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Early prediction of cardiotoxicity is critical for drug development. Current animal models

raise ethical and translational questions, and have limited accuracy in clinical risk

prediction. Human-based computer models constitute a fast, cheap and potentially

effective alternative to experimental assays, also facilitating translation to human. Key

challenges include consideration of inter-cellular variability in drug responses and

integration of computational and experimental methods in safety pharmacology. Our

aim is to evaluate the ability of in silico drug trials in populations of human action

potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion

channel information, and to compare simulation results against experimental assays

commonly used for drug testing. A control population of 1,213 human ventricular AP

models in agreement with experimental recordings was constructed. In silico drug

trials were performed for 62 reference compounds at multiple concentrations, using

pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers

were quantified, together with occurrence of repolarization/depolarization abnormalities.

Simulation results were used to predict clinical risk based on reports of Torsade

de Pointes arrhythmias, and further evaluated in a subset of compounds through

comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient

recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs).

Drug-induced changes in silico vary in magnitude depending on the specific ionic

profile of each model in the population, thus allowing to identify cell sub-populations

at higher risk of developing abnormal AP phenotypes. Models with low repolarization

reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-

pump) are highly vulnerable to drug-induced repolarization abnormalities, while those

with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high

susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict

clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers

are in overall agreement across different assays: in silico AP duration changes reflect

the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated
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upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate

that human in silico drug trials constitute a powerful methodology for prediction of clinical

pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment

pipelines.

Keywords: in silico drug trials, drug safety, drug cardiotoxicity, Torsade de Pointes, computer models, human

ventricular action potential

INTRODUCTION

Cardiotoxicity is one of the main causes of withdrawal during
drug development, and identifying at early stages drugs that may
cause adverse effects in specific human sub-populations is still a
major challenge (Stevens and Baker, 2009; Laverty et al., 2011).
Adverse effects can potentially lead to lethal arrhythmias, and are
therefore a major cause of concern.

Before clinical testing, drugs undergo a thorough pipeline
of preclinical testing, including identification of drug effects on
cardiac ion channels (and particularly hERG), as well as in a
variety of animal experiments (Leishman et al., 2012; Vargas
et al., 2015). Animal models are good for predicting QT interval
prolongation (Vargas et al., 2015), and some of them, including
rabbit wedge preparations, rabbit isolated hearts and the in vivo
atrioventricular block dog, have shown sensitive predictions of
drug-induced Torsade de Pointes (TdP) (Valentin et al., 2004; Liu
et al., 2006; Sugiyama, 2008). However, most of these studies only
consider a small set of drugs. In fact, independent assessment
against a larger number of compound (in the order of magnitude
of those tested in silico in this contribution) highlight a prediction
accuracy of 75% (Lawrence et al., 2008).

More recently, in silico and in vitro tests are considered
as potentially important human-based tools for safety
pharmacology evaluation, through the use of computational
multiscale human modeling and human stem cell-derived
cardiomyocytes (Bass et al., 2015; Rodriguez et al., 2016).
Their profile has also been raised by the Comprehensive
in vitro Proarrhythmia Assay (CiPA) initiative promoted by the
pharmaceutical industries, the United States Food and Drug
Administration (FDA), the Health and Environmental Sciences
Institute and the Cardiac Safety Research Consortium (Sager
et al., 2014; Colatsky et al., 2016).

The widespread translation of in silico modeling from
academia to industrial and regulatory settings requires increasing

Abbreviations: AP, Action potential; APDXX, Action potential duration at

XX% of repolarization; CiPA, Comprehensive in vitro Proarrhythmia Assay;

CT, Ca2+-transient; CTBR, Ca2+-transient beat rate; CTDXX, Ca
2+-transient

duration at XX% of the initial base value; DA, Depolarization abnormalities;

dV/dtMAX, Maximum upstroke velocity; EADs, Early after-depolarizations;

EFTPCmax, Maximal effective therapeutic free concentration; GX, IX conductance;

h, Hill coefficient; hiPS-CMs, Human induced pluripotent stem cell-derived

cardiomyocytes; IC50, Concentration for 50% channel inhibition; ICaL, L-type

Ca2+ current; IK1, Inward rectifier K+ current; IKr, Rapid delayed rectifier K+

current; IKs, Slow delayed rectifier K+ current; INa, Fast Na
+ current; INaK, Na

+-

K+ pump current; INaL, Late Na
+ current; INCX, Na

+-Ca2+ exchanger current; Ito,

Transient outward K+ current; ORd, O’Hara-Rudy dynamic human ventricular

model; RA, Repolarization abnormalities; RMP, Resting membrane potential; TdP,

Torsade de Pointes; Tri90−40, AP triangulation; Vm, Membrane potential; Vpeak,

Peak voltage.

the credibility of the models, understanding of their predictive
power through comparison with existing experimental methods,
and facilitating their uptake through the provision of software
that can reduce the technical barriers of in silico methods for
non-specialist users.

The aim of this study is to evaluate the ability of in silico
drug trials using human ventricular model populations to predict
the risk of drug-induced adverse cardiac events, based on ion
channel information, and to identify ionic profiles underlying
a higher risk of repolarization abnormalities. In silico drug
trials were run for a large set of reference compounds with
cardiac effects, and simulation results were analyzed to extract
several biomarkers of drug pro-arrhythmic cardiotoxicity and
compared against clinical reports of TdP arrhythmias. Because
in silico drug trials are likely to be embedded in existing safety
pharmacology pipelines and thus combined with experimental
methodologies, it is important to evaluate their consistency with
experimental recordings. Therefore, the outputs of the in silico
drug trials for a sub-set of 15 reference compounds with varied
modes of action were compared against the well-established
electrocardiogram (ECG) recordings from isolated rabbit wedge
preparations Lu et al. (2016) as well as the more recently
considered technique of Ca2+-transient (CT) recordings from
human induced pluripotent stem cell-derived cardiomyocytes
(hiPS-CMs) (Lu et al., 2015; Zeng et al., 2016), even if with still
controversial advantages (Abi-Gerges et al., 2017).

