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Abstract

Human identity recognition is an important yet under-

addressed problem. Previous methods were strictly limited

to high quality photographs, where the principal techniques

heavily rely on body details such as face detection. In this

paper, we propose an algorithm to address the novel prob-

lem of human identity recognition over a set of unordered

low quality aerial images. Assuming a user was able to

manually locate a target in some images of the set, we find

the target in each other query image by implementing a

weighted voter-candidate formulation. In the framework,

every manually located target is a voter, and the set of hu-

mans in a query image are candidates. In order to locate

the target, we detect and align blobs of voters and candi-

dates. Consequently, we use PageRank to extract distin-

guishing regions, and then match multiple regions of a voter

to multiple regions of a candidate using Earth Mover Dis-

tance (EMD). This generates a robust similarity measure

between every voter-candidate pair. Finally, we identify the

candidate with the highest weighted vote as the target. We

tested our technique over several aerial image sets that we

collected, along with publicly available sets, and have ob-

tained promising results.

1. Introduction

Identity recognition from aerial platforms is a daunting

task. The objects of interest, humans for the purpose of this

research, have articulated bodies which account for highly

variant features in different poses and vanishing details un-

der low quality images. Therefore, previous techniques that

heavily relied on image details face significant difficulties.

On the other hand, object identity recognition and ob-

ject tracking can be closely related problems, since solv-

ing tracking implicitly solves identification and solving

identification over consecutive frames is actually tracking.

However, in tracking, objects are usually considered to

have small displacements between observations. There-

fore, most tracking techniques such as Mean Shift [4] and

Kalman filter-based tracking make use of this information

and search for the tracked objects within small spatial vari-

ation limits. Such techniques have proved their efficiency

in continuous scenes where disappearances and clutters are

minor. However, in the cases of long occlusions, track-

ing performance considerably decays and it even becomes

totally inefficient when discontinuities are inherent in the

video. As the problem shifts from solving correspondence

in a smooth continuous video to static images with long

temporal gaps, all assumptions of the continuous motion

models become weak, and the solution resolve to static im-

age based recognition rather than tracking.

To the best of our knowledge, recognition of humans

across aerial images has not been directly tackled before.

The problem faces the challenges of low quality images, mi-

nor availability of details, high pose variations, and the pos-

sibility of high density crowds in the same image. There-

fore, we provide a robust solution that makes use of spe-

cific computer vision tools which work efficiently even un-

der such deteriorated scenarios. For instance, face detection

was previously employed for human recognition in high

quality photographs; however, it is far from working under

aerial views; therefore we employ human detection which

has proven efficiency even in low quality aerial imagery.

The proposed method overcomes the discontinuity and the

information loss in such environment by employing a robust

region based appearance matching.

The rest of the paper is organized as follows: In the

next section, we present an overview of the related works.

Section three provides the problem definition. In section

four, we describe the proposed method that we refer to as

Weighted Region Matching (WRM). Section five illustrates

the results and discusses the experiments. Finally, section

six presents the conclusions.

2. Related Work

Not much work has been reported in the literature of ob-

ject identity recognition, in which a specific individual from



a certain object class is matched using only static image to

image comparison. This is mainly because distinct class

members have similar shape and appearance, which makes

the problem both complex and limited. In [9], Guo et al.

presented a complete framework for vehicle matching in

aerial views. However, their main focus was blob extraction

and alignment rather than recognition. In [2], people were

recognized in photo albums by employing a Markov Ran-

dom Field that incorporates both face and clothes similarity

potentials. On the other hand, logistic regression was used

in [18] to combine similarity scores from the faces and the

clothes in order to cluster humans according to their iden-

tities. In [8], Gray and Tao proposed using Adaboost to

learn the best features for human identification in addition

to learn the weak classifier model in the same framework. In

[17], people’s identities were corresponded across repeated

shots of the same scene via pictorial structure that starts

also from face detection. Moreover, two human identifica-

tion methods were proposed in [7]; the first applies a graph

based spatiotemporal segmentation to group human pixels

that belong to the same fabric. The second method uses de-

composable triangulated graphs to segment and correspond

the different human body parts. All previous methods are

highly dependent on image details to extract features such

as faces or body parts, and therefore can only be applied to

high quality ground images.

