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ABSTRACT

While computer-based interactive learning environments can provide authen-

tic and supportive settings for problem-based learning, they are very difficult

to build. The traditional development model requires significant upfront

development and results in systems that are hard to deploy and customize.

In this article, we describe a feedback-driven authoring model that aims to

reduce the development difficulty by including teachers in the feedback loop

to complement system feedback and incrementally author the content in

the learning environment during real use. We discuss the design of INDIE,

a learning environment authoring toolkit, for supporting the incremental

authoring model. We present empirical results obtained from the development

and use of Corrosion Investigator, a learning environment delivered by

INDIE, as an example to show how the incremental authoring model is

implemented in educational settings.
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INTRODUCTION

Problem-based learning (Barrows, 2000; Bransford, Brown, & Cocking, 1999;

Hmelo-Silver & Barrows, 2006; Mergendoller, Maxwell, & Bellisimo, 2006)

is a pedagogical paradigm that centers learning around the investigation and

development of solutions to complex and ill-structured authentic problems.

In problem-based learning, students learn content knowledge and problem-

solving skills through collaborative and self-directed learning. Instructors

work as facilitators providing resources and coaching to students. Research

indicates that with problem-based learning, students gain improvement in

skills such as self-direction, critical thinking and reasoning, data gathering,

and self-evaluation (e.g., Derry, Hmelo-Silver, Nagarajan, Chernobilsky, &

Beitzel, 2006; Dochy, Segers, Van den Bossche, & Gijbels, 2003; Hmelo-

Silver, Duncan, & Chinn, 2007; Koh, Khoo, Wong, & Koh, 2008; Torp & Sage,

2000). While problem-based learning offers an effective approach to improve

teaching and learning, it has a number of drawbacks (Hoffman & Ritchie,

1997). For example, activities in solving realistic problems can be expen-

sive and even dangerous. Students may easily lose their focus on the tar-

geted subject matter. It is time consuming for teachers to deliver open-ended

instruction.

To solve the above problems, interactive learn-by-doing environments have

been built to support problem-based learning. For example, Alien Rescue (Liu,

Williams, & Pedersen, 2002) is a learning environment where students need

to find a new home in the solar system for aliens to survive. BioWorld (Lajoie,

Lavigne, Guerrera, & Munsie, 2001) is a learning environment where students

need to diagnose patients in a simulated hospital setting. Sickle Cell Counselor

(Bell, Bareiss, & Beckwith, 1994) is a learning environment where students

work as reproductive counselors advising couples on the health of their children.

These learning environments engage students in authentic simulated scenarios

and provide tools such as data portfolios to help students solve the challenges.

They allow students to carry out activities that are not feasible in classrooms and

receive just-in-time individualized feedback. They also reduce the instructor’s

effort in supporting student learning.

While interactive learning environments can facilitate problem-based learning,

they are difficult to build and customize. In order to support computer-based

feedback, educators and domain experts have to work with developers to imple-

ment all learning content and feedback in advance. This requires significant

upfront development effort. After the system is deployed, it is very difficult for

teachers to add or remove content.

To solve the above problems, we proposed an alternative model: feedback-

driven incremental authoring model. This model includes the teacher in the

feedback loop to complement system feedback and author content in the learning

environment on demand to meet students’ needs. This way, the system does not

470 / QIU AND RIESBECK



need to be completely implemented before deployment. Instead, it gradually

migrates into a complete system at runtime.

In the following, we discuss the differences between the traditional develop-

ment model and the incremental development model, the advantages of the

incremental development model, and a learning environment authoring toolkit

that we designed called Investigate-and-Decide (INDIE) to support the incre-

mental development model. (We use Investigate-and-Decide to refer to a type

of learning environment where the major activity is to investigate a problem

and decide the cause of the problem.) We present empirical results at the end

on the development and use of Corrosion Investigator, a learning environment

delivered by INDIE, to show how the incremental authoring model can be

implemented in educational settings.

TRADITIONAL DEVELOPMENT MODEL

Almost all existing development methods and authoring strategies for knowledge-

based educational systems are based on the traditional waterfall software development

model (Royce, 1970) or the Analyze, Design, Develop, Implement, and Evaluate

(ADDIE) instructional system development model (Molenda, Pershing, & Reigeluth,

1996). Under these models, an interactive learning environment is created by software

developers and educators working together to generate the learning content, determine

the learning activity, form the assessment strategy, create the feedback, and develop

the software. Sometimes, with appropriate authoring tools, teachers can create the

learning environment without software developers (Murray, Blessing, & Ainsworth,

2003). After a learning environment is built, it is put into use. Feedback will be

collected and returned to the developers. However, due to the delay in communication

and the reduction of development effort, update to the learning environment is often

difficult. Figure 1 shows the traditional development model of interactive learning

environments.

Interactive learning environments created using the traditional model are

usually static. Their contents do not change after deployment. The system is

expected to handle all the interactions and feedback generation by itself. Students

mainly interact with the learning environment. Instructors can provide supple-

mental materials, but have no control over the interaction between the students

and the learning environment.

There are a number of problems in the traditional development model:

Authoring problems:

• It is difficult to anticipate and implement all the resources, actions, and

feedback in advance. Problem-based learning encourages free exploration

and open-ended inquiry. There are many paths to the solutions and multiple

answers to the problem. To support such open-ended activities and implement

all the materials upfront, it requires significant design, implementation, and
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piloting of the system as well as expertise in the problem domain and

experience with students. Even with such effort and experience, it is still

likely to miss important resources and actions that students need and spend

efforts on the ones that students rarely use.

• Systems that provide automatic feedback such as coaching and critiquing

are very difficult to author. They must provide highly accurate feedback.

Otherwise, they can easily lose credibility. Reeves and Nass (1996) shows that

when users notice inappropriate feedback, they pay little attention to the

feedback that is appropriate. The requirement of high accuracy significantly

increases the difficulty of system development. For example, intelligent

tutoring systems often require 200 to 300 hours of authoring for 1 hour

of instruction (Anderson, 1993; Murray, 2003; Woolf & Cunningham, 1987).

While a recent study of an authoring tool, the Cognitive Tutor Authoring

Tool (CTAT), developed at the Pittsburgh Science of Learning Center, has

shown to speed up the development process by 1.4 to 2 times (Aleven,

McLaren, Sewall, & Koedinger, 2006), the authoring process is still con-

siderably time-consuming.