MATERIALS AND METHODS

Control Population of Human Ventricular
Action Potential (AP) Models
All the in silico drug trials presented in this study were performed
in a population of 1,213 human ventricular control models, built
using the O’Hara-Rudy dynamic (ORd) model (O’Hara et al.,
2011) as baseline and the methodology described by Britton
et al. (2013) and further discussed by Muszkiewicz et al. (2016).
The ORd human ventricular AP model was chosen for this
study because of: (i) the large number of human ventricular
experimental data obtained from more than 140 hearts used
in its construction and evaluation; (ii) its ability to reproduce
and probe pro-arrhythmic mechanisms, including repolarization
abnormalities and APD alternans, as shown in multiple studies
and reviewed by Britton et al. (2017); (iii) its choice within the
CiPA initiative (Sager et al., 2014; Colatsky et al., 2016).

Ionic conductances were sampled in the [0–200]% range of
the baseline model values, to include both healthy and potentially
abnormal ionic current profiles (with low/high ion channel
densities corresponding to loss/gain-of-function of specific ionic
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channels due to e.g., genetic mutations), but still with a healthy-
looking AP. These are important as they have been implicated
in increased pro-arrhythmic risk (Sanguinetti and Tristani-
Firouzi, 2006; Itoh et al., 2016; Wang et al., 2016). Nine ionic
conductances were considered: fast and late Na+ current (GNa

andGNaL respectively), transient outward K
+ current (Gto), rapid

and slow delayed rectifier K+ current (GKr and GKs), inward
rectified K+ current (GK1), Na

+-Ca2+ exchanger (GNCX), Na
+-

K+ pump (GNaK), and the L-type Ca2+ current (GCaL).
Only the APmodels exhibiting a phenotype in agreement with

human experimental data from undiseased hearts (Britton et al.,
2017) were selected for the control population, which consists
of 1,213 models. A more detailed description of the control
population used in this study is included in the Supplementary
Material, together with the experimental AP biomarker ranges
used for the calibration process (Table S1) and the scaling factors
of the ionic conductances for the 1,213 models (Table S2).

In silico Drug Assay Design
A total of 62 reference compounds were considered in this study.
The list includes antiarrhythmic drugs in Classes I, III, and IV, as
well as other drugs used for different purposes but with known
effects on cardiac ion channels. Most of these drugs have a
multichannel action, which makes prediction and interpretation
of cardiotoxicity challenging. Drugs were selected to include all
the ones in Kramer et al. (2013), as well as 15 compounds widely
used as reference compounds, which were characterized in more
depth both in simulations and experiments and are listed in
Table 1.

Each drug was assigned to a TdP risk category, based on the
classification by CredibleMeds R© (Woosley and Romer, 1999),
available on www.crediblemeds.org (as of July 2017): 1 (high
risk), the drug prolongs the QT interval and is clearly associated
with a known TdP risk, even when taken as recommended; 2
(possible risk), the drug prolongs the QT interval, but there is
a lack of evidence of TdP risk when taken as recommended;
3 (conditional risk), the drug is associated with TdP but only
under certain circumstances, e.g., excessive dose or interaction
with other drugs; NC (not classified), the drug was reviewed by
CredibleMeds R© but the evidence available was not enough to
assign it to any of the previous categories, and therefore no action
was taken. Of the 62 compounds, 24 are classified as high risk and
13 as potential/conditional risk, for a total of 37 drugs associated
with TdP risk. Verapamil (classified as NC) and the remaining
24 compounds (not listed) are considered as TdP category 0 (no
TdP risk) for the purpose of this study.

Drug effects were simulated using a simple pore-block model
consistent with data available for drug/ion channel interactions,
consisting of IC50 and Hill coefficient (h) for each drug/ion
channel. Up to 7 ion channels were considered for this study:
fast Na+ current (INa), rapid/slow delayed rectified K+ current
(IKr/IKs), transient outward K+ current (Ito), L-type Ca2+

current (ICaL), inward rectifier K+ current (IK1), and late Na+

current (INaL). The experimental IC50 and h used for the drug
assays were collected mainly from three different sources: (i) our
internal database, measured with either manual or automated
patch-clamp techniques (when the IC50 concentration was not

TABLE 1 | List of the 15 compounds considered for in silico drug assays

comparison against in vitro hiPS-CMs and ex vivo rabbit wedge preparations,

including a short description and the clinical TdP Risk category based on

CredibleMeds® (Woosley and Romer, 1999).

Compound Description TdP risk

category

1 BaCl2 Barium Salt 0

2 Bepridil Antiarrhythmic Class IV 1

3 Dofetilide Antiarrhythmic Class III 1

4 Flecainide Antiarrhythmic Class Ic 1

5 Lidocaine Antiarrhythmic Class Ib Local Anaesthetic 0

6 Mexiletine Antiarrhythmic Class Ib 0

7 Moxifloxacin Antibiotic 1

8 Nimodipine Used for Hypertension 0

9 Nisoldipine Used for Hypertension 0

10 Phenytoin Antiarrhythmic Class Ib Antiepileptic 0

11 Primidone Anticonvulsant 0

12 Procainamide Antiarrhythmic Class Ia 1

13 Ranolazine Antianginal 3

14 Sparfloxacin Antibiotic 1

15 Verapamil Antiarrhythmic Class IV 0

Risk categories from CredibleMeds® (Woosley and Romer, 1999): 1, high TdP risk; 3,

conditional TdP risk; 0, no TdP risk (drugs not included in the CredibleMeds® database).

reached in the experiments, an estimate was computed from
the percentage of block at the maximum tested concentration,
with h equal to 1); (ii) (Kramer et al., 2013), data acquired with
automated patch-clamp; (iii) (Crumb et al., 2016), data acquired
with manual patch-clamp.