Even though human recognition has not been the focus

of the literature, substantial advances in human detection

have been reported. In [6], Dalal and Triggs trained a SVM

classifier using features of Histograms of Oriented Gradi-

ents (HOG) for human detection and localization. Further

improvements on HOG were later proposed in [20]. On

the other hand, in [19], covariance features were utilized as

pedestrian descriptors for a learning algorithm which used

Riemannian manifolds to classify pedestrians. Meanwhile,

body shape models have also been used for human detection

as in [10, 11].

In this work, we identify a target in an aerial image by

employing the best tools and features to preprocess the hu-

man figures in order to generate two sets of blobs which we

weight using graph theory and then correspond through a

region-based appearance matching.

3. Problem Definition

We lay the problem as the following: A user is able to

identify a target person in some instances from a set of un-

ordered aerial images that were taken for a scene over a

short period of time, in a way such that humans maintained

their clothing and general appearance. Using only this in-

formation, it is required to locate the target in each query

image from the set. In an abstract view, we define the prob-

lem as a voter-candidate race, where the set of manually
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Figure 1. Voters-Candidates. First row shows a possible set of

voters for a target, second row shows a possible set of candidates

from a certain query image to which the voters need to be matched.

labelled target figures are referred to as voters, and the set

of all the human figures in a query image are referred to as

candidates. In other words, the problem is to find the can-

didate that best matches to the voters. Figure 1 shows an

example for the voters and candidates.

The underlying challenge of the problem arises from two

factors: The low quality of the images, and the pose varia-

tion across the set which is due to the changes in camera

location and the articulation of the human body. Thus, we

show that our proposed method accommodates for the low

quality images and is capable of matching in different poses.

4. Weighted Region Matching (WRM)

The proposed matching operation expects as an input a

few images where the target has been recognized. Subse-

quently, the input images and each query image undergo

the following preprocessing steps:

• Human Detection.

• Blob Extraction.

• Alignment.

The above steps are explained in the following subsec-

tions. The result of these steps is two sets of blobs, the

voters and the candidates. If the set of the voters is defined

as V = {vi; i = 1...n}, and the set of the candidates in a

certain query image is defined as C = {cj ; j = 1....m},

then the probability of blob cj corresponding to the target is

denoted by:

PT (cj) =

n∑

i=1

P (cj |vi)P (vi), (1)

where P (vi) is the voter’s prior. If wi is a weight assigned

to voter i, and D ∈ [0, 1] is the normalized distance between

cj and vi, then equation 1 can be rewritten in a form similar

to a mixture of Gaussians:



PT (cj) ∝
n∑

i=1

(exp(−D(cj , vi)/τ)) × wi, (2)

where τ is a constant parameter. Hence, in order to solve

the recognition problem efficiently, we need to provide a

robust representation of the distance between every voter-

candidate pair. Moreover, we need to specify the weight of

every voter according to its importance in representing the

target’s specific information.

For further refinement and scene learning, matched can-

didates with high confidence can be augmented with the

voters set V in order to capture more information about

the target. The various steps associated with the proposed

Weighted Region Matching are illustrated in Figure 2.

4.1. Human Detection and Blob Extraction

Using only static image information, we seek detection

and extraction of human blobs. For detection, we train a

support vector machine (SVM) classifier based on the HOG

descriptor [6] using a dataset of pedestrian images in aerial

view. The HOG descriptor captures the most important cues

of the human body, such as head and shoulders in good de-

tail. Interestingly, in the case of aerial images, the most

observable parts of the body are the head and shoulders.

Therefore, Dalal and Triggs’ algorithm [6] is a good choice

for aerial scenes.

We used 6000 positive images of humans at different

scales and poses from a subset of manually labelled images

of our aerial dataset, along with 6000 negative examples of

the background and non-human objects. A SVM classifier

was trained over a subset of 9000 with equal numbers of

positive and negative examples. We performed validation

using the rest of the dataset. Figure 3 illustrates an example

of human detection results.