• Systems developed using the traditional development model assume that all

the necessary materials and actions have been implemented. They rarely

provide tools for non-programmers to modify the learning content at instruc-

tion time. This makes it difficult for instructors to incorporate new knowledge

into the system and adjust existing content for their own use.

• In the traditional development model, the benefit of using the system can only

be obtained after the system is put into use. The risk of investing considerable

effort at early design stages with benefits being uncertain makes instructors

hesitant to participate in the system development.

Educational problems:

• Systems that are built to fully operate by themselves only allow students

to do what the system has been prepared to support. Students are limited

to choose existing options or paths in the system. This inevitably restricts

the open-ended inquiry and free exploration encouraged by problem-based

learning.

• When the learning environment handles all the feedback generation, it rarely

provides interfaces for instructors to access student work in the system. Issues

such as common mistakes that students make, operations that students want

but cannot find, choices that students fail to investigate, and inaccurate

coaching and critiquing, are hard to discover. Without knowing how students

perform in the learning environment, instructors can hardly interact effec-

tively with the students.

To solve the above problems, we proposed an alternative model: feedback-

driven incremental authoring model.
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FEEDBACK-DRIVEN INCREMENTAL

AUTHORING MODEL

From our observations and experience, we found that the development of

problem-based learning modules is an incremental process. Educators often

start by choosing target content and skills, creating motivating and authentic

problems, designing possible student activities, determining supporting resources,

and developing evaluation strategies. Then the design is put into practice with

students. Although the design was created by designers with their best knowledge,

unanticipated situations often occur during practice. By handling those situa-

tions, the instructor improves his/her understanding of how students approach

the problem, and continuously incorporates new materials into the teaching

module. Finally, the module contains enough materials to handle most student

requests and can be shared with other educators.

Based on the above analysis, we developed a feedback-driven incremental

authoring model (see Figure 2) that observes the natural development process

of problem-based learning modules. In this model, a learning environment

is initially built with a challenge statement, relevant background information,

common actions that students will take, and feedback for those actions. It does not

need to have all the possible resources and feedback, but is sufficient for students

to start working in the learning environment. When student inputs can be handled

by the system, the system provides automatic feedback. The instructor can opt to

verify and improve the feedback before it is delivered to students. When student

inputs cannot be handled by the system, they are sent to the instructor. The

instructor provides feedback to these inputs and, more importantly, incorporates

new materials into the system, and improves the system performance on demand.

This model allows the instructor to have the benefits provided by computer-based

environments, and at the same time lets the system be improved by the instructor.

In the incremental authoring model, the learning environment plays two roles.

On one hand, it serves as a supportive environment where students perform

authentic problem-solving tasks. One the other hand, it works as a vehicle for

accumulating materials for authoring. The instructor also plays two important

roles. The instructor is a user who uses the learning environment to help deliver

a problem-based learning module. The instructor is also an author who improves

the system on demand.

The incremental authoring model has the following advantages:

• In-context authoring: In the incremental authoring model, authoring is

done in the context of addressing students’ needs. The instructor can gather

materials such as students’ inquiries, common mistakes, and corresponding

critiques, and use them to augment the system. It is much easier than pre-

dicting what students might do beforehand.

• Authoring driven by real needs: In the incremental authoring model, author-

ing is done to meet real needs. For example, when students need more
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background information, the instructor adds new materials into the system.

When students need a new test, the instructor adds the new test into the

system. No authoring effort will be wasted.

• Amortizing authoring effort: In the incremental authoring model, materials

can be added into the system gradually during use time. There is no need

to anticipate and implement all possible situations upfront. Expensive

knowledge engineering is not done upfront, but gradually on demand, where

it is needed.

• Early deployment: Because there is a human in the feedback loop to com-

plement automatic feedback, there is no need to have complete and extremely

accurate system feedback. The system can be put into use when system

feedback is not yet mature and reliable.

• Extensible content: In the incremental authoring model, issues not anticipated

during system design can be explored and incorporated into the system later.

This implies content repair, refinement, adaptation, and customization to

different scenarios and student bodies. Such capability keeps the system from

depending on predefined content after deployment.

• In-context and real-time assessment: Working in the feedback loop allows

the instructor to have access to student learning in the system. This can

provide important information for assessing how well students learn in the

problem-solving process (Wiggins, 1992). The instructor can work alongside

with the students to provide ongoing formative coaching and critiquing.

This is considered an effective way to foster learning in the cognitive appren-

ticeship model (Collins, Brown, & Newman, 1989).

The incremental authoring model is similar to the Wizard of Oz approach

(Wilson & Rosenberg, 1988) for prototyping systems. In the Wizard of Oz

approach, a human “wizard” simulates the behavior of a system behind an

interface to interact with the user. Data collected during the interaction is used

to construct the system. While the incremental authoring model also has a human

work behind the system to provide feedback to students, the data collection

process does not occur at a separate prototyping stage but happens during the

use of the system. Furthermore, the instructor does not pretend to be a computer,

but works with the computer to provide feedback and perform authoring.

The incremental authoring model is an application of the agile software devel-

opment methodology (Beck, 2000; Cockburn, 2002) in developing interac-

tive learning environments. The agile software development methodology uses

methods such as rapid prototyping and iterative development (Larman, 2003).

It develops systems by first creating a working system and then gradually updat-

ing the system according to user needs. For example, seeding, evolutionary

growth, reseeding (SER) is a model of developing software through three evolu-

tionary stages (Fischer 1998; Fischer & Ostwald 2002). Seeding is the first

stage where a system is created with initial knowledge that enables the system to
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be used for practice. Evolutionary growth is the stage where the system supports

user work and collects information generated during use. Reseeding is the stage

where information collected during evolutionary growth is formalized and

organized to support the next cycle of development. While the incremental

authoring model also uses an evolutionary approach, it does not have an explicit

optimization stage. Content is incorporated into the system gradually during

use. Furthermore, the incremental authoring model allows teachers to directly

make changes to the learning content without the intervention of software

developers. This makes the update of the system much easier.

The incremental authoring model is also an instance of user-centered design

(Norman & Draper, 1986) and participatory design (Schuler & Namioka, 1993).

User-centered design and participatory design encourage user participation in

the development process to help developers create software that adequately

addresses user needs. Likewise, the incremental authoring model allows teachers

to improve the learning environment to meet students’ needs. Furthermore, it

makes needs collection easier by including teachers in the feedback loop to

receive requests from students and critique students’ work.

