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Abstract: Human-induced pluripotent stem cells (hiPSCs) are reprogrammed cells that have

hallmarks similar to embryonic stem cells including the capacity of self-renewal and differentiation

into cardiac myocytes. The improvements in reprogramming and differentiating methods achieved

in the past 10 years widened the use of hiPSCs, especially in cardiac research. hiPSC-derived

cardiac myocytes (CMs) recapitulate phenotypic differences caused by genetic variations, making

them attractive human disease models and useful tools for drug discovery and toxicology testing.

In addition, hiPSCs can be used as sources of cells for cardiac regeneration in animal models.

Here, we review the advances in the genetic and epigenetic control of cardiomyogenesis that

underlies the significant improvement of the induced reprogramming of somatic cells to CMs;

the methods used to improve scalability of throughput assays for functional screening and drug

testing in vitro; the phenotypic characteristics of hiPSCs-derived CMs and their ability to rescue

injured CMs through paracrine effects; we also cover the novel approaches in tissue engineering for

hiPSC-derived cardiac tissue generation, and finally, their immunological features and the potential

use in biomedical applications.
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1. Introduction

Cardiovascular disease (CVD) and heart failure (HF) still represent the major causes of mortality

and morbidity in the Western world [1]. CVD and HF can arise from myocardial infarction

(MI) [2], chemotherapy-derived cardiotoxicity [3], and congenital defects [4] affecting cardiac function.

The pathological basis is mainly related to the very limited ability of the heart to withstand injury

and aging, which is due to insufficient cardioprotection combined with almost the complete lack

of myocardial renewal. In such scenarios, cardiac transplantation still represents the ultimate

therapeutic option for HF, although it is severely hindered by the short supply of available donor

hearts. This also translates into an economic burden for national health institutions, as more than

a million hospitalizations due to HF are annually reported in the EU alone [4]. Cell-based cardiac

tissue engineering strategies could provide regenerative therapeutic options and if these strategies

utilize autologous cells, the limitations derived from biocompatibility and immune response would be

surmounted. Recently, the development of reprogramming technology in 2006 in Yamanka’s lab [5] and

Cells 2018, 7, 48; doi:10.3390/cells7060048 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0002-4473-4909
https://orcid.org/0000-0003-1076-0823
https://orcid.org/0000-0002-3529-2790
http://www.mdpi.com/2073-4409/7/6/48?type=check_update&version=1
http://dx.doi.org/10.3390/cells7060048
http://www.mdpi.com/journal/cells


Cells 2018, 7, 48 2 of 31

the knowledge acquired in the cardiac specification and differentiation makes the potential replacement

of the lost cardiomyocytes (CMs) more feasible. Indeed, the ability of human-induced pluripotent

stem cells (hiPSCs) to differentiate into autologous tissue-specific cells, similar to embryonic stem cells

(ESC), but without the need to destroy a human embryo, is an important breakthrough in human stem

cell biology [6]. A number of pre-clinical studies have explored the effects of intramyocardial injection

of hiPSCs derived cardiomyocytes into murine and porcine models of MI (a complete recent list of

pre-clinical studies is provided in Lalit et al. [7]). Nelson et al. [8] showed that the intramyocardial

injection of iPSC-derived CMs into a murine model of acute MI determined an improvement in

the clinical outcomes four weeks after permanent coronary artery ligation. Thereby, hiPSCs have

demonstrated significant potential as a tool in regenerative medicine.

Here, we review the recent advances in our understanding of the induced reprogramming of

somatic cells to CMs. Starting from the growing understanding of heart development and from new

insight in the epigenetic control of cardiac differentiation, we covered the progressions obtained in the

cell culture approach and in the differentiation methods, the analysis of the secretoma of the hiPSCs

differentiated cell, the new advances in hiPSC-derived bioengineered cardiac tissues, the exploitation

of iPSCs-CMs for the in vitro modeling of cardiac diseases or for cardiac safety testing of drug and,

finally, the immunological concerns associated with their clinical application.

2. Regulatory Pathways and Epigenetic Control of Cardiomyogenesis

Since hiPSCs can play a role in the therapeutic approach of CVD, a comprehensive understanding

of the regulatory pathways that expand and functionally differentiate cardiac cells from their

multipotent mesoderm precursors is required. Advances in cardiac progenitor cell biology are relevant,

indeed, for the development of translation studies employing hiPSCs derived cells, since the possibility

to obtain a near homogenous population of cardiac cells should help to minimize teratoma formation

following cell transplantation.

The major steps of heart development are conserved between humans and other mammalians.

This step by step complex (that have already been thoroughly reviewed in [9,10]) consists of a

conserved regulatory network of transcription factors and signaling pathways that control specification,

maturation, and maintenance of each of the multiple highly specialized myocardial lineages

(ventricular, atrial, and conduction system cells).

2.1. Mesoderm Induction, Cardiac Specification, and Differentiation

During embryonic development, the formation of the nascent mesoderm requires the spatially and

temporally regulated expression of Wnt, BMP, and Nodal/Activin pathway molecules. These factors

regulate the entrance and the migration of the epithelial cells in the gastrulating epiblast, resulting in

the generation of mesodermal cells marked by the expression of Brachiury T (Bry) [9].

Subsequent fate restriction of mesodermal precursors toward CV and hemopoietic progenitors can

be identified by the expression of other specific factors. Indeed, the heart forms soon after gastrulation

in the anterior mesoderm adjacent to the endoderm, whereas blood cells arise from the posterior

mesoderm. Since bone morphogenetic proteins (BMPs) 2 and 4 are expressed in the lateral endoderm

along the entire anterior-posterior axis, whereas heart induction is restricted to the anterior part,

this implies that additional factors are required for the cardiac commitment of the undifferentiated

mesodermal cells. One key gene in heart development is the mesoderm posterior 1 (Mesp1), which is

considered the “master regulator” of cardiac progenitor specification [11–13]: in fact, it drives cardiac

differentiation via the DKK1-mediated inhibition of Wnt signaling [13]. Mesp1 has been correlated with

the definitive cardiac commitment by activating the expression of CV lineage defining transcription

factors such as Nkx2.5, Isll, and myocardin.