Human detection outcomes are bounding boxes of

pedestrians. However, the background regions contained

in the boxes do not provide any information about a spe-

cific person. In fact, when the same pedestrian is sighted in

different surroundings, the background context causes am-

biguity which eventually results in false matchings. Several

segmentation methods could be used to separate the regions

of the background from the regions of the human’s blob;

however, we found in our experiments that it is better to

estimate one distribution for each of the background and

the foreground using a kernel density estimator [12, 15].

Assuming that the human’s figure will be centered in the

bounding box, we use the center points as initial samples to

estimate the foreground PDF, and the border points as ini-

tial samples to estimate another PDF for the background.

Consequently, we compute pixel probabilities for the back-

ground and the foreground and assign every pixel in the

bounding box to its most probable distribution. Iteratively,

(b) (c)(a) (d)

Figure 4. Blob extraction (a) Bounding box obtained from Human

Detection. (b) Final probabilities of pixels for the foreground joint

kernel density estimation (KDE). Jet color map is used where blue

corresponds to the lowest probability and red to the highest. (c)

Final probabilities of pixels for the background joint kernel density

estimation using Jet color map as well. (d) Extracted blob.

we refine the kernel density estimation based on the newly

assigned pixels and then assign pixels based on the re-

fined distribution. We continue this iterative algorithm until

foreground-background segmentation stabilizes. An illus-

trative example is shown in Figure 4.

4.2. Alignment

When comparing blobs, aligning one to the other before

matching brings both of them to a unified view and accord-

ingly eliminates the variations from camera orientation and

human pose. However, since the size of pedestrians in aerial

images is generally very small such that the details of the

body are not distinguishable, alignment techniques based on

body part detection such as [10] or 3D pose tracking such

as [1] do not perform desirably. On the other hand, in the

kind of images we are dealing with, edge detection is noisy,

and as a result, alignment methods that completely rely on

edge detection as in [9, 10] become weak as well.

For the purpose of matching, we are rather interested in

a coarse alignment that can capture the general basic pose

of the pedestrian under such severe conditions. Thus, we

rely on a less detailed model that captures the most visible

parts of the body. We use an eight point head, shoulders and

torso (HST) model shown in Figure 5.a. The model captures

the basic orientation of the upper part of the body. We ne-

glect the body limbs since they are far more articulated, and

hence could result in extreme variations; in addition that

they tend to vanish in low resolution images.

In order to find the best fit of the HST model over hu-

man blobs, we train an Active Appearance Model (AAM)

[5] over scaled human images obtained from our dataset.

The initial position of the model is vital for AAM to find

the correct fit; therefore, we take advantage of the blob re-

gion information by using the major and minor axis lengths

to initialize the model’s size, and the major axis angle to ini-

tialize the model’s rotation. Figure 5 shows the HST model

after fitting over human blobs.

By fitting the model over the blobs, we obtain matching
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Figure 2. The Weighted Region Matching (WRM) steps. A sample output of detection, extraction, and alignment is presented inside every

step box.
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Figure 3. Examples of human detection results in three image sets.

(b) (c)(a) (d) (e)

HS

T

Figure 5. The Head-Shoulders-Torso (HST) model fitting. (a) The

model points. The upper part (HS) captures the head and shoul-

ders. The lower part (T) captures the torso. (b,c,d,e) Example

results of using AAM to fit the HST model over human blobs. The

red color shows the model after initialization. The green color

shows the final model location after running AAM.

points that we employ to compute a full affine transforma-

tion to a desired pose. In our experiments, we align all the

blobs to the mean pose generated by the AAM training set.

Example alignment results are shown in Figure 6. It is im-

portant to notice that the results do not show perfect align-

ment but are rather quite adequate for matching purposes.

4.3. Measuring the Distance Between Blobs

Given the extracted human blobs, we introduce a mea-

sure to effectively distinguish a specific person from others.