The incremental authoring model is similar to the design-based research

paradigm (Brown, 1992; Collins, Joseph, & Bielaczyc, 2004; Edelson, 2002;

Wang & Hannafin, 2005) in that they both underscore the importance of context in

developing technology-enhanced learning environments. Design-based research

emphasizes creating design through iterative analysis, implementation, and

revision in real-world settings. The incremental authoring model emphasizes

including teachers in the feedback loop to create learning content in the context

of supporting student learning. The difference is that design-based research

is a general framework that can be applied to the development of teaching

materials such as videos, but the incremental authoring model is a framework

specific for developing knowledge-based learning environments.

Like many other authoring tools such as the Cognitive Tutor Authoring Tools

(Aleven et al, 2006; Koedinger, Aleven, Heffernan, McLaren, & Hockenberry,

2004), we use the component design approach (Roschelle, Kaput, Stroup, & Kahn,

1998) to divide the authoring effort. The authoring toolkit in the incremental

authoring model will be built by software developers and the teachers will use

the authoring toolkit to build the learning content. While the initial develop-

ment of the authoring toolkit still requires considerable effort, the difficulty of

developing the learning content will be reduced. Furthermore, teachers are now

capable of creating learning content according to their own needs.

INDIE

INDIE is a software toolkit for authoring and delivering Web-based interactive

learning environments where students need to run experiments, interpret data,

generate hypotheses, and make arguments. It is based on the goal-based scenario
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(GBS) framework (Schank, Fano, Bell, & Jona, 1993) and is specifically designed

to create learning environments for scientific inquiry.

An old version of INDIE was developed in Lisp and only ran on Mac. Over

a dozen of interactive learning environments were built with the old INDIE

(Dobson, 1998). They include learning environments for diagnosing patients with

nutrition-related difficulties, investigating the likelihood of volcano eruption,

examining the authenticity of Rembrandtesque paintings, etc. The new INDIE

uses Web-based technology for better accessibility and deployability. It includes

a domain-independent runtime engine for delivering the learning environment,

and an authoring tool for specifying the content in the learning environment.

The new INDIE is different from other authoring tools in that it is for teachers

to use after the learning environment is in use by the students. Murray (2003)

described a number of authoring tools for learning environments. For example,

SimQuest (de Jong & van Joolingen, 1998; van Joolingen & de Jong, 1996)

is an authoring tool for building simulations for discovery learning. RIDES

(Munro et al., 1997) is an authoring tool for interactive graphical simulations

with integrated training tutorials. XAIDA (Hsieh, Halff, & Redfield, 1999) is an

authoring tool for learning environments teaching device operation and main-

tenance. LEAP (Sparks, Dooley, Meiskey, & Blumenthal, 1998) is an authoring

tool for learning environments training customer service employees how to

respond to customer requests. These authoring tools including the old INDIE

are all for use at design time before the learning environment is put into use.

Learning environments created by these authoring tools are all closed systems.

They do not allow the teacher to change the learning content. In contrast, the

new INDIE is for teachers to use after the learning environment is deployed.

It includes the teacher in the feedback loop to complement system feedback

and author the learning content to meet students’ needs.

In the following, we use Corrosion Investigator, an INDIE learning environ-

ment, as an example to show the kind of learning environments INDIE can

deliver. Then, we describe how INDIE is designed to support the incremental

authoring model.

Corrosion Investigator

Corrosion Investigator is a learning environment delivered by INDIE on

environmental engineering. In Corrosion Investigator, students take the role of

consultants helping a paper processing company find the cause of recurring

pipe corrosion.

When students enter Corrosion Investigator, a challenge screen (Figure 3)

tells students that they need to diagnose the cause of two corrosion problems

occurring in the pipeline in a paper processing company and create a report

with evidence supporting their diagnosis. After reading the challenge, students

can go to the reference screen (Figure 4). This screen contains background
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information about the company, their pipe layout, and the location and condition

of the pipe corrosion. Students can ask questions to four characters in the scenario:

the plant foreman, the plant manager, the scientific consultant, and the supervisor.

Questions directed to these characters are forwarded to the instructor. The

instructor provides answers by taking the role of these characters. For example,

when students ask the plant foreman if he smells anything from the pipe, the

instructor can answer “I sometimes smell rotten-eggs.”

To run tests to diagnose the corrosion problem, students go to the experiment

screen (Figure 5). The left side of the screen has the notebook and result area.

The notebook automatically collects all the test results that students receive

from the system and splits them into single items with labels indicating their

test names and conditions. It helps students keep track of all the test results

received from the system. Test results in the notebook are clickable items.

Students can select them to use as evidence in their reports. The result area

displays test results in a readable form, typically a table with labeled columns

and rows.

The right side of the experiment screen allows students to look for tests by

entering test names into a textbox. Tests matching the name will be shown.

Students can view the description of the tests and possible variable values for

the tests. When students decide to run a test, they can specify the parameters

for the test on a separate screen (Figure 6). For example, there are two parameters

for the water chemistry test, Location of Sample and Test Variable, one with 12

options and one with 9 options. Tests in Corrosion Investigator often have

complex test options so that students have to think hard about which tests to run.

The cost and delay field on the parameter selection screen displays the simu-

lated amount of money and the days the test takes. These values are dynamically

calculated and displayed based on the parameter selection. They will be added

to the value of the project cost and day field on the top of the screen. These

fields simulate that tests in real-life cost time and money. They prompt students

to solve the challenge using minimum cost and allow the teacher to evaluate

student learning based on how much time and money they spend.

In addition to selecting values for test parameters, students also need to enter

reasons for ordering the test. This allows teachers to evaluate students’ under-

standing of tests and their problem-solving strategy.

To receive test results, students need to press the advance date button at the

top of the screen to advance the simulated project date to the time when the

most recent test results are available. Newly available test results will appear

in both the notebook and result area on the experiment screen.

When students feel they have gathered enough information, they can go to

the report screen (Figure 7) to use test results in the notebook as evidence to

support their claims. Students can pick a corrosion location and enter their

diagnosis. When they select a result in the notebook, a window will pop up

allowing them to enter the reason for using the test result as evidence. The report
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will be evaluated by the instructor in terms of the correctness of their diagnoses

and the relevance of the evidence to their diagnoses.

While students are working in the system, their work is under review by their

supervisor (role-played by the instructor). The supervisor can add comments to

the students’ work. Students can review these comments on the feedback screen

(Figure 8) and respond by clicking the respond link and enter their responses in

a pop-up window.