Once these myocardial precursors have fully committed, it is necessary to activate the Wnt

pathway to facilitate the full maturation into differentiated CMs [9,11,13].
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2.2. The Wnt Signaling

The neuronal tube and the adjacent notochord are potent sources of signals that repress

cardiogenesis in the neighboring mesoderm. In particular, Wnt genes are highly expressed by the

neuronal tube. Wnt proteins bind the frizzled receptors that block glycogen synthase kinase-3

(GSK3). This enzyme, when active, phosphorylates the β-catenin, resulting in its degradation

by ubiquitin-mediated proteolysis. Thereby, Wnt signaling blocking GSK3 activity prevents the

degradation of β-catenin that is able to move from the cytoplasm to the nucleus where it activates the

Wnt target genes. In this way, Wnt signaling blocks cardiogenesis in the posterior mesoderm. On the

other hand, Wnt signaling must be blocked to permit the heart development from the Mesp-1+ cells in

the anterior mesoderm. Crescent is a family of proteins that share homology with the extracellular

part of the Wnt receptor. Crescent is present in the anterior part of the mesoderm where another Wnt

antagonist, DKK-1 is also expressed: in this way, the anterior mesoderm becomes permissive for heart

formation interfering with the signal of Wnt [14,15].

2.3. Epigenetic Regulation of Human Cardiac Differentiation

During cardiac differentiation, cells express specific genes in a temporal and spatially accurate

manner. The development of the mammalian heart is indeed dependent on the activation of

a gene program regulated by specific histone modifications, nucleosome remodeling, and DNA

methylations [16]. The epigenetic modifications that occur across the genome induce a chromatin

pattern that is coordinated with the stage-specific expression of cardiac genes. This temporal evolution

of histone modifications is a chromatin “signature” [17,18].

Table 1 summarizes the recent advances in epigenetic control of human cardiogenesis and cardiac

differentiation. The histone modifications mainly include methylation or acetylation/deacetylation

(by histone acetyltransferases or HAT and deacetylates or HDAC), whereas the DNA methylation

involves the covalent transfer of a methyl group to the C-5 position of the cytosine ring by DNA

methyltransferases (DNMTs). Short stretches of CG are often found at the gene promoter and

their hypermethylation can facilitate the methyl binding domain association and the recruitment of

chromatin remodelers for gene silencing and repressive histone modifiers [19]. The H3K4 methylation

levels are fundamental for cardiac physiological function [18] as well as the removal of H3K29me3

activates the cardiac specific transcription factors Gata4, Nkx2.5, Srf and Tbx5 [20]. On the other

hand, histone methyltransferases (HMTs) Smyd1 and WHSC1 are involved in CMs maturation [21].

Thompkins et al. [22] reported that DNMT1 expression decreases from cardiac mesoderm to CM stages,

instead DNMT3A expression increases from ESC to primitive mesoderm stages.

Gilsback et al. [23] investigated DNA methylation in murine CMs and ES cells as a model for

undifferentiated cell type. They showed that CMs have a short region of low DNA methylation

in comparison with ES and these demethylated regions contained binding motifs for tissue-specific

transcription factors. Some of the longest demethylated regions were identified in the cardiac ryanodine

receptor (RYR2), titin (TTN), and in the α1C-subunit of the L-type Ca2+ channel.

Recently, it has been reported [24] that troponin T2 is highly expressed in CMs from fetal to adult

stages and it shows sequential loss of CpG methylation (mCpG) and a promoter enrichment of active

histone marks such as H3K9ac, H3K27ac, H3K4me3 and a genic enrichment of H3K36me3. Instead

the Troponin I1 expressed at the fetal stage is silenced postnatally and, at the same time, a loss of

both de novo mCpG and histone active marks occurs. Increase of expression of genes essential for

myofibril (i.e., ACTN2, DES, CASQ2, MYH6, MYH7), sarcomere structure (i.e., ADRB1, HEY2, GATA4)

and for regulation of the contraction (i.e., RYR2, S100A1, ATP2A2) is a consequence of the loss of

mCpG. Changes in mCpG is accompanied by changes in histone marks. Demethylated region during

maturation gained the active histone marks H3K27ac, H3K4me3, H3K36me3 and H3K9ac, whereas

hypermethylated region showed a loss of these marks [24].

The role of epigenetic factors in controlling the cardiac lineage differentiation and specification

is widely described and exploited to improve the cardiac differentiation of hiPSCs. 5-Azacytidine,
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an inhibitor of DNA methylation, promotes cardiac differentiation in ES and adult mesenchymal stem

cells [25].

Recently, the long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides

that are not translated into protein, have gained widespread attention as potentially new and crucial

regulators of cardiac differentiation [21]. In particular, lncRNA Braveheart seems to play a central role

in cardiac differentiation, stimulating and maintaining CMs lineage commitment [21,26–28], while the

lncRNA Fendrr, expressed specifically in embryonic lateral mesoderm, regulates heart development,

most likely by modifying the chromatin signature of genes encoding transcription factors that direct

cardiomyocyte differentiation [29].

The post-transcriptional regulation of the cardiac gene program also involves the microRNAs

(miRNAs), non-coding RNAs of about 22 nucleotides in length that generally interact with the 3′

untranslated region (3′UTR) of mRNA target. This mode of pairing usually negatively regulates the

translation of the target through the repression of the initial ribosome binding to the mRNA or the

ribosome drop-off [21]. The analysis of miRNA expression in cardiomyocyte progenitor cells (CMPCs)

showed that 188 miRNAs were detectable in proliferating CMPCs and 195 in differentiated CMPCs

such as miR1, miR1-2, miR499, miR322, miR503, miR208, miR133, and miR26b [30–34]. MiR-208,

together with miR-1, miR-133, and miR-206, are called myomiRs as they are expressed specifically in

the heart and skeletal muscles. While miR-208 is expressed only in the heart, mir-206 is skeletal muscle

specific [35]. Recently, the role of the miRNAs (in particular the let-7 family) during CM maturation

has been also described [36].

Table 1. Recent advances in epigenetic control of human cardiogenesis and cardiac differentiation.

Epigenetic
Modifications

Name Action Reference

Histone
acetylation

Histone
acetyltransferase (HAT)

P300 is essential for cardiac development.
It contributes to Gata4, Srf, Mef5c expression. P300
knockout mice are embryonically lethal

[37]

Histone
deacetylase (HDAC)

Mice lacking both HDAC1 and HDAC2 show
neonatal lethality due to arrhythmias and dilated
cardiomyopathy

[38]

Inhibitors of HDAC
Trichostatin A promotes cardiac
differentiation increasing expression of
Gata4, Mef2c and Nkx2.5

[25]

H3K9ac and H3K27ac
In CMs from fetal to adult stages, TNNT2 shows a
sequential enrichment of active histone markers
such as H3K9ac and H3K27ac

[24]

Histone
methylation

Histone
methyltransferases

(HTMs)

Loss of HMT Smyd1 is embryonic lethal, because
mice show right ventricular hypoplasia and
impaired cardiomyocyte maturation.