For the compounds that were included in more than one
of these datasets, multiple inhibitory profiles were considered
to investigate the impact of variability in drug characterization.
Each IC50 and h set was simulated separately, resulting in 87
different drug trials: each trial is referred to with the name of
the compound together with a roman numeral, to differentiate
multiple entries (e.g., Bepridil I, Bepridil II, Bepridil III).

Multiple concentrations were investigated for each
compound, chosen to match those used in the experimental
drug assays, as well as to explore different multiples of the
maximal effective free therapeutic concentration (EFTPCmax),
up to 100-fold. The EFTPCmax values were taken from literature,
mainly from Kramer et al. (2013) or Crumb et al. (2016). When
multiple values were found for the same compound, the higher
one was considered for simulations.

The full list of compounds, together with the IC50, Hill
coefficient and the EFTPCmax used for in silico drug trials is
provided in Table S3.

Simulations and Simulated Data Analysis
All the simulations presented in this study were conducted using

Virtual Assay (v.1.3.640 © 2014 Oxford University Innovation
Ltd. Oxford, UK), a user-friendly C++ based software package
with a graphical user interface for in silico drug assays, to
facilitate its use by non-experts in computational modeling,
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and available upon request. Virtual Assay uses the ordinary
differential equation solver CVODE, part of the open-source
Sundials suite (Hindmarsh et al., 2005; Serban and Hindmarsh,
2005), implementing time adaptive Backward Differentiation
Formulas with relative and absolute tolerance equal to 1e-5 and
1e-7, respectively. Our results could therefore be replicated using
other software products, as Matlab (Mathworks Inc. Natwick,
MA, USA) or Chaste (Pitt-Francis et al., 2008). As an example, a
comparison of simulations obtained with Virtual Assay and with
theMatlab solver ode15s (Shampine and Reichelt, 1997) is shown
in the Supplemental Material, Figure S2. Simulation results were
analyzed both in Virtual Assay and in Matlab.

Following drug application, all models were stimulated at
1 Hz for 150 beats, and the last AP trace in each simulation
was analyzed. AP biomarkers were extracted, including: AP
duration at 40, 50, and 90% of repolarization (APD40, APD50,

APD90); APD90 dispersion, defined as the difference between
the maximum and minimum value of APD90 in the population
(1APD90), AP triangulation, defined as the difference between
APD90 and APD40 (Tri90−40); maximum upstroke velocity
(dV/dtMAX); peak voltage (Vpeak); resting membrane potential
(RMP), computed as in Britton et al. (2017). Drug-induced
changes in those biomarkers are presented as percentage change
in median with drug, compared to control (no drug).

All AP traces were automatically checked for repolarization
and depolarization abnormalities (RA and DA, respectively).
RA were defined as the presence of a positive derivative of
the membrane potential (Vm) 150 ms after the AP peak
(representative of early after-depolarizations, EADs), or when the
membrane potential did not reach the resting condition following
an AP upstroke (Vm > −40 mV) by the end of the beat. DA
were defined as AP traces in which the upstroke phase was
compromised, i.e., when the max upstroke Vm was lower than
0 mV, or when the time needed to reach 0 mV was longer than
100 ms.

Drugs were classified as risky when RA occurred in the
population of models at different concentrations, based on: true
positives (drug with reports of TdP risk classified as risky);
true negatives (drug with no reports of TdP risk classified
as safe), false positives (drug with no reports of TdP risk,
classified as risky); false negatives (drugs with reports of TdP
risk, classified as safe). The performances of the classification
were evaluated based on: sensitivity, defined as the number
of true positives divided by the sum of true positives and
false negatives; specificity, defined the number of true negatives
divided by the sum of the true negatives and false positives;
accuracy, defined as the sum of true positives and true negatives
divided by the total number of drugs. Classification results
based on RA were compared against the ones obtained for APD
prolongation at 10x EFTPCmax. APD90 prolongation threshold
to define risk was fixed to 6%, considering the correspondence
between QTc and APD90, and the current guidelines suggesting
QTc prolongation >20 ms (which correspond to 5.7% for a
normal QT of 350 ms) as a definite risk factor for TdP (Salvi
et al., 2010). Results for the population of models were also
compared against the same results obtained with the single ORd
model.

A scoring system was developed by integrating RA occurrence
at multiple concentrations. The fraction of models developing
RA was multiplied by a factor inversely related to the drug
concentration at which those RA occur (e.g., 1/100 for RA
occurring at 100x EFTPCmax). Contributions from all the
different concentrations were added together, and the total score
was normalized, according to the following formula (where nRAi

is the number of models showing RA at the tested concentration
i, wi = EFTPCmax / i is the weight inversely related to the tested
concentration i, and nmod is the total number of models in the
population).

TdP score =

∑
i(wi*nRAi)

nmod*
∑

i(wi)
(1)

The TdP score thus obtained varies between 0 and 1, where 0
corresponds to a drug with no RA, and 1 to a drug which develops
100% of RA at every concentration. By using the proposed
score, RA are considered more severe when occurring at low
concentrations and/or affecting a high fraction of the population
of models.

Experimental Drug Assays
In silico results were compared with properties computed
from ECGs in rabbit wedge preparations and CT recordings
from hiPS-CMs. Experimental data were acquired for the 15
compounds listed in Table 1 at multiple concentrations, as
described below.