DESIGN FOR INCREMENTAL AUTHORING

Developing a learning environment like Corrosion Investigator requires sig-

nificant software development effort as well as considerable expertise in the

subject domain. After the learning environment is put into use, it is still likely

that important learning content may be missing. For example, students may want

to run a particular test that was not expected by the domain experts. To solve

this problem, we developed INDIE to support incremental authoring of the

content in learning environments like Corrosion Investigator. In the following,

we describe how INDIE is designed to support the four key elements in the

incremental authoring model:

1. allowing teachers to author learning content without programming;

2. allowing teachers to author learning content at runtime;

3. allowing teachers to complement system feedback; and

4. allowing teachers to collect materials for authoring.

General Interface Framework with an Authoring Tool

The incremental authoring model requires teachers to author content in the

learning environment at runtime. This requires the authoring task and involves

minimum programming. In INDIE, we use a general interface framework with

an authoring tool to allow teachers to author the learning content without pro-

gramming. The framework consists of a set of Web interfaces: the challenge

screen, the reference screen, the experiment screen, the report screen, and the

feedback screen (as shown in the Corrosion Investigator section). This framework

includes important learning tools such as the persistent structured portfolio

(the notebook) and the argument construction tool (the report). Teachers can

specify all contents using static data. They do not need to write rules or scripts

to handle student interactions.

Learning content in INDIE learning environments consists of scenario infor-

mation such as the challenge statement, and test information such as the cost

and delay of a test and test result generation methods. The scenario information

is described in Webpages which can be easily authored using any off-the-shelf

Webpage authoring tools and uploaded into the learning environment. Infor-

mation about tests can be authored through a form-based interface provided by the
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INDIE authoring tool. We use the Naked Objects approach (Pawson & Mathews,

2002) to generate the interface. We use a generic engine to query the attributes

(i.e., data structures) of each test and create the corresponding authoring

interface. For example, for a primitive type (i.e., int, double, etc.) or String

type attribute (e.g., the cost of a test), a text field will be created. For a Boolean

type attribute, a menu with two options, true and false, will be created. For any

attribute whose value is a list of items, a list box will be created containing all

the items. For any attribute that does not belong to the above types, a hyperlink

will be created leading to another screen for editing the attribute. The above

mapping generates a uniform authoring interface that allows authors to easily

master the use of the interface after an initial learning process. For example,

Figure 9 shows the interface for authoring a test (the culturing test in Corrosion

Investigator). Values for primitive type attributes (e.g., the name and the cost)

can be specified in textboxes. Attributes that have a list of items as their values

(such as the parameters for the test) are displayed in a list box. Items in the list

can be selected and edited in another screen in the same format. For example,

Figure 10 shows the interface for authoring a new parameter for the culturing

test. Authors can specify the cost and delay of the parameter, and the test options

for the parameter.

The INDIE authoring tools further provides a list of features such as preview

of student interface, overview of learning content, type check, and completeness

check to facilitate authoring. For details, see Qiu (2005).

Web-Based Client-Server Architecture

The runtime incremental authoring model requires the teacher to receive

requests from students and constantly provide feedback and author learning

content. This was not possible when educational software needed to be installed

individually on each student’s machine. To update the learning content, the

teacher would have to update the software on each student’s machine.

Now, with the widespread use of Web technology, software no longer needs

to be installed on individual machines. It can be accessed anywhere anytime

from Web browsers. This makes the deployment and update of software sig-

nificantly easier.

We take advantage of the Web technology in INDIE to support runtime

incremental authoring. INDIE saves all the learning content on a centralized

server and provides a Web-based authoring tool for teachers to modify the content.

With the Web-based authoring tool, teachers can modify the learning content

anytime anywhere. INDIE further provides a Web interface for students to interact

with the learning environment. This enables any update of the learning content

immediately and reflects in the student’s learning environment. Students can

benefit from the most recent content authored by the teacher. The Web-based

architecture also saves students’ work on the server so that teachers can easily
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review it through Web interfaces. Teachers no longer need to collect student

records from individual machines. This makes it possible to include the teacher

in the feedback loop to provide feedback to students’ work in the learning

environment.

Human-in-the-Loop Hybrid Feedback

Generation Mechanism

In the incremental authoring model, a learning environment is put into use

while it does not have all the actions and feedback that students need. This

requires an infrastructure to allow the teacher to help the system meet students’

needs. (This actually also provides a great opportunity for the teachers to learn

what is needed by the students and what should be added into the learning

environment.)

We use a hybrid feedback generation mechanism in INDIE to include the

teacher in the feedback loop to complement the system feedback. In INDIE, the

system is responsible for generating feedback that is immediately required or

computational-intensive. For example, it generates the cost and time of a test

and complicated test results. The teacher is responsible for generating feed-

back that requires natural language understanding and expert knowledge. For

example, the teacher provides answers to questions about the scenario and

critiques students’ work.

To allow teachers to receive requests from students, INDIE forwards students’

requests to virtual characters in the scenario to the teacher. For example, in

Corrosion Investigator, students can ask questions to characters in the scenario

(e.g., the plant foreman and lab manager). Questions sent to these characters are

forwarded to the teacher. This allows the teacher to provide extra information

(such as background information and test results) to students in an authentic

problem context.

For critiquing, INDIE organizes and displays students’ work in the learning

environment in an interactive report (see Figure 11) for teachers to review. The

report includes the time and money that students have spent, tests that students

have scheduled and run, reasons for running those tests, and diagnoses and

supporting evidence that students have created. Items in the report are clickable

links. Teachers can click on any of them and a pop-window will allow the teacher

to enter critiques. These critiques will appear in the feedback screen in the learning

environment. The interactive report is automatically updated every time when

the students make a move in the learning environment so that the teacher always

sees the most recent student activity.

The above hybrid feedback generation mechanism provides a natural human-

computer integration where the system takes care of repetitive and well-defined

feedback generation, and the human takes care of the work that is open-ended

and requires human intelligence.
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Open-Ended Interface Elements for

Collecting Authoring Materials

In the incremental authoring model, teachers need to find out what students

need in the learning environment so that new materials can be added. Besides the

student-teacher communication channel mentioned above, we use opened-ended

interface elements in INDIE to collect students’ inputs. Student inputs can reveal

materials and feedback that students expect in the system. Inputs that do not have

feedback returned indicate missing contents and provide directions for authoring.

For example, in INDIE we deliberately use a text box for students to select

tests. When students enter a test name that matches one of the keywords of a

test, the test will be selected. (Every test has a list of keywords because the same

test can be called in different ways. For example, the culturing test can be called

the gram stem test.) We do not use a menu because the text box approach lets

students brainstorm what tests they need. Test names entered by the students are
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reviewed by the instructor and reasonable ones can be added into the learning

environment. Test names can also tell the instructor what tests are needed and

should be added into the system. We describe empirical results of this approach

in the evaluation section.