[21]

HTM WHSC1 is involved in Nkx2.5 repression via
H3K3me37.

Histone demethylase
(HDMs)

The HDM UTX removes H3K29me3 activating the
cardiac transcription factors Gata4, Nkx2.5, Srf,
Tbx5. Mice lacking UTX show severe
heart malformation.

[20]
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Table 1. Cont.

Epigenetic
Modifications

Name Action Reference

Histone
methylation H3K4me and H3K27

H3K4 methylation levels are fundamental in
murine CMs. A loss of H3K4 methylation can
result in intracellular calcium modifications and
increased contractility

[18]

FGF19 and NODAL genes show high levels of
H3K4me3 and H3K27me3 in undifferentiated ESC
and low levels during the differentiation

[17]

Cardiac transcription factorsGata4, Wnt2, Tbx2,
Nkx2.5 show high levels H3K27me3 during the
pluripotency that decrease during differentiation,
in the same time there is a gradual increase in
H3K36me3 and H3K4me3

Wnt, Hedgehog, TGFβ family, VEGF, FGF family,
PDGF(pathways involved in cardiac
differentiation) show a stage-specific repression by
H3K27me3 and activation by H3K36me3 and
H3K4me3

DNA
methylation

DNA methyl transferase
(DNM)

DNMT1 expression decreases from mesoderm to
CM stage while DNMT3A increases from ESC to
primitive mesoderm stage. WNT and TGF-β genes
undergo promoter methylation changes, the latter
pathway became hypomethylated and upregulated
in CM stage, whereas generally WNT genes
acquire promoter methylation

[22]

Inhibitors of DNA
methylation

5-Azacytidine promotes cardiac differentiation in
ES and adult mesenchymal stem cells

[25]

mCpG

In CMs from fetal to adult stages, TNNT2 shows a
sequential loss of mCpG, instead fetally expressed
TNNI1 is silenced postnatally and there is a loss of
de novo mCPG.

[24]

Comparison of mCpG changes during
development of fetal and maturation of infantile
CMs showed a predominant loss of mCpG

Changes in mCpG is accompanied by changes in
histone marks. Demethylated region during
maturation gained the active histone marks
H3K27ac, H3K4me3, H3K36me3 and H3K9ac,
whereas hypermethylated region showed a loss of
these marks

Long
non-coding

RNA
Braveheart

Braveheart is an activator of Mesp1, Gata4, Nkx2,5,
TBx5, Hand1. Braveheart acts upstream Mesp1 and
regulates the temporal activation of cardiac genes
through modulation of Mesp1 itself

[27]

Braveheart interacts with SUZ12 that acts as a
histone methyltransferase.

Braveheart induces the differentiation of murine
bone-marrow-derived mesenchymal cells into cells
with a cardiogenic phenotype.It increases
sarcomeric α-actin and cardiac troponin T
expression and the upregulation of Gata4, Nkx2.5,
Isl-1 and Mesp1.

[28]
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Table 1. Cont.

Epigenetic
Modifications

Name Action Reference

Long
non-coding

RNA
Fendrr

Fendrr Interacts with PRC2 and Trg/MLL complex to
modulate the chromatin signature of pitX2 and Foxf1.

[29]

Loss of Fendrr affects the expression of Nkx2.5 and
Gata4. Fendrr knockout is embryonic lethal in mice
due to defect on the heart septum.

[29]

MicroRNAs

miR-1, miR-499

miR-1 controls myogenic differentiation in mouse heart

[30]

miR-499 is a cardiac specific miRNA

miR-1 and miR-499 enhance the cardiac
differentiation of cardiomyocyte progenitor cells,
probably targeting Sox6 with a consequent increasing
of α-cardiac actinin and cardiac troponin T

Inhibition of miR-1 and miR-499 blocks cardiac
differentiation.

miR-322/-503 cluster

miR-322/-503 cluster encodes in an intergenic region
on the X-chromosome and increases Nkx2.5, Mef2c,
Tbx5, α-MHC inducing CM differentiation, probably
targeting Celf1, whereas their deletion reduces the
expression of cardiac markers

[33]miR-322/-503 cluster acts by the repression of their
target Celf1, that lead the ESC to the neuronal
differentiation: it is likely that the miR-322/-503
cluster promotes the cardiac differentiation
impairing the neuronal through Celf1 inhibition

miR-208
miR-208 is involved in the regulation of myosin
heavy chain isoform switch during developmental
and pathophysiological condition.

[35]

miR-1-2

miR-1-2 induces cardiac differentiation of murine
bone marrow-derived mesenchymal stem cells by
Wnt signaling pathway

[34]

Transfection with miR-1-2 increases expression of
Nkx2.5, Gata4, cTnI

miR-133
miR-133 together with Gata4, Tbx5 and Mef2c
improves cardiac reprogramming from human or
murine fibroblast, by repressing Snai1

[30,32]

miR-26b
miR-26b promotes cardiac differentiation of P19 cells, by
regulating canonical and non-canonical Wnt pathway.
It represses the expression of Wnt5a and Gsk3β

[31]

let-7

let-7 family is upregulated during in vitro human
cardiac differentiation.

[36]

The overexpression of members of let-7 family for 2
weeks in hESC derived CMs increases contractile
force, cell size, sarcomere length and action potential
duration. Knockdown of let-7 results in a reduction
of sarcomere length and expression of cardiac
maturation markers. Let-7 family probably acts
downregulation two of its targets, IRS2 (a member of
insulin signaling pathway) and EZH2 (a histone
methyltransferase that can regulate gene expression)
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2.4. The “Epigenetic Memory” in hiPSCs Differentiation Potential

Although hiPSCs can be generated from different somatic cells (fibroblasts, peripheral blood

cells, keratinocytes), they maintain a residual DNA methylation signature transmitted from the

parental cells, known as “epigenetic memory”, leading them to differentiate preferably into their

original cell line [39–41]. Sanchez-Freire studied the contribution of epigenetic memory on the

differentiation potential and maturity of hiPSCs derived from cardiac progenitor cells (CPC-hiPSCs)

and dermal fibroblasts (Fib-hiPSCs). They found that Fib-hiPSCs had higher methylation levels of

a region immediately upstream of the first coding exon of Nkx2.5 when compared to CPC-hiPSC.

This evidence seems to suggest that the incomplete resetting of the pre-existent epigenetic state

contributes to increased differentiation efficiencies and to the enriched cardiac gene expression

observed in CPC-hiPSCs [42].