Recordings of ECGs from left ventricular rabbit wedge
preparations have been previously described and partly published
in Lu et al. (2016). The biomarkers extracted include QRS
complex and QT interval duration, defined as the time from
the onset of the QRS complex to the point at which the final
downslope of the T wave crossed the isoelectric line.

CT recordings from hiPS-CMs (Cor 4U) were acquired as
part of this study on pre-plated preparations from Axiogenesis
(Cologne, Germany). Full method details are included in the
Supplementary Material. Quantified biomarkers included CT
beat rate (CTBR) and duration at 90% of the initial base value
(CTD90), known to be correlated with APD (Gauthier et al., 2012;
Spencer et al., 2014), similarly to other studies (Lu et al., 2015;
Zeng et al., 2016).

All experimental results are presented as median percentage
changes with respect to the baseline. Drug-induced changes
in experimental values need to be compared against the effect
measured without drugs, i.e., with vehicle, defining cut-off values.
In the rabbit wedge, the changes measured with the vehicle were
always quite small: <5% for QT and <3% for QRS. On the
other hand, in CT assays using hiPS-CMs, the lower and upper
limit were 19% and 24% of the baseline, with 95% confidence
interval (n = 222 vehicle controls). Therefore, only CTD90

prolongations >25% were considered relevant for this assay. In
silico, no biomarker changes are observed when the drug effect
is not included, since the models are paced until steady state:
therefore, the cut-off value is equal to 0%. Statistical analysis was
performed with the Wilcoxon-Mann-Whitney Test by using R
Project for Statistical Computing, and p < 0.05 was considered
as significant. Very small p-values (e.g., p < 1e-6) were obtained
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in all simulation results due to the high number of models
considered, and therefore we focus on the magnitude of the
differences observed (White et al., 2014).

RESULTS

In silico Drug Assays: Drug-Induced
Changes in Action Potential (AP)
Biomarkers
In silico drug trials for a total of 62 reference compounds
were performed in the control population of 1,213 human
ventricular AP control models, based on the ORd model (O’Hara
et al., 2011) and constructed as described in Methods. Before
drug application, all the models exhibit a healthy-looking AP
phenotype, in agreement with human experimental recordings
from un-diseased hearts (Figure S1A). When including drug
effect for concentration up to 100-fold the EFTPCmax, eachmodel
responds in a different way, depending on its underlying ionic
properties. We first evaluated drug-induced changes in the AP
biomarkers.

Figure 1 shows APD90 and dV/dtMAX distributions from the
in silico population for 5 compounds (Dofetilide I, Flecainide
I, Nimodipine, Ranolazine I, and Verapamil II) at multiple
concentrations. Extended results for additional compounds,
including all AP biomarkers, are shown in Figures S3–S31.

Most drugs (all except Nimodipine and Nisoldipine) result in
APD prolongation at 40, 50, and 90% of repolarization, as well as
increased AP triangulation (Tri90−40), mainly as a result of hERG
channel block (e.g., Figure 1, left column and A–C in Figures
S3–S31). For 30x EFTPCmax dose, Flecainide III, Bepridil I, and
Dofetilide III showed the largest APD90 prolongations (+180%,
+175%, and+157%, respectively).

APD prolongation caused by BaCl2 (mainly due to IK1 block)
is stronger in APD90 compared to APD40 and APD50 (Figures
S3A–C). As a secondary effect of IK1 block, BaCl2 leads to
a decrease in RMP (Figure S3H), which also exhibits larger
variability, while for all the other compounds it remains almost
constant (H in Figures S3–S31).

Consistent with their expected mode of action, class I
anti-arrhythmic drugs (Procainamide, Lidocaine, Mexiletine,
Phenytoin, Flecainide) as well as other drugs affecting Na+

channels as secondary effect (e.g., Bepridil) show a strong
decrease of upstroke velocity (e.g., Figures 1D,H), together with
a decrease of Vpeak (F, G in Figures S3–S31).

Verapamil II represents an interesting example of the
combined block of IKr and ICaL (Figure 1I). For low
concentrations (0.01–0.1 µM) the Ca2+ block is predominant,
and APD90 is slightly decreased (−1 and −4% respectively),
whereas IKr block compensates its effects for higher
concentrations (>0.5µM), resulting in a clear APD prolongation
(e.g., +38% for 1 µM). Verapamil II also leads to slower AP
upstroke for high concentrations (Figure 1J).

Results obtained using the baseline ORd model (Figure 1
and Figures S3–S31, black diamonds) are in overall agreement
with the range of AP biomarkers in the population of human
models. This is with the exception of cases in which the baseline

ORd yields abnormal APs for high doses of certain drugs (e.g.,
Dofetilide I 0.1 and 0.2 µM, Figures 1A,B). In those cases, the
human population of models still allows exploration of the full
concentration range for each compound.

In silico Characterization of Drug-Induced
Phenotypic Variability
Drug action resulted in an increase in the phenotypic variability
yielded by the human ventricular population, as illustrated
in Figure 2 for Moxifloxacin III (Figure 2A) and Dofetilide
I (Figure 2B), mainly blocking IKr, and for Flecainide I
(Figure 2C), inhibiting both IKr and INa. Following drug
application, some models in the in silico population display
normal but prolonged APs (gray traces) while a fraction develop
repolarization abnormalities (RA, pink traces). Due to its strong
effect on INa, Flecainide I (Figure 2C) also cause an overall
reduction of dV/dtMAX, visible in the upstroke phase of the AP,
and depolarization abnormalities (DA, green traces) in specific
models.