The above discussed how we designed INDIE to make incremental authoring

feasible for teachers. We believe that these design choices are essential in pro-

viding an infrastructure and tool support for incremental authoring. In the

following, we describe our experience of using INDIE and the incremental

authoring model to develop Corrosion Investigator.

DEVELOPMENT PROCESS OF CORROSION INVESTIGATOR

Corrosion Investigator was developed in a project funded by NSF to improve

bioengineering education. We started by working with four faculty members

(one from environmental engineering, one from biomedical engineering, one

from learning sciences, and one from computer science and education) to

design the Corrosion Investigator scenario. We chose the concepts and skills that

students needed to learn, generated the corrosion challenge, explored background

resources about paper processing plants, created a pipe layout for the processing

plant, established the (hidden) causes of corrosion, and collected lab tests that

are commonly needed to diagnose corrosion problems. The Corrosion Inves-

tigator scenario was mainly based on a faculty member’s real experience in

industry. The initial scenario development took about 2 months.

After the initial Corrosion Investigator scenario was developed, it was used as

a course project in an environmental engineering course. At the beginning of

the project, students were given a challenge statement as shown in Figure 12. The

instructor acted as the liaison between the students, the paper processing company,

and any commercial lab. Students asked the liaison for background information

about the company and ordered lab tests. The liaison supplied information on

demand, including fairly complex test results. At the end, the students submitted

reports explaining their diagnoses. All communications were done via e-mail

except for bi-weekly presentations where the students reported their progress.

While the Corrosion Investigator scenario was authentic and challenging, it

was very labor intensive for the instructor to generate test data in response to

every test request from students. Test results needed to be generated repeatedly

and had to be different each time to resemble data from real labs. Furthermore,

the results needed to correctly indicate the underlying cause of the corrosion

problems. For students, it was time consuming to pursue the project because they

needed to wait for several days for the teacher to generate test data for them.

To solve the above problems, we decided to develop the computer-based

Corrosion Investigator learning environment. We also wanted to develop a

software tool that allows us to easily develop learning environments similar to

Corrosion Investigator.

492 / QIU AND RIESBECK



A FEEDBACK-DRIVEN AUTHORING MODEL / 493

Your team has been hired by Patriot Chemical Co. to investigate a problem

they are having with their water distribution piping in their paper processing

division. They historically have had severe corrosion problems associated with

pipes in this system. They traditionally replace the piping—which results in

severe financial loss while the system is down. Patriot is hiring your team to

discover the source of the problem and provide a feasible solution that will

avoid future need to replace piping. The goal of this exercise is to determine

the nature of the problem and to come up with a solution as quickly and

cost-effectively as possible. The plant foreman has recently noticed rust in

the effluent of the system. This is usually an early indication that the pipes

are beginning to fail.

We have designed this exercise to simulate as close to a “real life” scenario

as possible.

Initially there will be very little information for you to work with. Using your

creativity and knowledge of microbiology/engineering your team can develop

a trouble shooting flow chart and dissect the problem. There is more than

one way to go about getting the right answer. I will act as your liaison between

Patriot and any commercial labs/services you will require to generate infor-

mation crucial to solving this problem. Depending upon the information/tests

you solicit, the response time will vary in accordance with the nature of

the information requested. Any costs associated with requested lab tests/

information will be given as estimates to your group prior to your requesting it.

Part I) What could be the cause the problem?

Part II) How would you propose to fix it?

Background: As you investigate this challenge you need to consider multiple

factors. First, the company has indicated they would like an accurate as well

as cost-effective solution. In addition, they require a thorough justification of

your recommendation. This requires you to draw on the knowledge presented

in this class as well as information you obtain through research, data collection,

consultations, etc.

Figure 12. The challenge statement in Corrosion Investigator.



We started by analyzing over 70 e-mails sent between the students and the

instructor to understand what learning content should be put in the learning

environment. The e-mails suggested the background information students needed,

the tests they wanted to run, and the mistakes they usually made. For example, a

list of questions that students asked and their corresponding answers were used

as the background information in the learning environment. Five major tests

that students requested became the tests in the learning environment. Additional

materials and features were added in to the learning environment to make learning

authentic. Random test result generation mechanism was developed to make

test results realistic. The simulated cost and time mechanism were implemented

to make students aware of real-life constraints.

We further designed the INDIE framework and authoring tool based on the

actions and content in Corrosion Investigator. Design choices discussed in the

above section were specially made to support the incremental authoring model

and make sure that the infrastructure and underlying data structures were general

enough so that similar learning environments can be built without changing

the framework.

EVALUATION RESULTS

We conducted two small-scale studies to test the feasibility of the incremental

authoring model. Both studies were conducted with students and professors at

Northwestern University in 2005.

The focus of the first study was to test whether the learning environment

software could sufficiently support student learning and incremental authoring.

We conducted the study in the environment engineering class where the instructor

was the professor who developed the initial Corrosion Investigator scenario

and had run the scenario without the software in his previous class. We asked

the instructor to teach his class exactly the same way as he did before except

using the software for the Corrosion Investigator challenge. This allowed us

to compare student learning outcomes between the two classes to evaluate the

impact of the software. There were six first-year graduate students in the class.

They worked in two groups of three on the Corrosion Investigator challenge as

their final course project. During the project, students worked with the software

learning environment to run tests, collect data, and construct reports. They con-

tacted characters in the challenge to request additional information. The instructor

role-played the characters and answered students’ requests. He provided coaching

through the critiquing interface in the learning environment. Furthermore, the

instructor identified missing test names and options by reviewing student activities

and added them into the learning environment using the authoring tool. The

project lasted 3 weeks. After the completion of the project, we gave the students

and the instructor a survey regarding their experience with the software. We

recorded what the instructor authored during the study.
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After the first study, we conducted the second study. The focus of the study was

to investigate whether instructors other than the original author of the scenario

could deliver the challenge and extend the learning content. Five second-year

graduate students and two professors (other than the one in the first study) in

the environmental engineering department volunteered to participate in our study.

Students were given 3 weeks to complete the challenge. They worked in two

groups. The two professors facilitated the project as the instructor did in the first

study by providing feedback to the students whenever needed. After 3 weeks,

students completed the challenge. We recorded what the two professors’ authored

during the study. We will present the authoring data in the following section

(together with the ones collected from the first study).