3. Generation of CMs from hiPSCs Culture

The number of protocols that derive CMs from hiPSCs have increased exponentially over the

past decade and the differentiation protocols were modulated to generate mainly atrial-, ventricular-,

and nodal-like CM subtypes. Important advances have been achieved in chemical-based cardiac

differentiation, cardiac subtype specification, large-scale suspension culture differentiation, and the

development of chemically defined culture conditions. These protocols of hiPSCs require key steps for

the differentiation progression that have already been thoroughly reviewed [9,43,44].

In vitro differentiation of hiPSCs into CMs, regardless of the methodological approach,

should mimic the sequential steps of in vivo embryonic cardiac development providing temporal

administration of molecules that regulate specific signaling cascades: the activation of the canonical

Wnt signaling induces the early primitive streak/mesoendoderm stage and the following inhibition of

the same pathway at a later stage allows it to achieve the cardiac mesoderm specification [9,43,44].

Three main culture approaches have been described for small scale hiPSCs-CMs generation: (i) the

co-culture of the hiPSCs with the inducing visceral endodermal cell line END-2. This was the first

system used, but was also the least efficient one [10]; (ii) the embryoid body formation assay (EB)

based on a three dimensional (3D) aggregation system; and finally (iii), the monolayer culture system

used in many labs even if with different protocols. Large-scale cell cultures rely on culturing cells in

dynamic suspension systems such as spinner flasks and bioreactors. A summary of the hiPSCs-CMs

generation is reported in Table 2.

Table 2. Overview of selected protocols for in vitro hCMs generation.

Differentiation
Condition

Inductive
Factors

Beating
Starting

Efficiency
CM

Subtypes
Functional

Assays
Ref

EB Formation-Based Culture

Static
suspension

culture

Activin A,
BMP4, VEGF,
DKK1, bFGF,

Ascorbic Acid

Day 10
40–50% (cTNT

day 14–16)
atrial,

ventricular

Extracellular
electrical activity,

Patch clamp
analysis, Cell

transplantation

[45]

Static
suspension

culture

Activin A,
BMP4, IWR-1,
Ascorbic Acid,

Blebbistatin

Day 7
100% beating

EBs day 15 90%
cTNT day 21

Ventricular

Extracellular
electrical activity,

Patch clamp
analysis, Optical

mapping of
membrane
potential

[46]
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Table 2. Cont.

Differentiation
Condition

Inductive
Factors

Beating
Starting

Efficiency
CM

Subtypes
Functional

Assays
Ref

EB Formation-Based Culture

Forced
aggregation (96

well)

Activin A,
BMP4, VEGF,
SCF, WNT3a

Day 9
96% beating EBs

day 10 27%
Nkx2.5 day 10

n.a.

Extracellular
electrical activity,

Patch clamp
analysis

[47]

Forced
aggregation (96

well and
AggreWell)

Activin A,
BMP4, bFGF,

Lipids, Insulin,
CHIR, IWP-2

Day 6
100% beating
EBs day 6 50%

cTnT day 6
ventricular

Extracellular
electrical activity,

Patch clamp
analysis,

Intracellular
calcium transient

imaging

[48]

Monolayer Culture

Monolayer Activin A, BMP4 Day 12
50% MHC day

21
n.a.

Transplantation to
the heart

[49]

Monolayer-sandwich
Activin A,

BMP4, bFGF
Day 7 90% cTnT day 30 Mixed

Patch clamp
analysis,

Intracellular
calcium transient

imaging

[50]

Monolayer
BMP4, bFGF,
CHIR, IWP-2,
Ascorbic Acid

Day 6 90% cTnT ventricular

Extracellular
electrical activity,

Patch clamp
analysis,

Intracellular
calcium transient

imaging

[48]

Monolayer CHIR, IWP-2 Day 7 98% cTnT day 15

Mixed
(atrial
and

ventricular)

Patch clamp
analysis

[51]

Monolayer
CHIR,

WNT-C59,
Ascorbic Acid

Day 7 90% cTnT Mixed

Extracellular
electrical

activity-based
nanopillar

recording, Patch
clamp analysis

[52]

Monolayer
CHIR99021,
IWR-1, T3,

Dexamethasone

80%
colocalization of
sarcomeric alpha

actinin and
Junctophilin 2

Mixed

T Tubule staining,
Paced Calcium

Transients,
Calcium Kinetics
and contractility

[53]

Suspension Large Scale Culture

Matrix-dependent
aggregates/Rocker

culture
CHIR, IWP2 Day 7

65%
(cTnT/day 12)

n.a. Toxicology assay [54]

Matrix-dependent
aggregates/EB

formation/spinner
flasks

SB203580 Day 10
80% (beating

EBs/day 16) 20%
(MHC/day 16)

n.a.
QT prolongation

assay and CM
toxicity test

[55]
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Table 2. Cont.

Differentiation
Condition

Inductive Factors
Beating
Starting

Efficiency
CM

Subtypes
Functional

Assays
Ref

Suspension Large Scale Culture

Matrix-independent
aggregated/

Erlenmeyer Flask
and bioreactor

CHIR, IWP2
Day 6–7

84% (cTnT,
MHC/day 10)

80–90%
ventricular

Bioartificial
cardiac tissue

generation, Patch
clamp analysis,

Extracellular
electrical activity

[56]

Matrix-independent
aggregated/Spinner

flask

CHIR, IWR-1,
SB431542,

Purmorphamine
Day 7

>90%
(cTnT/day 15)

n.a.

Extracellular
electrical activity,

Patch clamp
analysis

[57]

3.1. EB Formation-Based Differentiation Protocol

EBs are round, multi-cellular, 3D aggregates formed by hiPSCs and are able to differentiate into

cells of all three germ layers including beating cardiomyocytes with low efficiency in the presence

of fetal bovine serum [58,59]. In 2008, Yang et al. [45] established a three-step serum-free protocol

characterized by subsequent supplementation of several cytokines (Activin A, BMP4, VEGF, DKK1,

and bFGF) that resulted in a more efficient differentiation of the EBs into CMs. It became evident,

however, that each hiPSC line needed optimal concentrations and timing of the administration of

Activin A and BMP4, which are the factors responsible for the crucial step of mesodermal induction.

