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REVIEW

Human immunodeficiency virus-1 vaccine design:
where do we go now?

Danushka K Wijesundara, Ronald J Jackson, Ian A Ramshaw and Charani Ranasinghe

Numerous human immunodeficiency virus (HIV)-1 vaccines have been developed over the last three decades, but to date an

effective HIV-1 vaccine that can be used for prophylactic or therapeutic purposes in humans has not been identified.

The failures and limited successes of HIV-1 vaccines have highlighted the gaps in our knowledge with regard to fundamental

immunity against HIV-1 and have provided insights for vaccine strategies that may be implemented for designing more effective

HIV-1 vaccines in the future. Recent studies have shown that robust mucosal immunity, high avidity and polyfunctional T cells,

and broadly neutralizing antibodies are important factors governing the induction of protective immunity against HIV-1.

Furthermore, optimization of vaccine delivery methods for DNA or live viral vector-based vaccines, elucidating the immune

responses of individuals who remain resistant to HIV-1 infections and also understanding the core immune responses mediating

protection against simian immunodeficiency viruses (SIV) and HIV-1 in animal models following vaccination, are key aspects to

be regarded for designing more effective HIV-1 vaccines in the future.
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OVERVIEW

Since the identification of human immunodeficiency virus-1 (HIV-1)

as the causative agent of the acquired immunodeficiency syndrome

(AIDS) in 1983,1 numerous different vaccines against this virus have

been developed, albeit with much failure in human clinical trials. Yet,

the development of an HIV-1 vaccine that may prevent acquisition or

reduce transmission of this virus is deemed to be of extreme

importance to minimize the expansion of this epidemic, which

currently accounts for over 33 million infected individuals and over

25 million deaths worldwide. In this article, we discuss what we believe

needs to be done for the future of HIV-1 vaccine development with

respect to the lessons we have learnt from vaccine strategies that have

failed and succeeded in animal models as well as in human clinical

trials.

ADAPTIVE IMMUNITY AGAINST HIV-1

The success of most vaccines depends on the induction of adaptive

immune responses, which in the context of HIV-1 infections and

numerous other viral infections are crucial for either preventing or

limiting infections. The successful prevention of HIV-1 infections of

target cells (for example, cluster of differentiation (CD)4+ T cells,

dendritic cells, macrophages, and so on) is mainly reliant on the

availability of HIV-1-neutralizing antibodies (Figure 1). Neutralizing

antibodies bind to the viral surface envelope (env) protein, which is

critical for mediating viral entry into target cells. This binding usually

prevents HIV-1 from infecting target cells. Although HIV-1-neutraliz-

ing antibodies are known to occur following natural infection with

this virus, these antibodies are largely ineffective owing to the capacity

of HIV-1 to mutate rapidly and conceal antibody epitopes by means of

extensive glycosylation and conformational masking of the env pro-

tein.2–6 Given that simian immunodeficiency virus (SIV) can also be

transmitted as a cell-associated form,7 HIV-1 may also be transmitted

in a similar manner in which case-neutralizing antibodies may be

ineffective. Nonetheless, numerous research groups have identified

monoclonal antibodies that bind to conserved regions of HIV-1 env

protein, which have the potential to neutralize a broad spectrum of

HIV-1 quasi-species.8–14 The discovery of these broadly neutralizing

antibodies have generated much enthusiasm and hope for the develop

ment of an HIV-1 vaccine that may successfully provide sterilizing

immunity against this virus (see below).

If antibodies fail to prevent HIV-1 infection, then effector CD8+ T

cells, also known as cytotoxic T lymphocytes (CTLs), play a crucial

role in limiting further infections. CTLs recognize viral peptide-

human leukocyte antigen class I complexes presented on the surface

of virus-infected cells, which triggers the cytolytic machinery of CTLs

and apoptosis of virus-infected cells (Figure 1). Lysis of infected cells

results in the release of immature virions, which are rapidly degraded

in the extracellular milieu.15 CTLs in HIV-1 infections as well as in SIV

infections appear to play a crucial role in limiting replication of these

viruses.16–18 Individuals who remain resistant to HIV-1 infections, also
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referred to as elite controllers of HIV-1, despite being exposed