Quantitative analysis of the underlying ionic mechanisms
reveals consistency on the mechanisms underlying RA and DA
across different drugs and concentrations. Models displaying RA
are characterized by low GKr, and GNaK, and high GCaL and
GNCX, i.e., a reduced repolarization reserve (Figures 2D–F, pink
vs. gray boxplots). Low GKs also plays a role when a larger
fraction of the population displays RA (Figures 2D,E). Models
displaying DA are characterized mainly by low GNa/GCaL/GNaL,
i.e. the net inward current in the initial phase of the AP is reduced
(Figure 2F, green vs. gray boxplots).

Repolarization Abnormalities Occurrence
Predicts TdP Risk
We hypothesized that occurrence of RA following drug
application in the human population would be predictive of
in vivo TdP, given the potential mechanistic link between
them (El-sherif et al., 1990; Dutta et al., 2016). In silico drug
trial predictions were evaluated against clinical reports of TdP
using the TdP risk categories provided by CredibleMeds R©

(Woosley and Romer, 1999) and further described in Methods.
When multiple inhibitory profiles were simulated for the same
compound, the worse scenario was considered, i.e., the higher
occurrence of RA, and the larger APD90 prolongation.

Figure 3 shows the classification results for the 49 compounds
with either high or no TdP risk (Figure 3A), and for the full
set of 62 compounds (Figure 3B) based on RA occurrence
up to 100x EFTPCmax and APD90 prolongation >6% at 10x
EFTPCmax for both the population of models (top row), and
the single ORd model (bottom row). Accuracy reached 96% for
the classification of high vs. no TdP risk compounds using the
RA-based classification with the in silico population of models,
compared to 80% based on APD prolongation (Figure 3A).
Using the single ORd model, the higher accuracy was 76% and
was obtained using APD prolongation as biomarker.

When including also compounds with possible/conditional
risk (Figure 3B), accuracy with the RA-based classification for
the in silico population was 89%, compared to 81% based on APD
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FIGURE 1 | Explanatory examples of in silico drug trial results in a population of human computational models, showing drug-induced changes on APD90 and

dV/dtMAX (left and right column, respectively) for 5 compounds (Dofetilide I, Flecainide I, Nimodipine, Ranolazine I and Verapamil II). Results are presented as boxplots

of AP biomarkers for the population of human ventricular models at increasing concentrations (A–J). Results for the single ORd model are shown as black diamonds.

On each box, the central mark is the median of the population, box limits are the 25 and 75th percentiles, and whiskers extend to the most extreme data points not

considered outliers, plotted individually as separate crosses. Extended results for the selected 15 reference compounds, including all the AP biomarkers, are available

in the Supplementary Material, Figures S3–S31.
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FIGURE 2 | Explanatory examples of variability in drug response in the in silico population of human AP models, with the underlying ionic mechanisms. Representative

AP traces of different drug-induced AP phenotypes are shown on the left side for Moxifloxacin III (A), Dofetilide I (B), and Flecainide I (C) at selected concentrations.

Models with a normal AP are shown in gray, while models displaying RA and DA are shown in pink and green, respectively. In each panel, the baseline ORd model is

highlighted in black. The distribution of ionic conductances for the different AP phenotypes is shown on the right side (D–F), by using boxplots of the corresponding

scaling factors, and with the same color code. For each conductance, the values shown (between 0 and 2) represent the scaling factors of the models in the

population compared to the baseline ORd model, which had all the scaling factors equal to 1. Boxplots description as in Figure 1.
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FIGURE 3 | In silico prediction of in vivo TdP risk for the 49 compounds belonging to TdP risk category 0 and 1 (A) and for all the 62 tested compounds (B). In each

panel, predictions based on the occurrence of RA in any of the model at 1x, 10x, 30x, and 100x EFTPCmax (1st column) are compared against predictions based on

APD90 prolongation >6% at 10x EFTPCmax (2nd column). Results obtained using the population of models (top half) are compared against the ones for the baseline

ORd model (bottom half). High sensitivity/specificity/accuracy (>80%) are highlighted in bold.

prolongation (48 and 77% based on RA and APD prolongation,
respectively, for the single ORd model).

In summary, all drugs with high TdP risk (category 1) were
correctly identified as risky with the RA-based classification in the
in silico population, and only 5 drugs with possible/conditional
TdP risk (category 2 and 3) resulted as false negatives: Clozapine,
Dasatinib, Paroxetine, Saquinavir, Voriconazole. It is worth
noting that drugs with possible/conditional TdP risk lack
evidence of pro-arrhythmic risk when taken as recommended:
TdP reports are usually related to excessive dose or interaction
with other drugs.

Overall, classification based on APD prolongation exhibited

high sensitivity, but low specificity. Indeed, many compounds

prolong APD without being associated with TdP risk, e.g.,

Verapamil, thus resulting in false positives. On the contrary, false

positives are rare in the RA-based classification (Lidocaine and

Mexiletine), and they only develop RA at the maximum tested

concentration (100x EFTPCmax). Indeed, both Lidocaine and

Mexiletine are Class Ib anti-arrhythmic drugs, which have been

associated with cardiotoxicity in case of overdose (Denaro and
Benowitz, 1989).

RA-based classification is dependent on the maximum
tested concentration: a higher concentration is more likely
to provoke RA in the in silico population, thus increasing

sensitivity but possibly decreasing specificity, since even safe
drugs might lead to RA at very high doses. We reported
here the classification results obtained for concentrations up
to 100x EFTPCmax, and a comparison between results for 30x
and 100x EFTPCmax is included in the Supplementary Material
(Figure S32).