Recently, the discovery of the biological effects induced by the small molecules pushed scientists

to apply them in stem cell biology. Karakikes et al. [46] increased the efficiency of beating iPSCs-CMs

production by modifying Yang’s protocol [45] with the addition of the small molecules. Interestingly,

the small molecule IWR-1, an inhibitor of the Wnt signaling pathway, caused all CMs to exhibit a

typical ventricular-like phenotype, while the application of recombinant protein DKK1 generated a

heterogeneous population that consisted of atrial-, ventricular-, and nodal-like phenotypes.

However, the lack of uniformity in EB size, resulting in nonhomogeneous and asynchronous

differentiation of the residing cells may hamper their effective employment in regenerative medicine.

In 2007, Burridge et al. [60] modified the CMs differentiation protocol based on EB formation by

introducing the forced aggregation technique, which was later improved using different engineered

2D and 3D technology to obtain controlled-size EBs [47,61].

More recently, Zhang et al. [48] combined the various specific advantages of existing protocols:

EBs formation was performed by forced aggregation in serum-free medium supplemented with growth

factors and small molecules. Interestingly, cardiac differentiation in the serum and serum/albumin-free

basal media was improved by insulin supplementation during EBs formation, that resulted in 100%

beating EBs, which were mostly ventricular or early ventricular-like cells. This differentiation method

was easily translated to large scale CM differentiation by the generation of EBs and subsequent

differentiation in static or dynamic suspensions [48].

3.2. Monolayer Culture-Based Differentiation Protocol

Although the 3D EBs format reproduces some aspects of the in vivo tissue architecture,

the monolayer format is generally considered more reproducible and, in principle, a more suitable

approach for the scale-up for clinical purposes. A 2D system guarantees, indeed, a more homogeneous

exposure of the cultured cells to the soluble environment and might thus contribute to reducing the

differences in the quality and quantity of CM differentiation between different cell lines. The first

monolayer culture-based CMs differentiation of hESCs was performed by Laflamme et al. [20].

They cultured high-density undifferentiated hESCs as a confluent monolayer on Matrigel-coated plates
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and cells were sequentially treated with Activin A and BMP4; however, the differentiation efficiency

was low and not successfully applicable to numerous other hESC or hiPSC lines. Improvements were

then obtained with a Matrigel sandwich that facilitated epithelial–mesenchymal transition: layering on

the cells a Matrigel overlay one day before the addition of the differentiation medium and maintaining

it during induction with activin A, bFGF, and BMP4 resulted in CM differentiation efficiencies of up to

98% of cTnT positive cells [50].

Recently, Lian et al. [62] and Burridge et al. [52] looked into CMs with high efficiency (>95%

cTnT Positive CMs). Both protocols are based on the application of two small molecules, a Gsk3-

and a Wnt-inhibitor, that sequentially promote mesoderm formation and CM specification at precise

developmental stages. However, unlike Lian’s observations, Burridge et al. [52] reported that albumin

was necessary for CMs differentiation with high yield and purity. Differences between the two studies

included the cell density at the beginning of the differentiation protocol and the concentration and the

exposure windows for small molecules. Indeed, Lian et al. [62] reported that the optimal window for a

Gsk3-and Wnt-inhibitor was from days 0 to 1 and from days 3 to 5, respectively, whereas Burridge et

al. applied the Gsk3 inhibitor from days 0 to 2 and the Wnt inhibitor from days 2 to 4. Lian et al. also

found that reducing the Gsk3-inhibitor concentration and/or treatment time in the absence of albumin

permitted efficient mesoendoderm induction without cytotoxicity [21–23].

More recently, Parikh et al. [53] found that combining thyroid and glucocorticoid hormones

during the cardiac differentiation process on a Matrigel mattress resulted in hiPSCs-CMs

exhibiting T-tubule development, enhanced Ca-induced Ca release, and more ventricular-like

excitation-contraction coupling.

Cao et al. [63] evidenced that hiPSCs cultured with small molecules in combination with growth

factors induced the formation of multipotent cardiovascular progenitors that were able to stably

self-renew and expand as a monolayer under feeder- and serum-free conditions. Most importantly,

these CV progenitor cells retained the potential to efficiently generate CMs, smooth muscle cells,

and endothelial cells in vitro [63]. The identification and isolation of a cardiac precursor cell population

is expected to provide a source of cells for tissue regeneration, while also providing valuable insight

into cardiac development.

3.3. Large-Scale CM Differentiation in Suspension Culture

10 billion hiPSC-CM is the number estimated for primate studies to be required for transplantation

to restore function into infarcted human heart of a single patient. Development of robust,

not expensive, and automated scalable suspension culture methods is required in order to generate

large numbers of clinical grade CMs from hiPSCs. Up to date, several groups have focused on

differentiation of the scale-up expanded hiPSCs to CMs by repeating already established differentiation

protocols. Accordingly, several 3D suspension systems have produced CMs from hiPSCs by using

matrix-dependent (microcarrier-based) and independent (microcarrier-free spheroid-based) systems.

Niebruegge et al. [64] reported that inoculation of hESC size-controlled aggregates obtained combining

suspension bioreactor and micro-contact printing steps led to the emergence of beating EBs after

2 weeks of culture and hypoxia further improved the efficiency of generated contracting EBs to

approximately 50%. Encapsulated hESCs cultured in spinner flasks gave rise to more efficient CMs

compared to their static culture [65].

Microcarriers promoted expansion of hESCs and hiPSCs in spinner flasks and controlled stirred

tank bioreactors [54–66], while hydrogels have been used for developing a scalable 3D culture for

hiPSCs expansion and cardiac differentiation [67].

In order to increase CMs production, Kempf et al. [56] have cultured hiPSCs as matrix-independent

aggregates in a suspension culture which were directly differentiated to CMs according to Lian’s

protocol [62], moving from a static system to rotating Erlenmeyer flasks, then to 100 mL stirred

bioreactors using a cyclic perfusion feeding. The results indicated that the feeding strategy

during expansion of hiPSCs resulted in the formation of approximately 470 µm hiPSCs aggregates
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that, once differentiated in the bioreactor toward the cardiac differentiation, generated 40 million

predominantly ventricular-like CMs with up to 85% purity [56].

Darkins et al. have introduced a new approach for the design of large-scale manufacture of

hiPSC-CMs that used biomechatronic methodology and computer-aided-design tools [68] in order to

understand if certain configurations could be more favorable than others under given boundary

conditions. They compared four different bioreactors with the tissue culture flask-based static

conventional culture protocol to differentiate hiPSCs to CMs, considering several important parameters

involved in large-scale manufacturing. The preferred reactor type was chosen according to a score

matrix with the target specification attributes as discriminating criteria. They showed that stirred tank

bioreactor with submerged culture had the highest score, followed by disposable wave bioreactor and

rotating wall perfusion bioreactor. On the other hand, both the conventional protocol and hollow-fiber

bioreactor had poor scores [68].