to this virus exhibit enhanced HIV-specific CTL activity compared

with more susceptible individuals.19–22 It is believed that CTL

activity may be sufficient to reduce HIV-1 viral set point to an extent

(o1000 viral RNA copies per ml blood) that HIV-1 is no longer

transmissible between individuals.23–24 The effectiveness of CTLs in

suppressing HIV-1 replication is primarily owing to the ability of

CTLs to recognize HIV-1 epitopes (for example, HIV-1 gag protein)

that are conserved within an HIV-1 subtype and across various

different HIV-1 subtypes.23 However, unlike antibodies CTLs do not

have the potential to prevent HIV-1 infection of cells. Studies

conducted in non-human primates suggest that viral escape of

CTL recognition is also a concern with regard to CTL-mediated

immunity against HIV-1 given that it has already been shown

that SIV can mutate its immunodominant epitopes to escape CTL

recognition.25–26

CD4+ T cells are primary targets of HIV-1 infection and HIV-1-

specific CD4+ T cells appear to be particularly susceptible for

HIV-1 infection.27 Despite this, CD4+ T-cell activation may yet be

more favourable than detrimental to the HIV-1-infected host.28 This is

especially true given that CD4+ T cells appear to provide essential help

(for example, interleukin (IL)-21 secretion, sustaining CTL cytotoxi-

city and CTL mucosal homing) to CTLs responding against HIV-1.29–30

The requirement of CD4+ T cells for combating HIV-1 is still a

controversial issue given that the presence of CD4+ T cells at sites of

HIV-1 infections may fuel virus replication, but CD4+ T-cell help is

known to be required for optimizing B-cell and CTL effector functions

following infection with numerous pathogens including HIV-1.

DESIGNING AN EFFECTIVE NEUTRALIZING ANTIBODY-BASED

VACCINE AGAINST HIV-1

Neutralizing antibodies against HIV-1 bind to the env glycoproteins of

the virus to prevent viral entry into cells as well as prevent the release

of viral progeny from infected cells (Figure 1). Historically in experi-

mental animal models, the presence of virus-neutralizing antibodies

has been shown to correlate with protection against HIV and simian-

human immunodeficiency virus (SHIV) infections in chimpanzees

and macaques, respectively, which had prompted vaccinologists to

design vaccines that have the potential to induce neutralizing anti-

bodies against HIV-1 in humans.31 For this purpose, numerous DNA

vaccine vectors encoding recombinant env glycoprotein120 (gp120)

have been tested in human clinical trials, but these vaccines were

shown to have poor or modest efficacy in preventing HIV-1 infec-

tions.32–34 This may primarily be attributed to the inability of these

vaccines or vaccine strategies to induce high titres of neutralizing

antibodies that can recognize the conserved CD4 binding region of the

env gp120. Most antibodies in the course of a natural HIV-1 infection

fail to mediate optimal virus neutralization owing to extensive

glycosylation of neutralizing epitopes, resulting in epitope masking

and owing to antigenic diversity of the env glycoproteins, resulting

from the high error rate of the virus reverse transcriptase.2 The

presence of 12 different clades of HIV-1 with approximately 30%

clade diversity (based on the amino-acid sequence) between the env

proteins of the different clades has also made it difficult to develop a

universal preventative HIV-1 vaccine.2

To circumvent these problems, numerous groups have attempted to

characterize neutralizing antibodies with the ability to recognize env

Successful neutralization
Antibody secretion

Unsuccessful neutralization

B cell HIV-1

Infection prevented

Essential help

Target cell

CD4+ T cell

HLA-I

Neutralization of assembled virion

CytolysisHIV-1 peptide

TCR

CD8+ T cell
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Infection proceeds

Figure 1 Key operations of adaptive immunity against HIV-1. CD4+ T cells, CD8+ T cells and B cells have all been known to play an important role in either

preventing or limiting HIV-1 infection. B cells secrete antibodies with the potential to neutralize this virus. Successful neutralization requires antibodies to

bind to the protruding viral envelope glycoproteins that are crucial for mediating viral entry into target cells. Failure to do so allows HIV-1 to infect target

cells. Further infections with HIV-1 can be prevented or limited either via antibodies that can effectively neutralize newly assembled virions or via effector

CD8+ T cells that can mediate cytolysis of infected cells following T-cell receptor (TCR)-mediated recognition of HIV-1 peptide-human leukocyte antigen class

I complexes. Effector CD4+ T cells provide help for efficient mobilization of B-cell and CD8+ T-cell-mediated immune responses against HIV-1.
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epitopes conserved between HIV-1 subtypes and have broad neutra-

lization capacity against the different circulating strains of HIV-1.