Evaluation results presented below are based on two studies with a total number

of 11 students and three professors. They are suggestive but by no means proven

because of the small sample size. The goals of our studies are to test whether the

incremental authoring model is feasible and to show how teachers can use it.

While the data that we obtained are limited, they do provide an example of how

INDIE can facilitate students learning and incremental authoring. Future work

will be conducted to verify the findings in the current studies with larger numbers

of students and teachers, and assess the generalizability and limitation of the

software and authoring model.

In the following, we present results regarding students’ evaluation, instructors’

evaluation, and incremental authoring of tests and critiques.

STUDENTS’ EVALUATION

In our first study, we obtained students’ evaluation of the Corrosion Investi-

gator learning environment through a survey. The survey asked students to rate

the performance of the learning environment in supporting their project.

Figure 13 shows the results from the survey. Overall, students agreed that the

learning environment was satisfying in delivering the challenge. They agreed

that the system provided enough support for them to successfully complete the

project. They would recommend the system to be used by other students.

Students largely benefited from the immediate feedback generation from the

system. The project time was reduced from 8 weeks (the time it took when the

challenge was delivered without the software and the instructor needed to generate

the test results manually) to 3 weeks. This was evident in students’ answers to the

question “What did you like the most about the system?”:

results are immediate. you can plan around time spent on each test.

automatically run tests and report time and cost.

the instant feedback on tests results. did not have to wait for a person to email

results back to me.

fast response time.
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The design goal of the learning environment was to facilitate students’

problem-solving by providing them with necessary information and tools to

reduce their project time. While there are still usability issues in the learning

environment (e.g., the interface for retrieving tests was not easy to use), the

response from the students suggest that the learning environment has met

the initial design goal. In the following, we further show that the instructor

considered students’ learning outcome remains the same when compared to the

one gained in the class when the software was not used.
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1 = strongly agree 5 = strongly disagree

Q1: I would like to use the system to construct a report rather than write it all

by myself.

Q2: Overall, the interface makes me feel comfortable.

Q3: The system has provided enough support for doing the project.

Q4: Overall, this is an excellent system for doing the project.

Q5: Overall, the project has been completed successfully.

Q6: I prefer to use this system to run the tests and get the results back,

instead of doing that via e-mail with a person.

Q7: I would recommend this system to be used in next year’s class.

Figure 13. Student evaluation of Corrosion Investigator performance.



Instructor’s Evaluation

In our first study, we obtained instructor’s evaluation of the learning environ-

ment. We gave the instructor a survey asking him to compare his experience in

delivering the scenario using the software with his experience in delivering the

scenario without the software.

Figure 14 shows the responses from the instructor in the survey. The instructor

considered the effort in delivering the scenario and the time students needed to

complete the scenario were significantly less when using the software. The quality

of the data generated by the system was slightly better. For the instructor, the

use of the software reduced his workload from 24 total man-hours to 4. It

was most evident in reducing the work in generating test results. When asked

“What did you like the most of the system?” the instructor reported:

It was fairly self-sufficient, gave quick response, easy to view history of

system (what operations were ordered, etc).

Furthermore, the instructor considered the quality of students’ work and their

learning of the target skills remained the same when compared to the ones in

the class where the challenge was delivered without the software.

The above data show that Corrosion Investigator greatly helped the instructor

deliver the problem-based learning module while maintaining the student learning

quality. This is consistent with our initial design goal.
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Question

Answer

(much less) 1 2 3 4 5 6 7 (much more)

The effort involved in delivering the

scenario with the software

1

The time students needed to complete

the scenario using the software

1

Question

Answer

(much better) 1 2 3 4 5 6 7 (much worse)

The quality of the simulated data

given to the students by the software

3

The quality of the students’ final

reports after using the software

4

The student learning of the target

skills after using the software

4

Figure 14. Instructor’s evaluation of Corrosion Investigator.



Evaluation Results for Incremental Authoring

During both of our studies, we recorded the learning content authored by the

teachers. In the following, we present results obtained from the two studies

regarding test authoring and critique authoring.

Test Authoring

Corrosion investigator initially contained 39 test names to match student

inputs. During the two studies, teachers added 34 more test names into Corrosion

Investigator. This resulted in an increase of 87% of test names in the system.

Figure 15 shows the increase of test names for each test. (One test can have

multiple names.) Furthermore, in the second study, one professor found that

“dissolved Fe” should be added as a test option for the water chemistry after he

received students’ request for the test option. Figure 16 shows the test data added

into the system for the test option.

The addition of the large number of test names and an important test option

suggested that even with careful preparation, it is still difficult to make sure that

the learning environment contains all the necessary content. It is necessary to

allow teachers to add new content into the system during runtime.
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We further conducted a survey with the instructor in the first study regarding

his use of the authoring tool. Results show that it was not hard for the instructor

to understand the data structure of the learning content in the system and map

his knowledge to the data structure (see Figure 17). When asked “what did you

like least about the system? Would you have preferred more facilities in the

system?” The teacher responded:

(the interface is) not very intuitive. need some way of guiding user through

process.

We believe the above problem is caused by the lack of directions provided in

the authoring interface. Our future work would be to add a wizard or more

instructions on the authoring interface so that authors can be guided through

the authoring process.

When responding to “what you like the most about this system,” the instructor

reported:

Once I knew what I was doing, it was easy to manipulate system.

We believe this is caused by the consistent look-and-feel of the authoring

interface. After the initial learning stage, the instructor could easily use the

interface for authoring.

The survey also includes questions regarding the usefulness of specific features

in the authoring tool. Results show that these features were all considered very

helpful (see Figure 18).

The above results show that teachers are capable to use the INDIE authoring

tool to add missing content into the learning environment during runtime.

Critique Authoring

Critique authoring has always been a difficult part of learning environment

authoring because it is difficult to know what mistakes students commonly make
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Location of Sample Results for “dissolved Fe” (mg/L)

Checkpoint 1

Checkpoint11,Checkpoint12

0.01 ~ 2

Checkpoint 2, Checkpoint 3,

Checkpoint 4, Checkpoint 5,

Checkpoint 6, Checkpoint 7,

Checkpoint 8

1 ~ 5

Checkpoint 9, Checkpoint 10 0.01 ~ 2

Figure 16. Test results for “dissolved Fe” in the water chemistry test.



and what critiques to give for those mistakes. Our goal is to use incremental

authoring to first collect common critiques, and then based on theses critiques,

design an interface to help teachers apply or automate these critiques. The

following describe the results regarding the first step, which is to use incremental

authoring to collect critiques. During the two studies, a total number of 32

critiques were recorded in the system. Appendix A shows some examples of
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Question

Answer

(strongly agree) 1 2 3 4 5 (strongly disagree)

It is very helpful to have an

automatic checker to verify the

consistency of the knowledge in

the system.