4. Morphological and Functional Properties of hiPSCs Derived CMs

Although it has been reported that in general, iPSCs-CMs structurally resemble embryonic

or fetal CMs [10,69], it is well known that hiPSCs-CMs’ maturity depends on the time in culture.

The hiPSCs-CMs phenotype, indeed, is strongly influenced by the timing of the culture and several

groups have classified them as “early” and “late” hiPSCs-CMs. The early-phase characteristics are

typical of the first month after starting the spontaneous beating whereas the late-phase characteristics

develop afterwards [69–71].

Early phase hiPSCs-CMs (within 30–40 days post-induction) resemble embryonic or fetal

mammalian CMs appearing as small (cell area: 400–500 µm2), rounded cells with some proliferative

capacity lacking any discernible organized cardiac structure; immunocytochemical staining for

α-actinin, a cardiac Z-disk protein, revealed poorly organized contractile machinery, characterized

by low myofibril density and orientation, and variable Z-disc alignment [69–71]. They exhibit

spontaneous contractile activity [72,73] and are characterized by a small negative membrane potential

and small action potential amplitude [74,75]. Over the course of the next two months, hiPSCs-CMs

lose their proliferative capacity [76] and change their morphology by becoming larger (cell area:

600–1700 µm2), more elongated, and with a lower circularity index. Like hESC-CMs, these late

hiPSCs-CMs (between days 80 and 120 of in vitro development) demonstrate dramatic increases in the

density and alignment of myofibrils throughout the cytoplasm and show repetitive banding patterns

characteristic of organized sarcomeres with good registration across the entire width of the cell [69–71].

Different elements of maturity appear to be affected by hiPSCs line [77,78] or culture conditions [72,79].

However, late hiPSCs-CMs never reach either the dimension (cell area: around 1500 µm2) or the

morphology of adult CMs, instead becoming closer to embryonic CMs. Indeed, adult CMs have

elongated anisotropic shapes [80] and are aligned in the context of cardiac tissue. In vivo, immature

CMs are rod-shaped, similar to the adult ones, but when cultured in vitro, the immature CMs flatten

and spread in all directions while the adult ones maintain their cylindrical morphology in short term

culture [81]. Thus far, hiPSCs-CMs have irregular shapes and they do not typically show alignment in

two-dimensional cultures. These morphological differences are also reflected by a lower expression

when compared to adult CMs of maturation-related sarcomeric genes such as MYL2, MYH7, TCAP,

and MYOM2, and ion transport-related genes such as KCNJ2 and RYR2 [10,78,82–85]. Another aspect

that confirms the immaturity of hiPSCs-CMs regards the localization of gap junction components. In

adult CMs, these proteins accumulate at the intercalated disks, while in iPSCs-CMs, they are mainly

localized at the circumference of the cell, recalling the structure of embryonic CMs [86].

The relative immaturity of hiPSCs-CMs also involves the development of the T-tubule network,

a key component of excitation contraction coupling: extensive in adult CMs, it is absent in both

iPSCs-CMs and embryonic CMs [87]. Since T-tubules allow an adult CM to have rapid electric

excitation, initiation, and synchronous triggering of sarcoplasmic reticulum calcium release and,

therefore, coordinated contraction throughout the entire cytoplasm, their lack of hiPSCs-CMs results
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in a lower excitation-contraction coupling, and in unsynchronized Ca2+ transients, as reflected

by the non-uniform calcium dynamics across the cell and greater calcium peak amplitude in the

sarcolemma than in the sarcoplasmic reticulum [88–90]. Thus, early iPSCs-CMs structurally resemble

embryonic CMs, while late iPSCs-CMs develop a more adult-like morphology but do not appear to

develop T-tubules.

Parikh et al. [53] broke the T-tubule barrier by discovering the appropriate combination of matrix

and hormones to generate hiPSCs-CMs with a functional network of T-tubules producing more

adult-like Ca2+ cycling. Their discovery of T-tubules in hiPSCs-CMs was a step forward, but the

promise of adult-like hiPSCs-CMs in a dish has yet to be reached. The T-tubule network, in fact, lacked

the abundance and detailed organization found in adult ventricular CMs and, although hiPSCs-CMs

treated with T3 and Dex on the Matrigel mattress were larger cells, they were still smaller when

compared to adult CMs.

Electrical immaturity of hPSCs-CMs is evident from spontaneous beating, since mature adult

ventricular CMs are quiescent. Although the rate of contraction may be affected by cell line or culture

conditions, the spontaneous and synchronous contraction of hiPSCs-CMs can be maintained over time

in culture [91,92]. As reviewed by Denning et al. [93], the spontaneous beating depends on the high

expression of the pacemaker current, If, and low expression of inwardly rectifying potassium current,

IK1, which stabilizes the resting membrane potential to around −85 mV in adult cells; in hiPSCs-CMs

this value is −20 to −60 mV; density of IKs potassium and INa sodium channels is highly heterogeneous

and can be lower than in adult. Collectively, these currents usually provide a capacitance of 30–50 pF

versus ~150 pF in adult CMs and upstroke velocity of 10–50 V/s versus 150–350 V/s. The location of

the gap junctions all around the cells instead of in the intercalated discs seems to be responsible for

the slower conduction velocity in hPSCs-CMs (10–20 cm/s versus 60 cm/s). The differences in the

physiological properties between adult- and hiPSC-derived CMs are summarized in Table 3.

Table 3. Physiological characteristics in adult and hiPSC-derived CMs. Adapted from Denning et al. [93].

Adult-CM hPSC-CM

Beating Quiescent Present

Conduction Properties

Capacitance 150 pF 20–50 pF
Resting mem potential −80 to −90 mV −20 to −60 mV
Upstroke velocity 150–350 V/s 10–50 V/s
Conduction velocity 60 cm/s 10–20 cm/s
Location of gap junctions Intercalated discs Circumference of cells

Ion channel density
(pA/pF)

INa −196 −100 to −244
ICaL −4.3 to −10.2 −2.2 to −10
Ito 2.3 to 10.6 2.5 to 13.7
IKs 0.18 to 0.58 0.3 to 0.7
IKr 0.5 0.4 to 0.8
IK1 −12 0 to −3.4
INCX 2.5 to 3 3.6 to 7.9 (inward mode)

Ca2+ kinetics

APD90 260 ms 300–700 ms
Cycle Length 0.8–1 s 0.8–2 s
T-rise 2.5 ms 3.5–10 ms
Triangulation 45 ms 45–120 ms

Interestingly, hiPSCs-CMs differentiated from hiPSCs obtained from patients with long QT

syndrome showed slower repolarization, thus recapitulating the in vivo behavior [94–96].