A New Scoring System to Evaluate In vivo

Risk of Drug-Induced TdP
Figure 4 shows all the tested compounds classified using the TdP
score computed from the in silico drug trials using the fraction of
models displaying RA at each tested concentration, as described
in Methods. The TdP score varies from 0 to 1, and is higher when
RA occur at low concentrations and/or affecting a high fraction
of the population of models.

The distribution of compounds in the safe zone (TdP equal
to 0, left side) and risky zone (TdP > 0, right side) reflects
the classification results summarized in the confusion matrix
with the higher (89%) accuracy (Figure 3). All safe compounds
(no reported TdP risk, green dots) have a TdP score equal
to 0, except Lidocaine and Mexiletine. All compounds with
known risk of TdP (TdP risk category 1, red dots) have a
positive score, and tend to be distributed toward the right end
of the plot. Most of the compounds with possible or conditional
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FIGURE 4 | TdP score for all the 62 compounds, based on the occurrence of RA in the population of human AP models at 1x, 10x, 30x, and 100x EFTPCmax. The

TdP score, which varies between 0 and 1, was computed by taking into account both the fraction of models displaying RA and the concentrations at which RA occur,

as described in Methods. The logarithmic scale was considered to maximize the visual separation between safe and risky drugs, and log10(0) was approximated with

the machine precision (10−16). All compounds with no report of TdP risk (in green) have 0 as TdP score (left side), except for Lidocaine and Mexiletine. All high risk

compounds (in red) have a high TdP score (right side). Most of the compounds with possible or conditional TdP risk (in orange and yellow, respectively) have a TdP

score >0, except for Paroxetine, Voriconazole, Clozapine, Dasatinib, and Saquinavir.

TdP risk (TdP risk category 2 or 3, orange and yellow dots,
respectively) have a positive score, except Clozapine, Dasatinib,
Paroxetine, Saquinavir, Voriconazole. The TdP score is also
dependent on the maximum considered concentrations. Again,
higher concentrations lead to an increase in sensitivity while
decreasing specificity. A comparison between the TdP scores
computed up to 30x and 100x EFTPCmax is included in the
Supplementary Material (Figure S33).

In silico Drug Assays are in Agreement
with Rabbit Wedge and hiPs-CM
Experimental Recordings
In silico drug trials are likely to be used as an additional tool
for drug safety assessment in combination with experimental
methods. It is therefore important to evaluate the consistency
between in silico results and experimental data. Thus, simulation
results for the 15 reference compounds with varied actions on ion
channels (Table 1) were compared against recordings obtained
using rabbit wedge and hiPS-CM preparations, as two techniques
considered in safety pharmacology. In Figure 5, changes in QT
interval duration in rabbit wedge, CTD90 in hiPS-CMs and in
silico APD90 (from red to green, left side) were compared to
evaluate drug-induced changes in repolarization. Changes in
QRS complex duration in rabbit wedge and in silico dV/dtMAX

were quantified to evaluate drug effects on depolarization
(Figure 5, from purple to blue, right side). Negative variations in

dV/dtMAX are considered as positive changes in depolarization
time (opposite sign), to facilitate the comparison.

Drug-induced effects on biomarkers are in overall agreement
for all three methodologies. Figure 5 presents consistent
increase/decrease of QT, CTD90 and APD90, as well as
consistency between positive changes in QRS and reduction of
dV/dtMAX. Variations are generally larger in the in silico APD90

than in QT interval in rabbit wedge, indicating higher sensitivity
of the in silico assay, and the wider range of ionic scenarios
evaluated in the virtual population than in the limited number
of experiments.

For Verapamil at 0.1 µM, small changes were observed in
both QT interval in rabbit wedge and simulated APD, whereas
CTD90 in hiPS-CMs was reduced. Such a reduction in CTD90

in the hiPS-CMs is also accompanied by a significant increase in
beating rate (CTBR+61%), which does not occur in silico and in
the rabbit wedge experiments as these are paced externally.

For Lidocaine and Mexiletine, their main effect is fast INa
block, which results in a decreased dV/dtMAX in the in silico
models, and a wider QRS complex in the rabbit wedge ECG.
Furthermore, both in vitro CTD90 and in silico APD90 are
prolonged, whereas QT interval decreases slightly (Lidocaine)
or remains unchanged (Mexiletine) in rabbit wedge, suggesting
that in vitro CT and in silico AP are more prone to display
prolongation for non-selective Class I anti-arrhythmic drugs. It
is worth noticing that the AP prolongation in silico is reduced
when inhibition of the INaL current is taken into account in
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FIGURE 5 | Continued
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FIGURE 5 | Continued

Qualitative and quantitative comparison of in silico drug trial results in the population of human ventricular AP models against ECG from rabbit wedge preparations and

Ca2+ transient recordings from hiPS-CMs, for 15 reference compounds. On the left side (from red to green) are shown the drug-induced changes in the biomarkers

related to the repolarization phase: QT interval in rabbit wedge, CTD90 in hiPS-CMs and APD90 in silico. On the right side (from purple to blue) are shown the

drug-induced changes in the biomarkers related to the depolarization phase: QRS interval from rabbit wedge and dV/dtMAX in silico. For each assay, colors are scaled

to span from the 15th to the 85th percentiles of the % changes observed in the biomarkers when considering drug effects, compared to no drug, and with respect to

the cut-off values (3 and 5% for rabbit wedge QRS and QT, 25% for hiPS-CMs CTD90, and 0% for in silico APD90 and dV/dtMAX ). To facilitate comparison, negative

variations in dV/dtMAX were considered as positive changes in the depolarization time, and vice versa. When multiple combinations of IC50 and h were tested in

simulation for the same compound, the corresponding in silico result sections consist of multiple sub-columns. Statistically significant changes in experiments have

been highlighted in bold.

the simulations, corresponding to Lidocaine II and Mexiletine
II (APD90 +84% vs. +68%, Mexiletine I vs. Mexiletine II, 100
µM). The tendency for prolongation under Na+ block of in silico
AP and hiPS-CMs CT is confirmed also for another class I anti-
arrhythmic drug (Phenytoin), which causes negligible changes in
both CTD90 and in silico APD90, and a decrease in QT interval in
rabbit wedge.