In order to account for the severe imaging conditions and

the articulation of the human body, we propose a matching

method that considers a detailed representation of the blob

Figure 6. Example results of alignment. The first row shows the

original blobs, the second shows the blobs after alignment. Blobs

are closer to common orientation due to alignment.

by treating it as a group of small regions of features. We use

Mean Shift with small spatial bandwidth to over-segment

each blob into several regions using color features.

In the following, we compute a set of features for each

region on a human blob. These features comprises (1) his-

tograms of color values (HSV channels) of the contained

pixels, (2) the HOG descriptor of the center of the region.

We apply PCA on the feature space and extract the eigen

vectors corresponding to the top 30 eigen values, and ac-

cordingly project our feature space onto the principle com-

ponents. The resulting is a set of histograms which rep-

resent the regions. It is worth mentioning that we experi-

mented with other types of features but they turned out to

be useless; for example, texture did not improve the per-

formance, which is expected since it is blurry in such low

quality images.



Figure 7. The distance between blobs. Every blob is a set of sig-

natures (regions) where a ground distance relates every two region

pair. EMD performs many to many matchings between the blobs’

signatures. Connections in the figure represent the EMD flow ma-

trix associations. Some connections are suppressed for clarity.

Using Earth Mover Distance [16, 14] (EMD), the dis-

tance between two blobs is computed as the minimum cost

of matching multiple regions from the first blob to multiple

regions from the second. Having each region represented as

a distribution in the feature space (a feature vector), the blob

is then represented as a collection of distributions; therefore

the problem of matching two blobs becomes the problem of

measuring the effort of converting all distributions in one

blob to the other.

Using EMD terminology, we refer to every blob as a set,

and every region is denoted by a signature and a weight. The

ground distance relates every pair of regions. EMD allows

many to many associations; which becomes very useful in

our problem, since a region from one blob can be related to

more than one from the other, depending on the segmenta-

tion result. For ground distance, we use Jeffrey-divergence

(JD) [14] between every pair of regions. For two distribu-

tions P = {pi} and Q = {qi}, JD is defined as:

JD(P,Q) =
∑

i

[ pi log
2
(

pi

(qi + pi)/2
)

+qi log
2
(

qi

(qi + pi)/2
)].

(3)

JD is a symmetric and more numerically stable version

of Kullback-Leibler divergence (KL). For every region re-

gion pair, we also augment their JD distance with the Eu-

clidian distance between their locations within the bounding

box. The final ground distance between two regions P and

Q is DP,Q = JD(P,Q)+α×ED(XP , XQ), where α is a

weighting parameter, ED is the Euclidean distance, and X
is the location of the region’s centroid within the box. It is

worth mentioning that several distance measures were con-

sidered, and experiments showed the effectiveness of the

proposed combination of distances. Figure 7 illustrates the

matching of two blobs using EMD.

4.4. Determining the Voter’s Weight

Each region in the voter’s blob has certain information

about the target; some regions could be noise introduced

from the blob extraction or even from the scene itself.

Therefore, we rank the collection of input images accord-

ing to the value of information they carry about the target.

In other words, given the set of regions from all voters,

R = {rk}, we assign a weight for every region such that

the most consistent regions are given higher weights, be-

cause they are more probable to lead to the target’s identity.

Consequently, we aggregate the regions’ weights for each

voter to determine its weight. The PageRank algorithm [3]

provides a neat solution for the problem.

PageRank is used to grade websites based on a random

walk algorithm which not only gives higher scores to the

websites that have more incoming links but also the pages

that are referred to from prominent webpages. Therefore, in

a graph of connected webpages, the most informative pages

are associated with higher ranks. We use the same idea to

seek the most informative regions from the set of all voters’

regions R. The intuition behind the PageRank weighting

is that a voter’s region ri that holds vital information about

the target will be consistent across the voters, and accord-

ingly, other voters will contain regions that are close to ri

in the feature space. On the other hand, noisy regions are

inconsistent; therefore, they are more likely to be connected

to highly separated regions. To perform PageRank, we cre-

ate an undirected graph G = (R,E), where the regions’

set R represents the nodes of the graph, and E is the set

of edges connecting each pair of regions. In G, we con-

nect every region from voter i to the K nearest neighbor

regions of voter j where i �= j. In addition, we assign a

distance to every edge ei,j connecting two regions ri and rj

which is computed as described in Section 4.3. As a result,

PageRank will assign higher weights to prominent regions

and degrade noisy regions by assigning them lower weights.