Common cardiac differentiation protocols produce predominantly ventricular cells with ~15–20%

atrial cells and few nodal cells [97] as determined by electrophysiological analysis of action potential [9].

In clinical application, an enriched population of nodal-like cells could potentially be used in the

formation of a biological pacemaker, whereas ventricular types may be used for recovery from



Cells 2018, 7, 48 13 of 31

myocardial infarction, or to evaluate drugs that that have Torsade de Pointe liabilities. It has been

demonstrated that the pharmacological inhibition of NRG-1β/ErbB signaling enhanced the population

of nodal-like CMs [98] and that retinoic acid could increase the proportion of atrial-like CMs

whereas its inhibition could increase the proportion of ventricular-like cells [99]. Furthermore, it was

possible to strongly increase the nodal population by inhibiting the neuregulin signaling using small

molecules [100].

hiPSCs-CMs present cardiac specific inotropic and chronotropic receptors, other than the β1

and β2 adrenoceptor response [70,101–103]. Similar to adult CMs, isoprenaline increases both the

contraction rate and the amplitude of the calcium transient, and decreases the relaxation time [102];

on the other hand, the observation that, unlike adult CMs, isoprenaline does not affect the contraction

force [103] supports the functional immaturity of this cell type. Ravenscroft et al. [104] evidenced that

CM microtissue co-cultured with cardiac endothelial cells and fibroblasts is superior in predicting

inotropic responses than single-cell type CM microtissue.

5. hiPSC Paracrine Effects for Cardiac Repair and Regeneration

Despite the heart has always been considered as devoid of any regenerative potential, recent work

has demonstrated that it is endowed with an endogenous restorative program based on the

re-establishment of the modulatory activity of cardiac progenitor cells [100,105] along with resident

cardiomyocyte proliferation [75]. While broadly active during developmental cardiogenesis and in

the very early post-natal life, these mechanisms become quiescent and unresponsive soon after birth,

leaving the heart with limited repair potential in pathological situations. Therefore, a working strategy

is urgently needed to restore the potential for both cardiac repair and regeneration.

In this scenario, growing interest has been driven to the so called “stem cell-derived paracrine

effect” as a putative working strategy to restore such dormant mechanisms of cardiac restoration.

Indeed, it is now well accepted that either autologous or allogeneic transplantation of different

populations of stem cells into the injured heart results in quite limited differentiation, while providing

overall significant improvement in heart function [106]. Thus, the beneficial effects obtained following

an injection of stem cells seem to be mainly due to their modulatory paracrine effects [107]. As a

matter of fact, several studies have supported the paracrine hypothesis by reporting successful

reduction of infarct size and improvement of angiogenesis and cardiac output that are most likely

attributable to the release of soluble factors, rather than de novo cardiomyogenesis by the engrafted

cells. Hence, the detailed analysis of the stem cell “secretome”—as the whole of growth factors and

chemo-attractant molecules produced by paracrine secretion—has gained growing attention and the

quest is now to identify the most suitable cell candidate to obtain the ideal paracrine cocktail of factors

to be delivered to the injured myocardium. Several populations of stem cells have been evaluated,

with adult somatic mesenchymal stromal stem cells (MSC) isolated from different tissues being the

most investigated. However, while adult MSC may represent a feasible option given the ease of

their collection from clinical waste material, (i.e., adipose tissue harvested during surgical procedure)

they present several limitations to their therapeutic application such as low yield, invasive sampling,

and controversial self-renewal. In contrast, hiPSCs may offer a valuable choice to overcome these limits

given their pluripotency, high self-renewal, and embryonic stem cell-like properties. Most studies

involving the use of hiPSCs for in vivo cardiac regeneration have focused on the exploitation of their

cardiomyogenic differentiation potential. Nonetheless, hiPSCs have also been recently described as

playing a significant role in modulating the cardiac microenvironment by mediating pro-survival effects

while improving cardiac function and homeostasis via secretory mechanisms of action, thus suggesting

a remarkable paracrine potential. Indeed, recent work from Yan and Singla [108] has shown that

hiPSCs systemically transplanted into a preclinical mouse model of diabetes-induced cardiomyopathy

contributed to the increase in antioxidant levels, and counteracted adverse cardiac remodeling while

improving cardiac function by acting on the Akt, ERK1/2, and MMP-9 signaling pathways via

multiple paracrine mechanisms. Likewise, when considering a chemotherapy drug-derived murine
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model of cardiomyopathy, as the one obtained by regular administration of the oncological drug

doxorubicin, a well-known cardiotoxic agent, hiPSCs transplantation following ischemic injury

resulted in the decrease of cardiac apoptosis and interstitial fibrosis via paracrine modulation of

Notch-1 signaling [109]. Further studies have highlighted the potent paracrine effect of the secretome

of hiPSC-derived MSC as specifically enriched with macrophage migration inhibitory factor (MIF)

and growth differentiation factor-15 (GDF-15) citokines; indeed, the iPSC-derived-MSC-conditioned

medium was shown to exert remarkable cardioprotective effects on neonatal rat CMs and murine

cardiac tissue against anthracycline-induced cardiomyopathy [110].

In another study, [111], the hiPSCs secretome has been used to prime endogenous progenitor cells

such as cardiac mesenchymal stromal cells (cMSCs) and evaluate changes in their proliferative, survival,

and differentiation potential. In particular, human hiPSCs-secreted extracellular vesicles/microvesicles

(hiPSC-MVs) proved successful in mediating the transfer of their bioactive cargo (mRNA, microRNA,

and proteins) to the target cMSCs culture. Most importantly, hiPSC-MVs modified the transcriptome

and proteomic profiles of target cells, triggered changes in their metabolism, cell cycle, other than

increasing the proliferative and anti-apoptotic effects on cMSCs. Overall, this secretome pushed

the target cMSCs to a more primitive state, enhancing their cardiac and endothelial differentiation

potential, thus further supporting the promising therapeutic potential of this approach [111].

