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Abstract

Automatically detecting online misinforma-

tion at scale is a challenging and interdisci-

plinary problem. Deciding what is to be con-

sidered truthful information is sometimes con-

troversial and difficult also for educated ex-

perts. As the scale of the problem increases,

human-in-the-loop approaches to truthfulness

that combine both the scalability of machine

learning (ML) and the accuracy of human con-

tributions have been considered.

In this work we look at the potential to au-

tomatically combine machine-based systems

with human-based systems. The former ex-

ploit supervised ML approaches; the latter in-

volve either crowd workers (i.e., human non-

experts) or human experts. Since both ML

and crowdsourcing approaches can produce

a score indicating the level of confidence on

their truthfulness judgments (either algorith-

mic or self-reported, respectively), we address

the question of whether it is feasible to make

use of such confidence scores to effectively

and efficiently combine three approaches: (i)

machine-based methods; (ii) crowd workers,

and (iii) human experts. The three approaches

differ significantly as they range from avail-

able, cheap, fast, scalable, but less accurate

to scarce, expensive, slow, not scalable, but

highly accurate.

1 Introduction

The challenge of identifying online misinforma-

tion has been rapidly growing given the increase

in popularity of online news consumption as well

as the ability to profile and micro-target social me-

dia users. Fighting the spread of online misinfor-

mation is a multi-disciplinary issue which requires

both technical advances to process large amounts

of false digital information as well as to under-

stand the societal context in which such spreads

happen. In order to best deal with the need to

both scale to large number of fact-checks and have

expert journalists manually checking and evaluat-

ing the veracity of posted information, human-in-

the-loop systems have been considered (Demartini

et al., 2020; Allen et al., 2021; Nakov et al., 2021).

Human-in-the-loop information systems aim at

leveraging the ability of machines to scale and

deal with very large amounts of data while re-

lying on human intelligence to perform very

complex tasks—for example, natural language

understanding—or to incorporate fairness and/or

explainability properties into the hybrid system

(Demartini et al., 2017). Example of success-

ful human-in-the-loop methods include ZenCrowd

(Demartini et al., 2012), CrowdQ (Demartini et al.,

2013), CrowdDB (Franklin et al., 2011), and

Crowdmap (Sarasua et al., 2012). Active learn-

ing methods (Settles, 2009) are another example

where labels are collected from humans, fed back

to a supervised learning model, and then used to

decide which data items humans should label next.

Related to this is the idea of interactive machine

learning (ML) (Amershi et al., 2014) where labels

are automatically obtained from user interaction

behaviors (Joachims and Radlinski, 2007).

While being more powerful than pure machine-

based methods, human-in-the-loop systems need

to deal with additional challenges to perform ef-

fectively and to produce valid results. One such

challenge is the possible noise in the labels pro-

vided by non-expert humans. Depending on which

human participants are providing labels, the level

of data quality may vary. For example, making

use of crowdsourcing to collect human labels from

people online either using paid micro-task plat-

forms like Amazon MTurk (Gadiraju et al., 2015)

or by means of alternative incentives like, e.g.,

‘games with a purpose’ (Von Ahn, 2006) is in gen-

eral different from relying on a few experts.

There is often a trade-off between the cost and



the quality of the collected labels. On the one

hand, it may be possible to collect few high-

quality curated labels that have been generated

by domain experts, while, on the other hand, it

may be possible to collect very large amounts of

human-generated labels that might not be 100%

accurate. Since the number of available experts

is usually limited, to obtain both high volume and

quality labels, the development of effective quality

control mechanisms for crowdsourcing is needed.

Crowdsourcing as a method to collect labels to

train veracity classification systems has recently

been investigated (Roitero et al., 2020a,b; Soprano

et al., 2021; Roitero et al., 2021).

Rather than seeing these data collection ap-

proaches as mutually exclusive, in this paper we

focus on the possibility of combining machine-

based truthfulness classifiers, non-expert annota-

tors, and experts. In particular, we focus on the

notion of confidence, i.e., the estimate of the relia-

bility of the prediction—given by either a machine

or a human annotator.

More in detail, in this paper we focus on the

following research questions:

• RQ1: Can algorithmic and self-reported hu-

man confidence scores be used to reliably es-

timate the quality of truthfulness decisions?