Figure 8 demonstrates the weighting process for an example

set of 5 voters. It is quite hard to visualize the effect of the

weighting on such low quality blobs; therefore, we demon-

strate it’s effect on synthesized noisy regions overlaid on a

set of blobs in Figure 9.

The region rank obtained from PageRank is not directly

dependent on the region size. However, the region size

rather represents the amount of information in the region;

therefore, we define the final weight for a region rk as:

wk = wpr
k × ws

k, where wpr
k is the region’s normalized

PageRank weight and ws
k is the normalized size of the re-

gion. Consequently, the voter’s weight is computed as the

normalized sum of weights of its regions. Therefore, for

a certain voter vi with s regions, the wi in Equation 2 is

defined as:

wi =

∑s

k=1
wk∑n

i=1
wi

. (4)



(a)

(b)

Figure 8. (a) The first row shows a set of five voters for a certain

target. The second row shows the regions’ weights assigned by

PageRank represented in Jet color map. The noisy regions (incon-

sistent) were assigned lower weights. (b) PageRank Graph for the

voters. Outer circles represent voters. Inner circles represent re-

gions, where the circle size corresponds to the region weight. A

region of a given voter is connected to k regions of other voters.

Some connections are suppressed for clarity.

Figure 9. The PageRank Weighting. The first row shows a set of

five voters with overlaid synthesized noisy regions. Second row

shows the weights assigned by PageRank represented in Jet color

map. The noisy regions were assigned the lowest weights.

4.5. Matching

The previous steps generate two sets of extracted and

aligned voters and candidates blobs, along with associating

every voter-candidate pair with a distance that represents

their localized separation in the feature space. In addition,

the weighting step ranks every voter based on the signifi-

cance of its regions in representing the target. Substituting

the distances and the weights in equation 2, we compute a

probability for every candidate to belong to the target.

The matching result is the computed probabilities. In the

simplest setup, the best match should be the candidate with

the highest probability. Moreover, a confidence about the

actual existence of the target in a query image is inferred

from the probability values as well. A low confidence pro-

vides enough evidence for the disappearance of the target in

the image.

5. Experiments and Results

We thoroughly tested our proposed method over several

challenging image sets mainly taken from a collection of

aerial images that we captured using a UAV and a set of

human actors. In addition, we tested our method on sev-

eral images from the web. The dataset is available on our

website.

We obtained manual annotations for all the sequences.

The overall experiment dataset contained about 6, 000 hu-

man bounding boxes. The whole dataset contributed in

training the human detection and the alignment processes,

in addition to providing a ground truth for WRM testing.

For the purpose of isolating the error sources from recog-

nition and detection, all matching experiments were con-

ducted using the true positives of human detection process.

In our experiments, we used the final candidates’ proba-

bilities PT to obtain the following quantitative performance

evaluation metrics:

• Precision: The ratio between the number of correct

matches and the number of testing query images.
• Mean Average Precision: Since we have only one tar-

get in each query image, this measure is defined as

the mean percent ranking of the ground truth can-

didate across all testing query images. The rank is

computed for every query image such that the high-

est rank is assigned to the candidate with the high-

est PT . For instance, in a certain query image, if the

ground truth candidate had the highest PT , its Aver-

age Precision is (1/1) × 100% = 100%. In another

query image, if the ground truth candidate was ranked

third, its Average Precision is (1/3)×100% = 33.3%.

The Mean Average Precision for the two images is

(100 + 33.3)/2 = 66.6%.