1

It is very helpful to have a com-

plete view of the domain and

scenario knowledge in the system.

1

It is very helpful to check the

student view of a test.

1

Figure 18. Instructor’s evaluation of the INDIE authoring tool.

Question

Answer

(very easy) 1 2 3 4 5 (extremely hard)

How difficult is it for you to understand

the data structure in the system?

3

How difficult is it for you to transform

your knowledge to fit into the data

structure in the system?

1

How difficult is it for you to enter the

specification for a test?

4

How difficult is it for you to enter test

results?

4

How difficult is it for you to interact

with the system?

3

Figure 17. Survey results regarding the instructor’s

authoring experience.



these critiques. We analyzed all the critiques and found that they could be

categorized into three types.

The first type confirms the correctness of the student’s work. For example,

That is correct- H2S a byproduct of SRB metabolism.

The second type points out that the student work is wrong. For example,

This is NOT evidence supporting chemical corrosion as a cause.

The third type asks for more data or explanation. It can directly ask for

explanations, for example,

More detail could be supplied in regards to the nature of the corrosion.

There are other possibilities for chemical corrosion at neutral pH’s—should

acknowledge this.

or can provide directions for further investigation, for example,

Why is corrosion the worst here instead of other areas of piping between

the primary treatment plant and the recirculating pipes?

or it can present data that challenge students’ understanding, for example,

SRB counts are very low compared to the other corrosion site.

The above critiques provided the basis for us to design the automatic critiquing

mechanism. Our next step is to develop tools for teachers to reuse these

critiques. We plan to use Latent Semantic Analysis (LSA) (Landauer & Dumais,

1997; Landauer, Foltz, & Laham, 1998) to compare students’ work against stored

examples of mistakes and suggest corresponding critiques. Teachers will be

able to review automatically generated critiques and send them to students.

We have successfully experimented incremental critiquing authoring in another

system called Java Critiquer (Qiu & Riesbeck, 2008). The Java Critiquer pro-

vides an environment where teachers can critique students’ Java code and

incrementally author critiques in the system for reuse. We aim to use similar

techniques to allow the system to automatically suggest critiques and allow the

teachers to review them.

DISCUSSION AND FUTURE WORK

The target audiences for INDIE learning environments are students in colleges.

In our studies, first and second year graduate students successfully accomplished

the main tasks of an INDIE-authored learning environment. K-12 students

may have difficulties in using such learning environments because compared to

students in our studies, they may not have strong interests in the subject area and

could easily lose interest in using the text-based learning environment. Interactive

learning environments built for K-12 students (e.g., Lajoie et al., 2001; Liu et al.,

2002) often use rich media such as videos and graphics to attract students’
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attention. However, INDIE learning environments are largely text-based because

we focus on the logical diagnostic reasoning aspects of the challenges and

want to keep authoring simple. While multimedia content can be embedded into

Webpages and uploaded into INDIE learning environments, creating them on the

fly would be difficult for teachers. Therefore, the Web-based INDIE learning

environments do not provide immersive multimedia to maintain students’

interests. Furthermore, K-12 students may not have strong self-learning capability

as students in our studies. They often need more guidance from their teachers

outside of the software learning environment. This would make the authoring of

the learning content difficult because the incremental authoring model relies on

having students and teachers communicate through the learning environment

so that teachers can save the feedback as new learning content. Given the above

issues, we believe that the incremental authoring model is most appropriate to

create learning environments for students in high school and college.

To use the incremental authoring model to create learning environments,

teachers need to have a deep understanding of the problem-based learning

pedagogy and know how to create a problem-based learning module. While

many teachers may be interested in delivering problem-based learning, not all of

them know how to develop a challenging scenario with proper learning activities

embedded. One way to use the incremental authoring model is to have domain

experts and learning scientists create a number of initial modules and have

teachers extend them during teaching. The initial modules will include the chal-

lenges that students need to solve and the major tasks that students need to

perform. A teacher can pick the module that he or she wants to use and extend

the module according to students’ needs. We believe that because the module is

initially created by subject-matter experts based on sound educational principles,

teachers will be less likely to fail to follow the problem-based learning pedagogy.

While this approach does not guarantee the quality of the learning content, we

believe that it is worthwhile to provide teachers the capability to create their own

learning environments.

INDIE learning environments are best used in situations where teachers actively

monitor and guide student learning. We have tested the INDIE learning environ-

ment in a course project and a volunteer project. In both projects, teachers

paid close attention to students’ progress and provided them with coaching and

critiquing. This is critical because the learning environment in the incremental

authoring model does not have all the necessary feedback for students. Teachers

need to identify missing feedback and provide it to students. We aim to create a

teacher-computer collaboration system where students can receive feedback from

both the computer and the teacher.

We believe the incremental authoring model could be extended to support the

development of other knowledge-based educational systems, especially text-

based educational systems, besides interactive learning environments. The key to

the success of the incremental authoring model is to establish a feedback loop
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where the teacher needs to provide feedback to students through the system.

We have experimented the incremental authoring model in a critiquing system

for software programming (Qiu & Riesbeck, 2008). The system allows teachers

to critique students’ programming code and add new critiques into the system. The

teacher can also refine existing critiques and create patterns to automate critiques.

We tested the system with two instructors using the system in university-level

introductory programming courses. After one-year’s use, a total number of 232

critiques were collected and remained relatively stable for over a year. In our

future work, we aim to experiment the incremental authoring model with other

types of learning systems in different educational settings to further evaluate its

feasibility and effectiveness.

CONCLUSION

In this article, we described an incremental authoring model for developing

interactive learning environments. This model includes an instructor in the

feedback loop to complement system feedback and incrementally author the

learning content in response to demands from actual students. We described

INDIE, a learning environment authoring toolkit, as an example to show how

to support the incremental authoring model. INDIE uses a Web-based client-

server architecture to allow teachers to author the learning environment anytime

anywhere. It provides a domain-independent interface framework with an author-

ing tool for teachers to perform authoring without programming. It uses a hybrid

feedback mechanism to allow teachers to receive requests from students and

complement system feedback. It uses open-ended interface elements to help

teachers collect students’ inputs and identify materials for authoring. These design

choices in INDIE enable the key components in the incremental authoring model

to ensure that teachers can perform authoring at runtime.