• RQ2: Do humans and machines make simi-

lar or different mistakes in classifying truth-

fulness?

• RQ3: Can scarce expert annotator resources

be integrated in such human-in-the-loop

systems to intervene in cases when both

crowd workers and machine-based truthful-

ness classifiers fail to correctly label an item?

To the best of our knowledge, this is the first at-

tempt to understand the relationship between the

effectiveness and confidence of the set including

machine-based methods, crowd workers, and ex-

perts in a truthfulness classification task.

The rest of the paper is organized as follows.

Section 2 discusses the related work. Section 3

details the methodology used in our study. We

report and analyze our results in Section 4. Sec-

tion 5 concludes by summarizing our findings and

describing future work.

2 Related Work

In this section we summarize approaches comput-

ing and making use of confidence scores generated

by ML models or human annotators (either self-

reported or implicit).

Different types of ML methods are able to pro-

duce not only a classification decision, but to also

attach a score that indicates how confident the al-

gorithm is about the made decision. This is pos-

sible for a diverse set of methods, from decision

trees to deep learning.

Poggi et al. (2017) consider a complete

overview of 76 state-of-the-art confidence mea-

sures for ML; Mandelbaum and Weinshall (2017)

discuss distance based confidence scores in the

case of neural network based classifiers; Guo et al.

(2017) detail a methodology to correctly interpret

and compute confidence scores from ML models.

Trusting classification decisions solely based on

algorithmic confidence may be risky. Once manu-

ally labelled data has been collected, trained mod-

els may reflect existing bias in the data. An ex-

ample of such a problem is that of ‘unknown un-

knowns’ (UUs) (Attenberg et al., 2015), that is,

data points for which a supervised model makes

a high-confidence classification decision, which is

however wrong. This means that the model is not

aware of making mistakes. UUs are often difficult

to identify because of the high-confidence of the

model in its classification decision and may create

critical issues in ML.

Quantifying decision confidence can also be

done when decisions are made by human anno-

tators. Hertwig (2012) discuss the role of con-

fidence in the “wisdom of the crowd” paradigm.

They point out how human confidence may be

influenced by social interaction and the presence

of others’ annotations. Joglekar et al. (2013) de-

scribes methods to generate confidence intervals

in order to capture crowd workers’ confidence and

bound accuracy scores. Jarrett et al. (2015) con-

sider workers’ self-assessment and investigates

whether workers confidence correlates with qual-

ity and observe that self-evaluation is not indica-

tive of their actual performance. This is consistent

with findings by Gadiraju et al. (2017). Related to

this observation, Li and Varshney (2017) show that

workers annotation performance does not increase

when considering the confidence scores to weight

their contribution. Song et al. (2018) consider

worker confidence in the setting of a labeling task

performed with active learning techniques. Difal-

lah et al. (2016) look at how to schedule labeling

tasks to optimize their execution efficiency.



More than just human self-reported confidence,

it is possible to implicitly measure confidence by,

for example, computing inter-assessor agreement

metrics. Nowak and Rüger (2010) study inter-

annotator agreement and show how annotation

quality can be improved when considering agree-

ment scores to aggregate labels. Aroyo and Welty

(2013) study the relationships between gold ques-

tions and workers agreement stating that agree-

ment metrics do not necessary correlate with qual-

ity but may uncover alternative views on possible

way to label data. Checco et al. (2017) discuss

agreement measures applied to crowdsourcing and

propose an alternative measure that is able to deal

with sparse and incomplete data. Maddalena et al.

(2017) incorporate assessor agreement into infor-

mation retrieval evaluation metrics. In our work

we make use of inter-annotator agreement metrics

as a measure of human annotator confidence and

quality.

3 Methodology

3.1 Dataset

We make use of manual truthfulness labels ob-

tained from a crowdsourcing experiment as pre-

sented by Soprano et al. (2021). The crowdsourc-

ing task was performed as follows. After an ini-

tial background survey phase, crowd workers are

presented with 11 political statements, one after

the other; 6 statements are taken from PolitiFact

(Wang, 2017), 3 from ABC,1 and 2 are used as

quality checks. For each statement, according to

the design defined by Roitero et al. (2020a), work-

ers are asked to provide a truthfulness label. Addi-

tionally to the design by (Roitero et al., 2020a), we

ask workers to also provide a confidence score on

the expressed truthfulness label on a Likert scale

in the [−2, 2] range. The dataset contains a total

of 120 statements from PolitiFact: 10 for each of

the two political parties and for each level of the

six-level truthfulness scale used by the expert as-

sessors to evaluate the statements, and a total of 60

statements from ABC: 10 for each of the two po-

litical parties and for each level of the three-level

truthfulness scale used by the expert assessors to

evaluate the statements.