In order to study the effect of the different components of

our recognition system, we conducted our experiments us-

ing all possible combinations of components. Figure 10 and

11 summarizes the average results, which were obtained by

running the algorithm using all the testing queries for dif-

ferent numbers of voters. It is clear from the results that ev-

ery component of the system contributes in the overall per-

formance. It’s also worth noticing that PageRank weight-

ing actually causes a drop in the performance when ap-

plied without Blob Extraction. The reason for this is that

the weighting process selects the most consistent regions

among the voters, and in this case background will still ex-

ist in the boxes and will also be consistent; therefore back-

ground regions will be falsely given high weights. The fig-

ures also show that both Precision and Mean Average Pre-

cision generally improve with the increased number of vot-

ers up until a certain limit. This is because adding more
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prior information about the target increases the probability

of capturing it in different poses. Table 1 illustrates example

results obtained by running WRM over several image sets.

Since the problem we are dealing with is considered

quite novel, there are no directly similar methods to com-

pare our results with. For instance, techniques in [2, 18, 17]

are based on face detection, however, faces are not visible

from aerial views, and therefore such methods do not fit in

this environment.

In view of the fact that solving recognition (matching)

over consecutive frames can be used in tracking, we applied

the proposed recognition system on a video and compared

the results to the state of the art tracking proposed in [13],

which applies a cross correlation matching supported by a

social behavior-based model of the human’s motion. WRM

delivered a very close performance as shown in figure 12.

The tracking is generally more persistent in high frame rate

videos since it obeys the assumption that the object posi-

tion in the next frame should be close to its position in the

current frame, while the recognition does not enforce any

motion assumptions. However, recognition becomes more

effective in the case of long occlusions where the motion

assumptions do not hold. In addition, tracking suffers from

Figure 12. Tracking via recognition for two example humans. The

two targets in the black boxes were reidentified by WRM at lo-

cations shown in red and yellow dots respectively. Voters were

selected at three random frames. Social behavior-based tracking

assigns different labels to the same object when it appears again

after occlusion, this is shown by the the solid lines with different

colors (blue, magenta,cyan) which all correspond to the track of

the human on the top left. WRM recognition is free of motion

assumptions and therefore maintains consistent labelling and can

efficiently match over any set of even separated and unordered im-

ages; therefore, it can be used as a robust correspondence measure

to join the cluttered tracks.

occasional assignment of new labels to humans who came

back to the field of view after being occluded, while WRM

deals with such ambiguities quite efficiently. we further de-

creased the video frame rate in steps and observed the track-

ing becoming completely useless when frames are highly

separated, while our recognition system still worked well.

It is important to notice that the proposed system is not a

tracking method and should not be compared to tracking

systems; however, it could be used as a robust correspon-

dence measure within a tracking framework.

It is rather essential to mention that in the highly crowded

scenarios where inter-person occlusions occur frequently,

performance of WRM declines. In this case, the detected

human bounding boxes contain several merged blobs, and

accordingly blob extraction and alignment steps become

weak. Nevertheless, WRM is able to find informative re-

gions of the target and assign them high weights by apply-

ing the PageRank. Therefore, it still matches reasonably.

6. Conclusions

We have presented a framework for detecting, segment-

ing, aligning, and recognition of humans viewed from aerial

cameras with low resolution and tough conditions. The

identity of a target was recovered by detecting and corre-

sponding salient regions of the target’s blob. Our recog-

nition system is domain independent since it does not force

any motion model or pose restrictions. Experiments showed

high accuracy and robustness with mean average precision



Voters Query Image Candidates Matching Result

0.36

0.67

0.31

0.41 0.19

0.23

0.31

0.20

0.12

0.11 0.19

0.28

0.18

0.5

0.15

0.34 0.20

0.17

0.39

0.22

0.35

0.13 0.17

0.10

0.16

0.27

0.7

0.42 0.22

0.59

Table 1. Example Experimental Results. Candidates’ column shows a sample from the candidates in the query image. Every candidate is

associated with a probability PT shown on its upper right. The matched candidate is circled.

of 89.6%. In future work, we will be investigating the use

of additional heterogenous features.
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