Bepridil constitutes a good example of multichannel block,
intended to block ICaL, but also affecting IKr and INa. In the
rabbit wedge, the QT interval is relatively prolonged at low
concentrations (0.3–1 µM), compared to more selective Ca2+

blockers (e.g., Nimodipine and Nisoldipine), and it goes back to
normal (+4%) at 10 µM. Both hiPS-CMs CT and in silico AP are
prolonged in a dose-dependent manner, confirming once again
the higher sensitive to IKr block of these techniques.

Interestingly, BaCl2 effects are of smaller magnitude in hiPS-
CMs compared to rabbit wedge preparation and in silicomodels:
relevant CTD90 prolongation was detected only at 100 µM
(+47%), while up to 10µM (more than 2-fold BaCl2 IC50 for IK1)
the drug-induced effects on CT were negligible. This may be due
to differences in IK1 expression between the cell types considered
(Liang et al., 2013; Kim et al., 2015).

In silico results for compounds with multiple sets of IC50 and
h are in overall agreement with each other, even if the magnitude
of drug-induced changes may vary. As an example, the decrease
in dV/dtMAX for the three variations of Flecainide is almost the
same at 10 µM (−64, −61, and −68%, respectively), while for
lower concentrations the differences between the three inhibition
profiles are more noticeable (e.g., −25, −7, and 0% at 1 µM,
respectively).

DISCUSSION

In silico human electrophysiology drug trials using a population
of human AP models were conducted for 62 compounds with
varied electrophysiological profiles to evaluate their ability to
predict clinical pro-arrhythmic risk and their consistency with
electrophysiological recordings currently considered in safety
assessment.

The main findings of this simulation study are:

1. RA occurrence in populations of human models proves to be
more predictive of clinical TdP risk than APD prolongation
and standard biomarkers obtained with the single ORdmodel.
Accuracy of 96% and specificity of 92% was obtained in the

classification of high risk vs. safe drugs, compared to 80
and 64%, based on APD prolongation. 100% sensitivity was
achieved considering RA in the population compared to 17%
with the single ORd model.

2. Human virtual cardiomyocytes exhibiting RA in in silico
drug trials displayed low repolarization reserve, caused by
low IKr/IKs/INaK and high ICaL/INCX, which is consistent
with the prevalence of cardiotoxicity in patients with disease
conditions such as myocardial ischaemia and heart failure.
Low depolarization reserve caused by weak INa/INaL/ICaL was
associated with DA under INa block.

3. A TdP risk score was developed to translate the high
accuracy of RA abnormalities for risky drug classification
into a non-binary system considering both data for multiple
concentrations and the frequency of RA. This metric is higher
when RA occur in a large fraction of the population of models,
and at lower concentrations, thus informing on the likelihood
of drug-induced adverse cardiac events in the population.

4. Drug-induced APD changes in silico are consistent with the
ones measured in QT interval from rabbit wedge ECGs
and CTD recorded from hiPS-CMs. Drugs affecting the
depolarization phase provoke a decrease of dV/dtMAX in silico
and a widening of QRS interval rabbit wedge ECGs. To show a
qualitative and quantitative agreement between in silico drug
trial results and two experimental models commonly used
in safety pharmacology, is fundamental to build confidence
in the integration of computer models for cardiotoxicity
assessment.

Our results support the potential of RA in the in silico human
population as a good predictor of clinical TdP risk, with
sensitivity, specificity and accuracy higher or comparable to the
ones obtained through animal studies (Valentin et al., 2009).
RA-based classification for all 62 compounds reached 89% of
accuracy, compared to 75% obtained for 64 compounds in rabbit
isolated Langendorff heart model (Lawrence et al., 2006; Valentin
et al., 2009). The in vivo atrioventricular block dog model showed
sensitive predictions of drug-induced TdP, but in a limited set
of 13 compounds (Sugiyama, 2008). Animal studies accuracy is
higher when predicting QT prolongation rather that in vivo TdP
risk: 85 and 79% for 19 compounds based on QT prolongation
in in vivo dog studies and hERG assays, respectively (Valentin
et al., 2009; Wallis, 2010); 90% accuracy for 40 compounds based
on non-rodent QT prolongation (Vargas et al., 2015). However,
“it is generally known that the sensitivity and the specificity of
the QT interval prolongation as a surrogate marker of TdP is
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rather poor: only in 46% of the cases the TQT study results were
concordant with the TdP risk classification, and 89% of drugs
prolonging QT interval in thorough QT studies were approved
by the FDA” (Wiśniowska et al., in press). This is confirmed in our
study by the fact that RA-based predictions in the population of
human models have higher accuracy compared to the ones based
on APD prolongation, due to a higher specificity (92 vs. 64% for
62 compounds).

Our methodology also offers mechanistic insights into sub-
populations at higher risk, which is a key advantage with
respect to previous in silico and in vitro studies (Kramer et al.,
2013; Lancaster and Sobie, 2016). We identify human in silico
cardiomyocytes with high propensity to develop RA as those
with low INaK/IKs/IKr and high INCX/ICaL. The ionic profile is
consistent with ionic remodeling in cardiac specific diseases
such as heart failure (Carmeliet, 1999; Coppini et al., 2013;
Coronel et al., 2013), suggesting disease modeling as crucial when
investigating cardiotoxicity in response to drug action (Walmsley
et al., 2013; Gomez et al., 2014; Elshrif et al., 2015; Dutta et al.,
2016; Passini et al., 2016).