1https://apo.org.au/collection/302996/

rmit-abc-fact-check

3.2 Machine Learning for Truthfulness

Classification

BERT (Bidirectional Encoder Representations

from Transformers) (Vaswani et al., 2017) is a

language representation model based on perform-

ing a bidirectional training of a transformer based

model. The core part of the model is the en-

coder / decoder architecture (Devlin et al., 2019),

which is formed by different steps: the tokeniza-

tion and numericalization of the input sequence

followed by a set of embedding layers, which learn

during the training phase a multidimensional em-

bedding for each input token. Then, the learned

representation is enriched with the context infor-

mation represented with the positional encoding

of the tokens built using the Multi Head (Self)

Attention mechanism, which is fundamental to

learn a better language model. In the BERT ar-

chitecture multiple encoder / decoder blocks are

stacked together to form the model. This ar-

chitecture allows BERT to encode the entire in-

put sequence at once, and perform two training

task simultaneously: Masked Language Model

and Next Sentence Prediction. The truthfulness

classification task has been carried out using the

BERT model pre-trained for classification tasks

(bert-base-uncased2) fine-tuned with ex-

pert truthfulness labels on political statements. We

use the output of the last softmax layer as the ML

classification confidence score we use in our anal-

ysis.

GloVe (Global Vectors for Word Representa-

tion) by (Pennington et al., 2014) is a word vector

learning technique which produces a vector space

model similar to word2vec. The fundamental idea

behind GloVe and word2vec is to learn, given a

large corpus, a set of tuples containing a word and

its context; then, the model is trained to predict the

context given the specific word. Unlike word2vec

which captures only the local context of a word,

GloVe considers also the global context, imple-

mented through a co-occurrence matrix. A feed-

forward architecture with two dense layers (6 and

1 node, respectively), and a soft-max layer at the

end. In Section 4 we only report results obtained

with BERT for space constraints but results ob-

tained with GloVe were similar.

2https://huggingface.co/

bert-base-uncased

https://apo.org.au/collection/302996/rmit-abc-fact-check
https://apo.org.au/collection/302996/rmit-abc-fact-check
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased


3.3 Crowdsourcing for Truthfulness

Classification

With the crowdsourcing task design presented in

Section 3.1, we collect non-expert labels from

Amazon MTurk for 180 statements across dif-

ferent ground-truth truthfulness levels and differ-

ent sources. In order to compare against super-

vised binary ML classifiers, we binarize human

labels (originally collected on a 5-point [−2, 2]
Likert scale) by considering {−2,−1} as the

False Statements class and {1, 2} as the

True Statements class. We also binarize the

6-level Politifact scale and the 3-level ABC scale

expert labels.

We use both crowd labels aggregated by the sum

of the scores given by the 10 different workers

who judged the same statement, as well as using

the raw labels and confidence scores provided by

individual crowd workers. We remove both the 20

ABC labels with an in-between value and the 5

aggregated crowd labels with a 0 value, as they do

not indicate a binary classification decision. We

are then left with 159 statements which we use in

our analysis.

Thus, we generated a dataset that contains, for

a total of 159 statements, truthfulness labels pro-

duced by ML models, non-expert crowd workers,

and experts (i.e., ground truth labels) together with

the respective confidence scores (experts are as-

sumed to have max confidence).

3.4 ML and Crowd Confidence

To compute the crowd and machine learning con-

fidence, we proceed as follows. For crowdsourced

labels, we consider both the confidence scores

self-reported by individual crowd workers, as well

as the standard deviation among the ten crowd la-

bels collected for each document. We refer these

two scores respectively as explicit and implicit

confidence scores.