Antibodies with the ability to cross-neutralize different subtypes of

HIV-1 have been described.8,10,13,14,35–39 Among these antibodies,

VRC01 is reported to exhibit the most potent cross-neutralization

capacity thus far with the ability to neutralize 90% of the currently

circulating strains of HIV-1.8 The salient features of VRC01 that makes

it an attractive candidate for its implementation in a preventative HIV

vaccine are: it has the ability to access and bind the conserved CD4

binding region of the env gp120; the nascent precursor of VRC01 is

thought to be present at a reasonable frequency in humans and is not

subject to clonal deletion unlike other broadly neutralizing antibodies

(for example, 2G12, 2F5 and 4E10); and it is also able to tolerate

multiple changes to its genomic sequence without significantly affect-

ing its env gp120 neutralization capacity.8

Although the discovery of VRC01 is a landmark finding in HIV-1

research, immunogens that can efficiently elicit the production of this

antibody and other broadly neutralizing antibodies have to be

identified in a vaccine context. Given that many broadly neutralizing

antibodies against HIV-1 undergo extensive affinity maturation and

develop only after B20–30 months post-infection,40 it will be a

difficult task to accomplish. Researchers must therefore strive to

characterize other broadly neutralizing antibodies and immunogens

that may elicit the production of such antibodies. This could be useful

for two reasons. First, there may yet be broadly neutralizing antibodies

that are easier to elicit than VRC01 in a vaccine context and/or have

a better cross-neutralization capacity than VRC01. Second, incorpora-

tion of multiple immunogens that may induce the production of

multiple broadly neutralizing antibodies following vaccination against

HIV-1 may not only enhance the protective capacity, but also the

breadth of neutralization across different HIV-1 subtypes. The use of

the recently described high-throughput methods (that is, flow cyto-

metry and single-cell polymerase chain reactions) have been thought

to allow for the characterization of novel broadly neutralizing anti-

bodies against HIV-1 within the next few years.2 Despite the enormity

of these challenges and given the failures of using recombinant env

gp120 encoding vaccine vectors, development of vaccines that elicit

broadly neutralizing antibodies appear to be the way forward in

developing an effective preventative HIV-1 vaccine.

THE IMPORTANCE OF T-CELL AVIDITY (QUALITY)

IN PROTECTION AGAINST HIV-1

Given the difficulties associated with vaccine-based induction of

protective neutralizing antibody responses against HIV-1, many

researchers have focused their attention in T-cell-based vaccines

against HIV-1. As mentioned previously, T-cell immunity plays an

integral role in controlling HIV-1 replication and in the ability of elite

controllers to regularly resist infection with this virus. A correlate of

T-cell mediated protection against HIV-1 has not yet been defined, but

it appears that ‘magnitude’ or the number of interferon (IFN)-g-

producing HIV-specific T cells is clearly not an effective measure of

protective immunity.41 Studies conducted in animal models as well as

in patients infected with HIV-1 suggest that T-cell quality is an

important parameter in defining correlates of T-cell-mediated protec-

tion against HIV-1.40,42–44 In the recent years, avidity, rates of clonal

turnover and the ability of T cells to secrete multiple (polyfunctional)