The range of concentrations considered for drug trials plays an
important role in risk prediction. Expanding the concentration
up to 100x EFTPCmax allows to account for possible overdose, but
most importantly for inter-subject variability in protein binding
and metabolism, which can lead to important different in blood
concentrations in patients taking the same drug dose, or even
hormones which might change the effect of the drug on ion
channels (Shuba et al., 2001). As an example, Amiodarone is a
very controversial drug, considered safe by most clinicians but
at the same time known to be associated with TdP risk (Jurado
Román et al., 2012), and indeed belonging to TdP risk category
1. Amiodarone is almost completely bound to plasma proteins:
reported values in literature range from 95.6% (Lalloz et al.,
1984; Latini et al., 1984) to 99.98% (Veronese et al., 1988). In
addition, absorption following oral administration is erratic and
unpredictable (Latini et al., 1984). This can lead to EFTPCmax

variation of more than 100-fold, with a big impact on drug-
induced ion channels block.

An additional consideration about in silico trials concerns
variability of recorded IC50 values. We show one possible way
to consider this variability, by evaluating its implications in the
in silico human population. In most cases, results obtained with
different IC50 values were in overall agreement, thus building
confidence in the answer provided. Should these results disagree,
leading to contrasting scenarios, new ion channel recordings and
experiments might be required for further drug characterization
and refined in silico predictions. This may incorporate for
example more detailed models of ion channel structure, based on
the most recent crystallographic studies on human ion channels
(Sun andMacKinnon, 2017;Wang andMacKinnon, 2017). Other
in silico tools are also available at the ion channel level, to evaluate
potential drug effects on the hERG channel, using ligand-based
(Durdagi et al., 2011; Braga et al., 2015; Chemi et al., 2017)
or receptor-based (Brindisi et al., 2014; Dempsey et al., 2014)
approaches.

Indeed, in silico results are strictly dependent on the quality
and consistency of the data used as inputs, which include ion

channel assays costing time and money. In silico trials are a cheap
complement to experimental methods following ion channel
screening, which for some channels is already routine (hERG).

When fully integrated in the early stages of drug development,
in silico methods provide predictions to partly replace animal
experiments, thus reducing the corresponding costs. Therefore,
in silico drug trials are likely to play soon a major role in drug
development, identifying drug cardiotoxicity in the pre-clinical
phase, thus improving the quality of new candidate drugs and
reducing drug failure at later stages.

Our results are obtained using experimentally-calibrated
population of human models for in silico drug trials. The wide
range of conductances considered includes extreme up- or down-
regulation of ion channels, which can be linked to specific
mutations or diseased conditions known to be pro-arrhythmic
(Sanguinetti and Tristani-Firouzi, 2006; Itoh et al., 2016; Wang
et al., 2016). Previous studies have also considered aspects of
population variability for gender and age, mostly by changing
cell volume and area (rather than ionic conductances) using
a commercial software (Polak et al., 2012). The same software
was also recently used to investigate potential drug-induced
arrhythmias for 12 drugs (Abbasi et al., 2017). In that study,
variability was taken into account by using different AP models
(Ten Tusscher, 2003; Ten Tusscher and Panfilov, 2006; O’Hara
et al., 2011) and different cell types (endo-, epi-, and mid-
myocardium). However, their results were presented only for a
single model (mid-) since it was the one most prone to develop
drug-induced APD prolongation and EADs.

Our results also demonstrate consistency between human-
based in silico simulations and recordings obtained from
experimental models traditionally used in safety pharmacology,
including rabbit wedge ECGs (Lu et al., 2016) and hiPS-CMs CT
recordings. Previous in silico studies have focused on predictions
of QT prolongation in human (Mirams et al., 2014; Lancaster
and Sobie, 2016) and animal models (Bottino et al., 2006;
Davies et al., 2012; Beattie et al., 2013). Evaluating the in
silico results against experimental data is important as in silico
tools are likely to be used in combination with experimental
recordings for validation and identification of potential unknown
effects. Importantly, our results also identifies discrepancies
between in silico results and experimental and clinical data, when
considering compounds with strongmultichannel action, leading
to large AP prolongation in silico and only a moderate increase
of rabbit wedge QT. The potential causes of such discrepancies
include: (i) differences in the balance of inward/outward currents
in human adult cardiomyocytes as represented in silico with
respect to rabbit wedge preparations, which may lead to higher
sensitivity to hERG block. Indeed, it has been shown that APD
prolongation due to IKr block is more pronounced in human,
compared to rabbit (Bányász et al., 2011; O’Hara and Rudy,
2012); (ii) the fact that in silico results in our study are focused
on single cell electrophysiology, as opposed to tissue (rabbit
wedge) or whole heart, where coupling and other mechanisms
may act to modulate AP duration, as supported by the fact that
both in silico APD and hiPS-CMs CTD show larger prolongation
compared to rabbit QT; (iii) the IC50 values were often estimated
based on current blocks measured at low drug concentrations,
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while simulations explored much higher ones. This can therefore
lead to an overestimation of current blocks, producing a larger
AP increase than expected. Further work could address these
important factors.

To conclude, this study demonstrates that in silico drug
trials in populations of human cardiomyocyte models
constitute a powerful methodology to predict clinical risk
of arrhythmias based on ion channel information. This study
also highlights ionic profiles that have a higher risk of developing
drug-induced abnormalities. This methodology is therefore
ready for its integration into the existing pipeline for drug
cardiotoxicity assessment, and contribute to the reduction of
animal experiments in the near future.
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