Concerning the machine learning approaches,

we cannot directly use the scores returned by the

model in their last soft-max layer. Such scores

can not be treated as confidence scores as shown

in previous studies (Guo et al., 2017). Thus, to

compute the machine learning confidence scores,

we employed the bootstrap technique (Efron and

Tibshirani, 1985): starting from a specific ma-

chine learning model, we produced ten different

variations of such model obtained by varying the

random seeds used in the initialization procedure;

then, we run the ten models on the dataset and,

similarly to what we do for crowdsourced labels,

we compute the standard deviation over the ten

scores collected for each document.

4 Results

4.1 ML and Crowd Accuracy

First we report on the truthfulness classification

accuracy of both ML and crowd-based methods to

label the truthfulness of statements in the dataset.

As compared to expert ground-truth labels, ML

models and crowd workers (with truthfulness la-

bels for a statement aggregated by means of sum

as raw labels are in [−2, 2]) perform at a similar

level of accuracy (GloVe: 64.5%; BERT: 63.52%;

word2vec: 62.9%; crowd: 55.3%). Thus, in the

following we only report the results obtained on

the most effective ML model.

Next, we explore the opportunity of combin-

ing these approaches for truthfulness classification

by leveraging confidence-based combinations as

well as involving scarce expert annotator resources

when most beneficial.

4.2 ML and Crowd Confidence

Figure 1 shows both the ML (i.e., GloVe) and

crowd confidence for the non-aggregated labels

with a breakdown on the correctly and not cor-

rectly classified statements. Note that the ML and

crowd confidence scores are shown in two sepa-

rate plots since they are on two separate and not

comparable scales: ML confidence scores are ob-

tained from the bootstrap techniques applied to the

soft-max layer of the ML algorithm which returns

values in the [0.5, 1] range, while the crowd confi-

dence score is self-reported by each crowd worker

on a [-2,2] scale. As we can see from Figure 1,

ML confidence scores are almost always slightly

lower on average for statements in which ML de-

cisions are wrong and higher when ML correctly

classify them (i.e., easy statements), even if such

differences are small and not statistically signif-

icant. We see that crowd confidence shows the

same behavior. Thus, answering RQ1, it seems

raw confidence scores may be a weak signal indi-

cating accurate classification decisions, thus lead-

ing to risks of undetectable classification errors

(i.e., unknown unknowns) especially for the case

of non-expert human annotators.

We now look at the confidence scores for the

aggregated crowd labels; these confidence scores



Figure 1: ML and explicit crowd confidence scores for raw crowd labels over correct and incorrect truthfulness

classifications.

Figure 2: ML (left) and crowd confidence; both explicit (center plot) and implicit (right plot) for aggregated labels

over ground-truth classes.

are obtained by taking the average value for each

statement over all the workers who assessed it.

Figure 2 shows, similarly to Figure 1 but with a

breakdown on statement truthfulness rather than

the correctness of its classification, the confidence

for both ML and crowd truthfulness classification

decisions.

As we can see from the plots, the mean con-

fidence score for the ‘true’ statements is higher

(although not significantly different according to a

Mann-Whitney test) than the confidence score on

the ‘false’ statements for confidence scores; on the

contrary, for ML confidence scores the aggregated

confidence scores are slightly higher (although not

significantly different either) for the ‘false’ state-

ments. This indicates that, similarly to what was

observed for Figure 1, it seems that aggregated

confidence scores are a weak signal indicating ac-

curate classification decisions, and it should not be

used as it may lead to undetectable classification

errors.

We now move to study the relationship between

ML and aggregated crowd confidence scores, to

see if they are correlated and if one confidence

score can act as a proxy for the other. Figure 3

shows on the x-axis the aggregated crowd confi-

dence scores, on the y-axis the ML confidence;

each dot is a statement; the different colors in the

plot highlight a breakdown on either correctly and

incorrectly classified statements by both the ML

and the crowd. As we can see by inspecting the

plots as a whole, both implicit and explicit crowd

confidence show the same behavior when com-

pared to ML confidence. Moreover, as we can see

from inspecting the plots individually, the confi-

dence scores for the statements correctly classified

by both human and machine methods are spread

across the plot; this is a further confirmation that

trusting both ML and crowd confidence scores can

lead to classification errors. If we now focus on

the top-right and bottom-left part of the plots, we

see that it contains dots of different colors; this in-

dicates that even when both methods have either

a high (top-right) or low (bottom-left) confidence

scores the accuracy is similar. Again, this is a fur-

ther confirmation of phenomena observed so far

which indicates that both ML and crowd confi-

dence scores should not be trusted.



