-
formance. Fig. 94 illustrates the relationships between partition
size and performance on the CASIA database, and the results
are obtained by using only the training or enrollment data (i.e.,
the first session data). It can be observed from this figure that
a smaller equal error rate is achieved at two places, one is 12

4Defined as .

and the other is 16. However, the decidability index from size
of 16 is much higher than that of 12, which implies better sepa-
ration between the two score distributions (in case of Gaussian).
Therefore, we fixed the partition size as 16 for the CASIA data-
base; similar analysis was performed for the PolyU database and
the partition size was fixed to 24.
The results (see Figs. 10 and 11, and Tables XIII and XIV)

suggest performance improvement for all approaches with in-
creasing the number of training samples, and the trend of this
improvement was quite consistent with our observation from
the identification experiments. The competitive code achieves
very promising results in [9], but did not perform well on this
set of experiments. A plausible reason for such performance is
that reference [9] employed all the possible matches from the
database for the performance estimation, which also match the
data that is acquired in the same session, and this may lead to bi-
ased performance estimation. The matching of the same session
data tends to achieve better matching as compared to that of a
different session due to smaller variations (possibly contributed
by the increased familiarity with the device in palm representa-
tion), and this will compensate the poor matches (if any) from
the different data session, and thus lead to unreliable estimation.
Fig. 12 shows the genuine and imposter distribution using

an NMRT approach on the CASIA and PolyU databases, re-
spectively, and illustrates relatively clear separation between the
genuine scores and imposter scores. The observed distribution
ofmatching scores resembles or is similar to the Gaussian shape.
However, the distribution of genuine matching scores illustrates
larger variations (fluctuations) and this may be due to a rela-
tively small number of genuine scores, i.e., 300 scores, from
the CASIA database. The above observation also supports our
approach to use the decidability index while selecting the pa-
rameter for NMRT.
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Fig. 10. Receiver operating characteristics from the CASIA and PolyU databases using one training: (a), (b) left palm; (c), (d) right palm; and (e), (f) left and
right palm.

V. DISCUSSION

The experimental results presented in Section IV consistently
suggests that palm-vein identification using NMRT achieves
significantly improved performance over the earlier proposed
approaches on both contactless and constrained palm-vein
images. In order to comparatively ascertain the performance
from two databases using two different matching schemes [i.e.,
(6) and (8)], and corresponding ROC from the two databases
are shown in Fig. 13. It can be observed from this figure that

the neighborhood matching scheme performs consistently
better than the counterpart. This superior performance can be
attributed to the robust and relatively more stable extraction
of palm-vein features by searching for the dominant direction
in the local area and quantizing the orientation. In addition,
the palm-vein images can be quite unclear even after the
enhancement, primarily due to variations during the imaging
or environment. In such cases, the features that extracted by
NMRT reflect the local texture patterns rather than the dominant
vein directions, and this ensures the robust performance from
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Fig. 11. Receiver operating characteristics from the CASIA and PolyU databases using all training samples during first session: (a), (b) left palm; (c), (d) right
palm; and (e), (f) left and right palm.

this approach. Furthermore, the neighborhood matching scheme
exploits the local information which represents more distinct
characteristics and more robustness to intraclass changes. This
scheme still performs relatively better even under the minimum
training cases, which is also contributed by the neighborhood
matching, since it partitions the templates into small subregions
and thus has effectively higher training samples to some extent
as compared to the matching that uses the template as a whole.

In addition, from the computational efficiency point of view,
NMRT uses almost the same computation as its counterpart [i.e.,
(6)] but achieves much better results. Let denote the size of
the ROI, and let and represent the amount of horizontal
and vertical shifting; for (6), it needs number of
operations to calculate the matching score. While for NMRT, it
needs number of operations, where is
the size of the block and is the ceiling operator. If we choose
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TABLE XIII
EQUAL ERROR RATE FROM LEFT AND RIGHT PALMS IN THE CASIA DATABASE USING DIFFERENT APPROACHES

WITH VARYING NUMBERS OF TRAINING SAMPLES

TABLE XIV
EQUAL ERROR RATE FROM LEFT AND RIGHT PALMS IN THE POLYU DATABASE USING DIFFERENT APPROACHES

WITH VARYING NUMBERS OF TRAINING SAMPLES

Fig. 12. Genuine and imposter distributions from left- and right-hand palm-vein images using NMRT from (a) the CASIA and (b) PolyU databases.

Fig. 13. Receiver operating characteristics from two databases for left-hand
palm-vein images with different matching approaches.

the value of such that it can be divided by , then the two
approaches use exactly the same number of operations while
matching.
We also investigated a new approach to characterize the palm-

vein images using local curvature information, i.e., the Hes-

sian matrix. This approach enhances the vessel (palm-veins)
patterns of different widths by employing multiscale measures.
Additionally, it also saves computation in finding the direction
of the local vein patterns by analyzing the eigenvalues of the
Hessian matrix instead of evaluating multiple filter responses in
different orientations. The binarized templates generated from
this approach require the least amount of storage (only one bit
for each corresponding position; see Table XV for comparison
with other methods), as compared to other previously proposed
methods in the palm-vein literature, while achieving relatively
higher performance (consistently outperform other methods ex-
cept NMRT and Ordinal Code). Therefore, this approach can
be a computationally efficient alternative for the compact palm-
vein template representation and matching. The Hessian-phase-
based approach does not outperform NMRT and Ordinal Code,
and this may be explained by several factors as discussed in the
previous paragraph. While the veins in the image are not very
clear, it can be quite difficult for the Hessian phase representa-
tion to extract local features, since it is not suitable for texture
representation (unlike the NMRT and Ordinal approaches).
The observed performance from the Laplacian palm ap-

proach was not high on the CASIA database, and this may be
due to the fact that it does not focus on extracting and matching
the local textured information, and lack strong mechanism