anti-viral cytokines (for example, IFN-g, IL-2 and tumour necrosis

factor (TNF)) have been identified as important factors in defining the

quality of a T-cell response against HIV-1.45

T-cell avidity is defined as the ability of T cells to respond to a given

peptide-major histocompatibility complex. High-avidity CD8+ T cells

can better control viral replication and require lower amounts of

cognate peptide-major histocompatibility complex for triggering

effector functions than low-avidity CD8+ T cells in response to viral

infections in vivo.46–47 High-avidity HIV-specific CD8+ T cells are

polyfunctional in nature and have high clonal turnover rates.42 The

presence of high-avidity HIV-specific CD8+ T cells have been shown

to correlate with enhanced ability of HIV-1-infected patients

to control HIV-1 replication.42 The importance of high-avidity

HIV-specific CD8+ T cells is also highlighted by the fact that the

loss of high-avidity HIV-specific CD8+ T cells is a clinical feature

of HIV-1 disease progression to chronic phase infections in HIV-1-

infected individuals.44 Furthermore, the presence of high-avidity

SIV-specific CD8+ T cells have also been shown to enhance the

capacity of non-human primates to more efficiently control SIV

replication and delay the establishment of peak viraemia.43

Given the importance of T-cell avidity for controlling HIV-1

replication and disease progression, there is a great need to understand

the determinants that may influence T-cell avidity in order to develop

HIV-1 vaccines that may induce the production of optimal numbers

of high-avidity HIV-specific T cells. So far, immunization route,

cytokine milieu, immunodominance and antigen density have been

identified as key determinants that may influence avidity of CD8+

T cells.41,43,48–50 As will be discussed later, route of delivery of vaccines

may significantly contribute to T-cell avidity with vaccines delivered

into the mucosa (for example, intrarectal and intranasal immunisa-

tion) having better efficacy in enhancing the development of high-

avidity antigen-specific CD8+ T cells than delivery of vaccines into

systemic compartments.41,43 The development of high-avidity anti-

gen-specific CD8+ T cells is also dependent on the presentation of

immunodominant peptides by dendritic cells during T-cell priming.49

CD8+ T cells that respond to immunodominant epitopes are char-

acteristically of high avidity.49 Although this would suggest that

incorporation of HIV-1-immunodominant epitopes in vaccines is a

strategy for generating optimal numbers of high-avidity HIV-specific

T cells, the caveat in this instance is that HIV-1 escape variants may

evolve that can potentially abrogate the efficacy of the vaccine-induced

T-cell immunity. Therefore, it is important to characterize immuno-

dominant epitopes that when mutated detrimentally affect viral

fitness; as such epitopes will be most useful for vaccination purposes

given that these epitopes can be used to target a broader range of HIV-

1 isolates. The density or quantity of antigen presented during T-cell

priming can significantly impact CD8+ T-cell avidity. For instance,

presentation of lower antigen densities during T-cell priming facilitate

the development of high-avidity antigen-specific memory CD8+

T cells, which suggests that there is an inverse correlation between

CD8+ T-cell avidity and antigen density during T-cell priming.50

Ideally, a vaccine will express low levels of the T-cell immunogen of

interest, but the expression of this immunogen will also need to be

sufficient to facilitate the development of substantial number of

antigen-specific T cells.

The ability of T cells to secrete/produce certain cytokines also

appears to have an influence on CD8+ T-cell avidity. T cells have

the potential to secrete multiple type-1, type-2 or both type-1 and

type-2 cytokines during differentiation.51 Hence, it has been difficult

to identify certain subsets of T cells that may be protective against

HIV-1 with respect to cytokine production. We have found that HIV-

specific CD8+ T cells that produce type-2 cytokines such as IL-4 and

IL-13 are of low avidity and lower production of these cytokines

correlates with enhancement of CD8+ T-cell avidity.48 Others have

found that CD8+ T cells that produce type-1 cytokines such as IL-2

are of higher avidity.52–53 It also appears that high-avidity T cells have
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the capacity to secrete multiple type-1 cytokines. We have found that

high-avidity HIV-specific CD8+ T cells secrete both TNF-a and IFN-g

(Ranasinghe et al., manuscript in preparation). Using multi-parameter

flow cytometry, Almeida et al.42 have shown that high-avidity

HIV-specific CD8+ T cells in HIV-1-infected patients produce

IFN-g, TNF-a, CD107a and macrophage inflammatory protein-1b.

This was also found to correlate with efficient control of HIV-1

replication in these patients. Similar findings have been observed

with respect to SIV infections in non-human primates. Hansen et al.54

have shown that vaccine vectors that elicit SIV-specific CD4+ and

CD8+ T cells that produce TNF-a and IFN-g among other factors

(for example, CD107) contribute to resistance against SIV infections

in rhesus macaques. Collectively, it appears that T cells’ capacity to

secrete at least IFN-g and TNF-a is likely to define high-avidity T cells

and a correlate of T-cell-mediated protection against HIV-1, but

this has not yet been thoroughly confirmed with respect to HIV-1

infections.