Figure 3: ML versus explicit (left plot) and implicit (right plot) crowd confidence with a breakdown on classifica-

tion errors.

Summarizing the results observed so far, we

can conclude that both ML and crowd confi-

dence scores should be inspected carefully and

not blindly trusted, as they can lead to classifi-

cation errors. Furthermore, we observed a pecu-

liar but interesting behavior for crowd confidence

scores; both explicit (i.e., the scores submitted by

the workers) and implicit (i.e., the ones automat-

ically derived by considering the standard devi-

ation of the truthfulness labels as submitted by

the workers) confidence scores show a very sim-

ilar behavior when compared to ML confidence

scores; thus, this set of preliminary results hints

that implicit confidence scores can act as a proxy

for explicit scores if the aim is to compare them

with ML scores. Thus, researchers and practition-

ers can avoid asking for explicit confidence scores

if their focus is on accuracy and comparison with

ML confidence scores, reducing the effort required

by the crowd workers when performing the task.

To verify if this conjecture holds in general,

we compared the explicit and implicit crowd con-

fidence scores. Similarly to Figure 3, Figure 4

shows on the x-axis the aggregated crowd implicit

confidence scores, and on the y-axis the aggre-

gated crowd explicit confidence scores; each dot

is a statement; the different colors in the plot high-

light a breakdown on either correctly and incor-

rectly classified statements. As we can see from

the plot, while implicit and explicit crowd confi-

dence scores show a very similar behavior when

compared to ML confidence (see Figure 3), we

can see that the two measures are not correlated,

Figure 4: explicit versus implicit crowd confidence

with a breakdown on classification errors.

and each statement shows a different implicit and

explicit scores. Thus, if the focus of research and

practitioners is purely on crowd confidence scores,

implicit and explicit ones are substantially differ-

ent. In the following we will focus on the rela-

tionship between effectiveness and confidence of

the models, to investigate which crowd confidence

scores provide a more informative signal when re-

lated to effectiveness.

We now turn to investigate whether the confi-

dence and effectiveness of the methods used to

predict the truthfulness of the statements are re-

lated. To this aim, we break down the confidence

scores into quartiles and for each quartile we plot

the accuracy of the considered method. Figure 5



Figure 5: Confidence versus accuracy: group state-

ments by quartiles of confidence scores and plot 4

points; both for ML and crowd.

shows the results, by displaying in the x-axis the

confidence quartile, and in the y-axis the corre-

sponding accuracy score; each series represent ei-

ther the ML or crowd effectiveness scores. As we

can see from the plot, there is no apparent clear

pattern for all the series, even though it appears

that the ML effectiveness scores overall observe a

slight increase as the confidence scores itself in-

creases, while the crowd scores, and in particu-

lar the implicit ones, observe a slight accuracy de-

crease while confidence increases.

Answering RQ2, we can see from the plots in

Figure 3 and focusing on the yellow and blue state-

ments, that there are many statements for which

one of the two methods (i.e., ML or crowd) results

in correct classification decisions, but the other

method does not. Furthermore, Figure 5 shows

that there is no clear signal that an increase in con-

fidence is related to an increase in accuracy scores,

for both ML or crowd.

While this negative results hint that it appears

challenging to make use of confidence scores to in-

crease the effectiveness of such methods and iden-

tify the cases where one of the two methods (i.e.,

ML or crowd) results in correct classification deci-

sions but the other method does not, this set of re-

sults suggests the opportunity to investigate those

signals in order to build an effective human-in-the-

loop system which combines non-expert human

and machine truthfulness classification together to

obtain better quality decisions. We will discuss

such approach in the following.

4.3 Can Confidence Be Leveraged?

Having studied the signal provided by both the ML

and crowd confidence scores, we now investigate

if such signals can be leveraged to improve the

classification accuracy and the label quality when

assessing the truthfulness of statements.

To this aim, and to answer RQ3 about the po-

tential involvement of experts, we perform the

experiment as detailed in the following. Start-

ing from the original dataset, for both ML and

crowd, we replace the labels (i.e., the classifica-

tion decisions for statements) that have the lower

confidence scores with their corresponding ground

truth label (i.e., the label as provided by the ex-

perts, which we assume to be always correct).