1272 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 6, NO. 4, DECEMBER 2011

TABLE XV
ILLUSTRATION OF TEMPLATE SIZE FROM VARIOUS APPROACHES (IN BYTES)

TABLE XVI
SUMMARY OF RELATED APPROACHES FOR THE PALM-VEIN VERIFICATION

to accommodate potentially large variations which are more
likely to exist in the contactless database. We have also eval-
uated this approach on the same-session data from the PolyU
database and achieved zero percent EER (0% EER for both
hands, which is similar to the performance reported in [10]),
which further confirms that this method is not very good at
accommodating large intraclass variations.5 It also does not
perform well in the case of a smaller number of training sam-
ples, which is again the case in the CASIA database (maximum
three training samples are available), and this may be attributed

5The NMRT approach also achieves 0% EERwhen evaluated on one session-
data.

to the difficulties in building a reliable neighborhood pattern
structure in the Laplacianpalm process. Table XVI summarizes
the palm-vein approaches in the literature and suggests that the
superior performance is achieved from the approaches detailed
in this paper. The performance improvement trends with the
increase in number of training samples is quite consistent in
both verification and identification experiment, and on both
of the two employed databases. In most cases, the largest
performance gain was obtained when the number of training
samples was increased from one to two, which suggests that the
large amount of complementary information contributed by the
additional sample. On the other hand, the additional training
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Fig. 14. Estimated left-hand palm-vein identification performance as a func-
tion of gallery size, from the CASIA database.

samples (beyond two) do not offer as much improvement as the
previous one, which suggests that the additional information
may be more redundant rather than complimentary, with the
further increase in training samples in these two databases.

A. Comment on Identification Performance Estimation

We also performed experiments to estimate the rank-1 identi-
fication rate for the larger population using simulation from the
best of the proposed approach. This simulation for the estima-
tion of rank-1 identification rate employed the same approach
as in [25] which estimates the rank-1 identification performance

from the following equation:

(20)

where is the probability density function from genuine
matching scores, and represents the gallery size. The estimated
rank-1 recognition performance with one gallery sample per
class using the above equation to a gallery size of 200 and 500
from left palm of the CASIA and PolyU databases was 93.92%
and 99.38%, respectively. However, we observed that this es-
timation may not be reliable, as can be observed from Fig. 14
unless we use all the samples in the database to ascertain the
final estimation and such estimated result will unlikely be close
to the true value, and such estimation provides the best possible
or most optimistic results. The reason for this may lie in the fact
that this model basically employs the idea of maximum like-
lihood estimation and does not generate any prior true match
or nonmatch distribution. This problem becomes more severe
while simulating the performance of a large population from the
real distribution that offers very good performance. From (20),
we can observe that while the estimation gallery size is large,
the first term in the equation tends to vanish, and thus the esti-
mated result will be nearly equal to the area of the match dis-
tribution minus the intersection between match and nonmatch
distribution (equal to equal error rate). In an extreme case, if we
achieve a perfect separation between the true match and non-
match score distributions (from the smaller size real samples),

this estimation will result in 100% rank-1 identification rate ir-
respective of the size of the gallery, which can be perceived as
a major shortcoming of using a pure maximum likelihood ap-
proach and the corresponding result is obviously not reasonable.
In summary, this simulation scheme uses a pure maximum like-
lihood approach that does not assume any prior distribution on
the match and nonmatch distributions, which makes the estima-
tion less reliable, especially in the case of very low EER perfor-
mance. Therefore, the reliability of this prediction can be im-
proved by incorporating a prior distribution of both match and
nonmatch scores to compute the maximum posterior estimation
or by employing a fully Bayesian approach.

VI. CONCLUSION

This paper investigated a novel approach for human identi-
fication using palm-vein images. We propose a novel feature
extraction and matching approach that can effectively accom-
modate the potential image deformations, translational, and
rotational variations by matching to the neighborhood of the
corresponding regions and generating more reliable matching
scores. This approach performs very well even with the min-
imum number of enrollment images (one sample for training).
The performance was rigorously evaluated and compared to
the existing method on two different databases with a different
imaging setup, and evaluated with all possible numbers of
training samples. Our proposed method shows its robustness
and superiority in both cases. The Hessian phase approach
extracts palm-vein features by analyzing the eigenvalues of the
local image instead of filtering the image by predefined filters
in different orientations, also achieves reasonably superior
performance, and at the same time provides a smaller template
size as compared to other methods. Therefore, it offers a
computationally simpler and compact storage (template size)
alternative for the palm-vein identification applications. We
achieved a rank-1 identification rate of 99%, 99.33%, and
100% from the left, right-palm-vein images of the CASIA and
PolyU databases, respectively, and correspondingly achieved
EER of 0.32%, 0.66%, 0.002%, and 0.001%. The performance
gain achieved from the additional training samples is quite
significant while the sample size is still small, but the redundant
information accumulates rapidly as the training sample size
increases. How to effectively make use of such complementary
information available from the additional training samples,
while ensuring that such redundancy is in a limited amount,
is critical in achieving further performance improvement and
requires further research efforts. The finger images are also
acquired from the contactless palm-vein imaging (CASIA
database) and can also be employed for further performance
improvement. Such a combination of palm-vein and surface
finger-vein is worth exploring for a large contactless database
and is suggested for the further/future work.
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