RECOMBINANT DNA OR LIVE VIRUS VECTOR-BASED VACCINE

STRATEGIES AGAINST HIV-1

The pitfalls

DNA vaccines emerged in the early 1990s and were first tested in

humans for vaccination against HIV-1.55 DNA vaccines became

popular, as they possessed numerous advantages over other vaccines.

The main advantages of DNA vaccines were that they were cheap and

easy to produce and allowed for a prolonged immune response to

develop against encoded antigens in vaccinated hosts. However,

vaccination based solely on the use of DNA vaccines have failed to

induce robust immune responses against HIV-1 in humans, which has

mainly been attributed to the low dose of vaccine used for vaccination

(that is, need repeated immunizations with over 5–10mg of recombi-

nant DNA per immunization to induce robust immunity in vacci-

nated host) or insufficient uptake of DNA vectors by cells in

vaccinated hosts.56

The range of live viral vectors such as avian poxvirus (for example,

fowlpox virus and canarypox virus), mammalian poxvirus vectors (for

example, modified vaccinia Ankara) and adenovirus virus vectors (for

example, adenovirus serotype 5 (Ad5)) have been used for vaccination

against HIV-1 in humans (see www.iavi.org). The incorporation of

HIV antigens to live viral vectors allows for high-level expression of

HIVantigens in vivo owing to the ability of these viruses to replicate in

infected cells. Live virus vectors can efficiently potentiate immune

responses against encoded antigens owing to their ability to infect

immature dendritic cells and stimulate innate immune responses.57

Despite these attractive features, the use of a recombinant live viral

vector as a stand-alone vaccine against HIV-1 in humans have been

met with failure and sometimes puzzling outcomes, which was high-

lighted in the recently concluded Step vaccine trial.

The Step vaccine trial tested the ability of a recombinant Ad5 vector

encoding HIV-1 gag, pol and nef proteins to mediate protection

against HIV-1.58 This trial was mainly prompted from the success of

using a recombinant Ad5 vector encoding SIV gag to induce protective

SIV-specific CD8+ T-cell responses against SHIV in rhesus maca-

ques.59 In the Step trial, individuals receiving the recombinant Ad5

vaccine were found to be more susceptible to HIV infection than

individuals receiving the placebo vaccine. The presence of pre-existing

immunity (antibodies) against Ad5 appeared to have enhanced the

susceptibility of vaccinated individuals to HIV-1, but immunologically

irrelevant factors such as being uncircumcized were also found to

enhance the susceptibility of vaccinated individuals to HIV-1 in these

trials. Hence, the Step trial raised more questions than answers with

regard to the safety and efficacy of using live viral vectors (for example,

Ad5) for vaccination against HIV-1.

Heterologous prime–boost vaccine strategies against HIV-1

Heterologous prime–boost vaccine strategies against HIV-1 have also

been implemented to counter the shortcomings of using either a DNA

vector or a live viral vector as a stand-alone vaccine against HIV-1.

Since its inception in 1997,60 heterologous prime–boost vaccination

has been implemented successfully in numerous studies with animal

models to induce robust immune responses against HIV and SIV

antigens with protective effects in some instances.43,48,61–62 During

heterologous prime–boost immunization, antigens of interest are

encoded in a recombinant DNA or live viral vector to be used for

priming the immune system and then boosting is carried out using a

second recombinant vector encoding the same antigen to amplify the

number of antigen-specific lymphocytes.56 The caveat in using live

viral vectors in this instance is not to use genetically related viral

vectors for the prime and the boost in order to minimize the

development of anti-vector immunity.56

Heterologous prime–boost vaccination against HIV-1 was used in

the recently concluded human HIV-1 clinical trial in Thailand, which

was the only vaccination strategy reported thus far to provide some

protective effect (vaccine efficacy of 31.2%) against HIV-1 in

humans.34 Trial participants in this instance were given priming

injections with ALVAC-HIV (recombinant canarypox vector vaccine)

and booster injections with AIDSVAX B/E (recombinant gp120

subunit vaccine).34 Prime–boost strategy was used in this trial

owing to the failure of these vaccine vectors when used alone for

vaccination against HIV-1 to confer protective effects in previous

HIV-1 human clinical trials.31–32 The observed protective effect or

vaccine efficacy in this trial was significantly higher in individuals

deemed to be of low/medium risk compared with individuals being in

high risk of exposure to HIV-1.34 Hence, the overall vaccine efficacy in

this instance appears to be more reflective of the low/medium-risk

groups. The vaccines used in this trial induced extremely low CD8+

T-cell responses among the vaccinated individuals,34 which may have

contributed to the inability of the vaccinated individuals, who were

infected with HIV-1 following vaccination, to efficiently control HIV-1

viraemia.