We presented our development experience of Corrosion Investigator, a learning

environment delivered by INDIE, to show how the incremental authoring model

can be implemented. Corrosion Investigator has been used twice, once in a class

and once in a volunteer project. Feedback from the students and instructor

suggests that Corrosion Investigator successfully facilitated the delivery of a

problem-based learning module. Results regarding test and critique authoring

show that INDIE is capable to support incremental authoring during runtime.

The incremental authoring model explores a vision of developing knowledge-

based educational systems with less upfront development effort. It avoids the

need to anticipate and implement all possible situations upfront and allows

the system to gradually evolve into a complete system after deployment. With the

widespread use of Web technology, we believe the model is feasible and

promising in facilitating the authoring and customization of knowledge-based

educational systems.
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APPENDIX A

Critiques entered by instructors in Corrosion Investigator

Student work Critique

Claim: Acidic pH and chemical

oxidation of pipes the main cause of

corrosion in the downstream pipes.

pH level is acidic enough to cause

corrosion. Although SRB’s are still

present in relatively high numbers,

we feel that they are preset due to

periodic flushing of the downstream

pipes which dislodges some of the

biofilm population.

This captures the essence of the

problem occurring in the downstream

pipes. More detail could be supplied in

regards to the nature of the corrosion.

What type of corrosion could be

occurring? Why is corrosion the worst

here instead of other areas of piping

between the primary treatment plant

and the recirculating pipes?

Test Result: [Water Chemistry check

point 9]SO4: 83.08 mg/L

Reason: High sulfate is still present,

indicating SRB’s may be active.

This is NOT evidence supporting

chemical corrosion as a cause.

Test Result: [Water Chemistry check

point 3] pH: 6.378

Reason: Neutral pH, indicating process

is probably not a chemical one.

There are other possibilities for

chemical corrosion at neutral pH’s—

should acknowledge this.

Test Result: [Water Chemistry check

point 3]H2S: 42.204 mg/L

Reason: Rotten egg-like odor indicative

of sulfate reduction. High H2S concen-

tration is indicative of SRB populations

That is correct—H2S a byproduct of

SRB metabolism.

Test Result: [Water Chemistry check

point 9]H2S: 32.546 mg/L

Reason: Not as high as in recirculating

pipes. Corrosions may be a combina-

tion of bio and chemical processes.

Not well explained—is H2S derived

from activity at that location, or is it left

over from water derived from flushed

recirculating water.

Test Result: [Culturing check point 9,

SRB,25C]

Total: 4,495 isolates

Reason: SRB have the most isolates

w/r/t nutrient culturing, probably still

play a role in the corrosion.

SRB counts are very low compared

to the other corrosion site.
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APPENDIX A (Cont’d.)

Student work Critique

Test Result: [Water Chemistry check

point 3]SO4: 79.017 mg/L

Reason: High sulfate concentration

indicative of sulfate reducing bacteria.

SRB are known to cause corrosion in

steel piping.

This is wrong—High SO4

concentration indicates that there are

substrates present for SRB growth.

Test Result: [Water Chemistry check

point 4] temperature: 29.796�C

Reason: Temperature is ideal for

SRB growth.

Why is it ideal? What is the temper-

ature optimal for most SRB’s? This is

not known . . .

Test Result: [Water Chemistry check

point 3]pH: 6.554

Reason: The pH at point 3 is neutral.

While pH of 6.6 is near neutral, this

does not by itself support that SRB

are active. SRB activity would

produce base and may increase the

pH. Do you have a pH comparison?

Test Result: [Water Chemistry check

point 10]pH: 3.946

Reason: pH is low, indicating that there

is acid production in the downstream

pipes.

Yes, a low pH implies acid

production, which is part of sulfide

oxidation. From where does the

oxygen come?

Test Result: [Water Chemistry check

point 9]SO4: 77.228 mg/L

Reason: SO4 concentration is lower

comparing to the upstream.

This is lower than check point 3, and

it implies that sulfate was reduced

after checkpoint 3. This may be

evidence of sulfate reduction in the

recirculating loop, not evidence for

what is happening in the downstream

pipes.

Test Result: [Water Chemistry check

point 10]DO: 6.889 mg/L

Reason: DO is high.

A high D.O. supports that O2 can

be the electron acceptor for

corrosion, but it is counter to having

sulfide oxidized to SO42-, which is

strongly oxygen consuming. So,

from where does the oxygen come

to allow sulfide oxidation?
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Claim: RECIRCULATING PIPES:

According to our test results, the

excessive corrosion in both the

recirculating and downstream pipes is

likely due to the presence of iron-

oxidizing bacteria. The livelihood of

these microbes, which use hydrogen

sulfide as an electron donor, is

probably supported by anaerobic

sulfate-reducing bacteria. In spite of

the ample amounts of oxygen

throughout the system. SRB’s can

create anoxic conditions within a

deep biofilm, where they can take

advantage of the abundance of

sulfate provided by the Biodex sticking

agent. It is our recommendation

that a new sticking agent that does not

contain sulfate, such as talc, be used

instead of Biodex.

You are suggesting that iron-reducing

bacteria is present at two checkpoints

(i.e., circulating and downstream

pipes). Isn’t the pH of the water

sample too high to maintain iron-

reducing bacteria in both check

points? What is the optimum pH

range for iron-reducing bacteria? You

also acknowledge that the dissolved

oxygen level is high especially in

checkpoint 9. What would this mean?

What is/are the substrate(s) for iron-

reducing bacteria? Are you elimin-

ating the possibility of SRBs? why or

why not? If the sticking agent does

not contain sulfate, how would this

help get rid of iron-reducing bacteria?

Any thoughts?

Test Request: DGGE

Scheduled Date: 25

Test Parameters:

Location of Sample: check point 5;

Primer Set: sulfate reducers;

Reason: Sulfate reducers may be the

producers of H2S in recirculating

pipes

This is a good point. How can you

make sure of this, any cheap way

of finding this out?

Test Request: Water Chemistry

Scheduled Date: 28

Test Parameters:

Test variable: Cl-; H2S; SO4; dissolved

oxygen; pH;

Location of Sample: check point 9;

Reason: Compare S concentrations

between recirculating and downstream

pipes

What is your conclusion based on

this piece of information? Would

temperature suggest anything? How

about DO and pH? Would they

suggest anything?
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