Then, we re-compute the effectiveness of either

the ML or crowd approach, measured by accuracy.

To ensure a fair comparison, we also report the ef-

fectiveness of two baselines to compare against:

the replacement with the ground truth label for a

random statement in the dataset (repeated 50 times

to remove random fluctuations of the series), and

the replacement of the statements according to an

oracle, which always replaces the statement that

lead to obtain the highest increase in effectiveness.

While the former baseline represents the average

random case, the latter represents the optimal re-

placement selection strategy.

Figure 6 shows in the x-axis the number of

statements which have been replaced in the orig-

inal dataset, and in the y-axis either the ML or

crowd accuracy scores; the three series represent

the oracle, the random choice, and our strategy

based on replacing the statements according to

their confidence scores, replacing the ones with

lower confidence first. As we can see focusing on

the plot on the left side of Figure 6, the ML effec-

tiveness increases as the replacements are done by

removing the statements with lower confidence;

we can also see that such strategy is always on

average as effective as the random selection strat-

egy, or even worse for same data points; both se-

ries are far less effective than the oracle. This re-

sults suggests that ML confidence can not act as

a proxy for effectiveness, and thus it can not be

leveraged (at least not in a naive way) to increase

the model accuracy. This is not a definitive re-

sult and it suggest that there is room for improve-

ment and it can be seen as an opportunity to study

and develop novel methods to leverage confidence

scores with the aim of identifying mis-classified

statements and improving the overall model effec-

tiveness. We leave for future work the analysis

of more sophisticated approaches based on confi-



Figure 6: ML (left) and crowd (explicit, center; implicit, right) accuracy after replacing their labels with expert

labels for statements (i) selected by an oracle (maximizing accuracy on each replacement), (ii) with lowest confi-

dence, or (iii) uniformly at random.

dence or other signals. As we can see from the

plot on the center of Figure 6, the same phenom-

ena can be observed for crowd aggregated scores

when explicit confidence scores are used. On the

contrary, the situation changes when implicit con-

fidence scores are used, as it can bee seen by in-

specting the plot on the right side of Figure 6; such

plot shows that, as the number of replacements

grows, the accuracy of the methods grows and

slightly over-performs the random replacement of

statements. This is a positive result as it suggests

that implicit confidence signals from crowd work-

ers can be leveraged to increase the effectiveness

of such method when employed to classify misin-

formation statements. These results are consistent

with our previous observation on the lack of signal

in ML confidence scores and that of previous work

(Gadiraju et al., 2017; Li and Varshney, 2017) in-

dicating that self-reported reliability is not accu-

rate in crowdsourcing (i.e., highly confident crowd

workers often make mistakes).

5 Conclusions and Future Work

In this paper we studied how ML and non-expert

crowd workers classify the truthfulness of state-

ments. To the best of our knowledge, this is

the first attempt to study a human-in-the-loop

pipeline for truthfulness classification which in-

volves machines, non-experts (crowd workers),

and experts (fact-checkers). In particular, we fo-

cused on both accuracy and confidence of the dif-

ferent approaches. We looked at both the accuracy

and confidence signals alone, and we also stud-

ied their combination and their correlation; finally,

we looked at identifying potential ways to lever-

age such signals and to combine them in order to

improve the effectiveness of the classification de-

cision process.

Our results show that, while ML and crowd

confidence scores are not related to effectiveness,

they can be leveraged to increase the effective-

ness of the misinformation system. In this re-

spect, implicit crowd confidence is a better indi-

cator of effectiveness than crowd workers’ self-

reported confidence. We have also observed that

ML and non-expert crowd workers make differ-

ent mistakes, and their predictions do not agree

in general. This result opens up to the opportu-

nity of identifying more effective ways to com-

bine these two approaches to increase the effec-

tiveness of misinformation detection systems. Fi-

nally, we have shown that crowd workers and in

particular their confidence scores can be leveraged

to increase the effectiveness of systems when ex-

perts fact-checkers are brought into the loop in the

cases where automatic ML or non-expert crowd

workers are not confident on the submitted labels.

While our preliminary results are promising,

there is still large room for improvement in mak-

ing the most out of limited expert annotator re-

sources; we believe this work is a first step to-

wards the identification of signals for building an

effective human-in-the-loop pipeline for misinfor-

mation assessment.
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