The fact that a protective effect was observed in this trial showed

promise that optimization of prime–boost vaccine strategy can be

more effective than using recombinant HIV-1 vaccine vectors alone in

a none prime–boost manner for vaccination against HIV-1 in humans.

We have identified certain key elements in mouse models with respect

to the use of live virus vectors (fowlpox and vaccinia viruses) for

heterologous prime–boost vaccination against HIV-1, which when

optimized could be used to generate optimal high-quality (that is,

avidity) CD8+ T-cell responses against HIV-1.

The dose and order of the vaccine vectors used for priming and

boosting plays a significant role in the number of responding antigen-

specific CD8+ T cells that develop against HIV-1. For instance,

priming with recombinant fowlpox virus encoding HIV antigens

and boosting with recombinant vaccinia virus encoding the same

HIV antigens yielded more HIV-specific IFN-g-secreting CD8+ T cells

than priming with recombinant vaccinia virus encoding HIV antigens

and boosting with recombinant fowlpox virus encoding HIV anti-

gens.63 The route of vaccine delivery used for heterologous prime–

boost vaccination against HIV-1 significantly influences the quality

(that is, avidity) and the magnitude of the response that develops

against HIV-1.41 We have found that mucosal (intranasal) delivery as

opposed to systemic (intramuscular) delivery of vaccine vectors
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against HIV-1 significantly enhances the number of high-avidity HIV-

specific CD8+ T cells that develop.41 Belyakov et al.43 also have

reported that mucosal (intrarectal vaccine delivery) prime–boost

vaccination against SHIV in rhesus macaques enhances the avidity

of SHIV-specific CD8+ T cells. However, we have also found that the

magnitude of the HIV-specific CD8+ T cells that develop following

purely mucosal immunization against HIV-1 is far less than the

magnitude of HIV-specific CD8+ T cells that develop following purely

systemic immunization against HIV-1.41 This effect was related to the

cytokine milieu induced following prime–boost vaccination against

HIV-1.48 Systemic immunization against HIV-1 appeared to enhance

the in vivo IL-4 and IL-13 production by CD8+ T cells compared with

mucosal immunization against HIV-1.48 IL-4 and/or IL-13 were also

found to function directly in reducing avidity of HIV-specific CD8+ T

cells.48 Finally, co-expression of molecular adjuvants together with

vaccine antigens such as chemokine (c–c– motif) ligand 5 (CCL5),

CD40 ligand, IL-15, IL-12, IFN-a/b and toll-like receptor ligands

(for example, CpG motifs) can also be used to enhance the number

and survival of lymphocytes responding against a given pathogen

including HIV-1.25,45,64–67 However, we have found that many of these

molecular adjuvants are unable to enhance the avidity of CD8+ T cells

(C Ranasinghe and IA Ramshaw, unpublished observations).

Summary of the lessons learnt from using recombinant DNA

or live virus vector-based vaccine strategies against HIV-1

Overall, the failures of DNA or live virus vector-based vaccine

approaches tested against HIV-1 in human clinical trials have high-

lighted certain key issues that need to be overcome for developing

better recombinant DNA or live virus vector-based vaccine approaches

against HIV-1. The repeated failures of using stand-alone DNA or live

virus vector-based vaccine approaches against HIV-1 would suggest

that more focus needs to be given to optimizing prime–boost vaccine

strategies against HIV-1, especially given the recent success of using a

prime–boost vaccination strategy against HIV-1 in Thailand. However,

it will be of great benefit for researchers to identify the factors that

have contributed to the failures of using stand-alone DNA or live virus

vector vaccines against HIV-1. For instance, the factors that contri-

buted to the failure of the Step trial is currently not known and will

need to be evaluated for developing safer and more effective live viral

vector vaccines against HIV-1 in the future. More studies need to be

conducted to evaluate the safety and efficacy of using viral vectors for

priming and boosting against HIV-1, rather than focusing too heavily

on the conventional DNA vector prime/live viral vector boost strate-

gies. We have found that the use of heterologous viral vectors

encoding HIV antigens in a prime–boost manner can be used to

generate robust and high-avidity HIV-specific CD8+ T-cell responses

in mouse models.41,48 Numerous DNA or live virus vector-based

vaccine approaches against HIV-1 in human clinical trials have been

successful in inducing neutralizing antibody and HIV-specific CD8+

T-cell responses against HIV-1, but these responses have been ineffi-

cient in preventing HIV infections or controlling HIV-1 viraemia in

vaccine recipients. This highlights our lack of knowledge with regard

to the correlates of protection against HIV-1 and also the inability of

the immunological assays (for example, antibody neutralization

assays, IFN-g enzyme-linked immunospot assays, and so on) used

to assess HIV-1 vaccine efficacy to reliably predict the protective

capacity of the vaccines already tested in humans. Hence, alternative

immunological assays (for example, CTL assays) need to be developed

and used in future human clinical trials. The use of SIV and

SHIV challenge systems in non-human primates also require further

validation given that they have not been able to correctly predict the

protective capacity of HIV-1 vaccines tested in humans (for example,

the Step trial). Lastly, as discussed above, we believe that researchers

should devote more efforts into optimization of prime–boost vaccina-

tion regimens against HIV-1 before conducting further HIV-1 clinical

trials in humans.

IMPORTANCE OF MUCOSAL IMMUNITY AND MUCOSAL

DELIVERY OF VACCINES AGAINST HIV-1

All HIV-1 prophylactic vaccines that have been tested in human

clinical trials have been delivered using the systemic route (for

example, intramuscular), but they have been associated with poor

outcomes. In most instances, host immune responses initially encoun-

ter HIV-1 at mucosal surfaces given that most incidences of HIV-1

transmission occur during sexual exposure of the genitorectal mucosa.

HIV-1 replication and CD4+ T-cell depletion resulting from HIV-1

infection of CD4+ T cells appear to be most prolific in the gut

mucosa.68 This results in the disruption of the gut mucosa causing

the release of microbial products from the gastrointestinal tract that

induces chronic activation of immune responses.69 Therefore, the

presence of mucosal immune responses against HIV-1 before infection

is believed to be crucial for enhancing the ability of an individual to

limit systemic dissemination of this virus and chronic phase disease

progression.

Following transmission, most (B80%) primary HIV-1 infections

appear to occur by a single virus, also referred to as the founder

virus.70 The establishment of a pool of virus quasi-species is believed

to occur much later following founder virus infections.40 Hence, the

chances of controlling HIV-1 infections may be greatly enhanced if an

HIV-1 vaccine successfully induces robust and high-quality (that is,

avidity) immune responses against this virus at mucosal surfaces early

on following initial exposure. Others and we have found that mucosal

delivery (for example, intranasal, intrarectal and intradermal) of

vaccine vectors can significantly enhance the avidity of CD8+ T cells

and protective efficacy against HIV-1 as well as against SIV and

SHIV.43–44,48,62,71 Although not yet clearly shown, vaccines that can

induce the production of HIV-1-neutralizing antibodies at mucosal

surfaces may potently prevent HIV-1 infections, especially given that

there is a greater chance that these antibodies mediate effective

neutralization of the founder virus, rather than the various virus

quasi-species that arise later on in infection.

In some studies, systemic delivery of HIV-1 vaccines have been

known to induce HIV-specific immune responses at the mucosa and

mediate protection in animal models,72–73 but our findings in mouse

models suggest that systemic delivery of HIV-1 vaccines can compro-

mise the quality or avidity of the HIV-specific immune responses

depending on the cytokine milieu induced following vaccination.48

Our studies have shown that combined mucosal prime/systemic boost

delivery of HIV-1 vaccines has the potential of inducing robust and

high-quality (that is, avidity) mucosal immunity at local as well as

distal mucosa.41 Mucosal delivery of HIV-1 vaccines may also better

mimic natural route of HIV-1 infection than systemic delivery of

HIV-1 vaccines given that HIV-1 transmission naturally occurs via the

mucosa. Mucosal delivery of vaccines that mimic the natural route of

infection have been reported to induce protective immune responses

against viruses such as influenza virus infections.74–75 Collectively,

these studies show that mucosal vaccines exhibit strong potential in

inducing protective immune responses, but mucosal delivery (that is,

oral or nasal) of HIV-1 vaccines have not yet been evaluated for safety

and efficacy in human clinical trials. Furthermore, the effectiveness of

mucosal immune responses cannot be evaluated using immune

measurements in the blood or systemic compartments, and hence
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there is an urgent need to develop novel biomarkers that may

effectively measure mucosal immune responses in humans following

HIV-1 vaccination.

LIVE ATTENUATED SIV VACCINES AND THERAPEUTIC

VACCINES AGAINST HIV-1

The use of live attenuated SIV vaccines has been extremely successful

in protecting non-human primates against homologous SIV chal-

lenge.76 Live attenuated SIV strains have been created through deletion

of SIV genes (that is, deletion of nef ), deletion of certain regions of

SIV genes (that is, variable (V)1–V2 region of env) and through the

treatment of anti-retroviral drugs immediately following administra-

tion of wild-type SIV.76–79 The mechanisms by which live attenuated

SIV vaccines mediate protection is not known, but a recent study has

shown that intrarectal immunization of macaques with nef gene

deleted SIV (mac239 strain) induces robust anti-viral mucosal immu-

nity.80 This study using ex vivo viral replication assays showed that

mucosal (lung) CD8+ T cells rather than systemic (peripheral blood

mononuclear cells) CD8+ T cells were significantly more efficient in

suppressing SIV replication. This further highlights the importance of

generating mucosal immune responses from vaccines against HIV-1.

Although application of live attenuated HIV-1 vaccines in humans

may not be practical owing to the obvious risks involved, more studies

examining the mechanisms as to why live attenuated SIV vaccines are

protective will shed light into developing more effective HIV-1

vaccines.

Although currently the use of anti-retroviral drugs remains the

most successful treatment for reducing HIV-1 virus levels and

prolonging survival of HIV-1-infected individuals, the use of thera-

peutic vaccines to augment the beneficial effects of anti-retroviral

therapy have received considerable attention. Given that over 33

million people are infected with HIV-1 globally, the development of

effective therapeutic vaccines that may achieve this purpose is extre-

mely beneficial. In a recent report, Schooley et al.81 have shown that

HIV-1-infected individuals undergoing anti-retroviral therapy after

vaccination with a recombinant replication-deficient Ad5 vector-

expressing gag had a modest reduction in HIV-1 viral levels compared

with individuals undergoing anti-retroviral therapy following placebo

vaccination. The vaccine recipients in this instance were also shown to

have augmented anti-gag T-cell responses compared with placebo

recipients. The use of recombinant fowlpox virus co-expressing HIV

gag/pol and IFN-g for vaccination of HIV-1-infected individuals in

Australia have yielded similar results with vaccine recipients having a

log reduction in HIV-1 virus levels compared with placebo recipients

over the course of the study.82 However, this study was based on a

small sample size (n¼25) and the results of this study will require

further validation from a larger population of HIV-1-infected indivi-

duals. These studies highlight promising outcomes for application of

therapeutic vaccines for suppressing HIV-1 disease progression in

HIV-1-infected individuals.

CONCLUDING REMARKS

The search for the elusive HIV-1 vaccine has been met with much

disappointment for nearly three decades, but the recent success of the

human HIV-1 clinical trials in Thailand offers optimism that a

protective HIV-1 vaccine is not in the realms of impossibility. The

pitfalls and failures of HIV-1 vaccines tested in human clinical trials

have also taught researchers some valuable lessons with regard to the

gaps in the knowledge of protective immunity against HIV-1 and also

vaccine approaches that may be more effective in future human

clinical trials. In Table 1, we have summarized some key research

areas that were discussed throughout this article and that need further

investigation for designing more efficacious vaccines against HIV-1.

We believe that developing a thorough understanding of the factors

highlighted in Table 1 will facilitate the design of more effective HIV-1

vaccines in the future.
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