In the last few years, we have witnessed the dramatic and rapid expansion of hiPSCs biology

and preclinical application of hiPSCs-cell derivatives for future therapy. Nonetheless, several reports

have indicated limited engraftment of hiPSCs-CMs when transplanted in vivo; yet, there is evidence

of improvement of resident cell survival and local angiogenesis along with remarkable decrease of

fibrosis and inflammation, following injury. These results are likely to be due to paracrine modulatory

effects exerted by the transplanted hiPSCs-CMs on the neighboring resident cells via the secretion of

biologically active extracellular vesicles including exosomes [112]. Indeed, immunosuppressed mice

experiencing a myocardial infarction showed better outcomes when transplanted with hiPSCs-CMs

when compared to undifferentiated cells, despite the poor cell engraftment in both treated groups,

suggesting differential paracrine effects, with differentiated cardiac lineage cells contributing more

significantly via the secretion of promigratory, proangiogenic, and antiapoptotic mediators [113].

In light of such evidence, hiPSCs can offer an appealing therapeutic tool for future

cardiac regenerative medicine via the combined advantage of their pluripotency and peculiar

paracrine potential.

6. Advanced Technologies and Tissue Engineering: Novel Approaches for Studying
hiPSC-Derived Cardiac Tissues

In parallel with the revolution brought by the use of hiPSCs, the advances in cell culture

techniques and methods have led to more innovative approaches to personalized medicine.

Engineering approaches to stem cell cultures can open doors into previously inaccessible scenarios

and poorly understood biological phenomena. Although still key for biological discoveries, standard

culture techniques in Petri dishes cannot be fully representative of the mammalian in vivo complexity.

This is due to a series of limitations such as: (i) 2-dimensional (2D) growth; (ii) poor mimic of

in vivo structure and substrate compliance; and (iii) batch-wise operations (media change, addition

of drugs or other factors, etc.) that result in unpredictable kinetics, poorly defined timescales, and

the lack of precise patterns of stimulation [114]. In contrast, advanced “bioreactor-based” culture

techniques have overcome such limitations and offer a series of main undeniable advantages [115].

Focusing on the microscale, on devices with reduced size and features ranging from a few microns

to a few centimeters, we gain: (i) feasibility of working in 3D; (ii) better mimic of the in vivo

microenvironment (we are closer to the characteristic sizes of cells and extracellular structures);

(iii) steady state conditions, translating into operating parameters that are constant in time and

are kept at well-defined values, and in the possibility of introducing precise spatial and temporal

patterns of stimulation; and (iv) increased throughput [116,117]. Focusing on transport phenomena,
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when using dynamic systems (where culture media flows through the device) we can control both

convection and diffusion, thus enabling the generation of complex patterns of stimulation on the

cellular microenvironment. The microscale here plays again to our advantage, as the typical length

scales and flow rates determine the establishment of a laminar regime, one where velocity and

concentration profiles are more easily controlled and modeled/predicted [118]. Advanced culture

systems are also more amenable to integration with sensing elements for online measurements and

monitoring of the culture maturation [119]. Finally, a downsizing of culture systems results in reduced

costs and the number of cells and reagents used, an important advantage especially for experiments

involving hiPSCs and hiPSCs-CMs.

Nowadays, heart-on-chip technologies are developing at a fast pace thanks to the strong drive

towards improving the drug development process and reducing multi-billion USD losses due to late

stage failures (reviewed in Conant [120]). Novel technological approaches involving heart cells/tissues

are fundamental for two main reasons: (i) the need for new and improved drugs for heart conditions

and; (ii) the need for earlier and more effective evaluations of cardiotoxicity of other drugs.

The promise of using hiPSCs-CMs for transplantation to infarcted hearts has not been entirely

fulfilled, with one of the biggest limitation being the mismatch between their electrophysiological

properties and those of the native tissue. As described above, hiPSC-CMs typically present

immature phenotypes, characterized by sarcomeres lacking H zones, I bands and M lines, by poorly

controlled spontaneous beating, deregulated action potentials, altered calcium handling properties

and incomplete connexins-mediated coupling when interfaced with the host environment. Ravenscroft

and colleagues tested a coculture tissue engineering approach, based on the hypothesis that the

presence of non-myocyte cells will promote CMs maturity, and demonstrated that CMs microtissue

cocultured with cardiac endothelial cells and fibroblasts is superior in predicting inotropic responses

than single-cell type CMs microtissue [104]. Recently, Pallotta et al. [121] proposed a model of

bioengineered cardiac tissues preconditioned with BMPs—proteins usually secreted by macrophages

present at the site of myocardial infarction—that improved CMs functionality, cardiac gene expression

and the ability to sustain angiogenesis in vitro based on diffusion of the exogenous BMPs. This model

might represent a step towards the validation of more complex bioengineered constructs, in which

protein diffusion and degradation rate of the biomaterial can be tuned to achieve a suitable protein

release for in vivo applications

Precise engineering of the culture systems allows for the introduction of physiologically

relevant stimulations such as spatial (i.e., 3D culture), topographical, electrical, and mechanical.

In particular, electrical stimulation—a known strong effector for cardiomyocytes maturation—has

often been used in conjunction with advanced technological solutions to push cell maturation [122,123].

Biowires™, as an example, derive from the combination of hiPSCs-CMs, 3D cell cultivation systems,

and electrical stimulation specifically tailored to generate tissues with more mature structural and

electrophysiological properties [124]. Biowires™ present improved ultrastructure organization with,

among others, clearly visible Z discs, H zones and I bands, correlated with lower excitation threshold,

higher conduction velocity, and improved Ca2+ handling properties. Recently, Ronaldson-Bouchard

and colleagues [125] have demonstrated that adult-like human cardiac tissue can be grown from

hiPSCs-CMs in fibrin hydrogel subjected to stretch and auxotonic contractions in just four weeks

of in vitro culture. Two methodological advances underlie the accelerated cardiac maturation: the

formation of tissues from early-stage hiPS-CMs, which displayed marked plasticity immediately

after the initiation of spontaneous contractions; and physical conditioning with increasing intensity.

Tissues showed electrophysiological properties that were comparable to Biowires, including the shape

of the action potential with its characteristic notch, the resting membrane potential, the IK1 current and

the conduction velocity. Moreover, tissues were characterized by adult-like gene expression, oxidative

metabolism, positive forced frequency relationship and physiological calcium handling.

Bursac’s group [126] faced another fundamental challenge obtaining sufficient numbers

of hiPSC-CMs for regenerative medicine applications (over 1 billion cells). They developed
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“cardiobundles” and a “cardiopatch” platform for the 3D culture and maturation of hiPSC-CMs

over a period of 5 weeks. The platform succeeded in producing constructs that showed

robust electromechanical coupling, consistent H-zones, I-bands, and evidence for T-tubules and

M-bands. The cardiopatches could be scaled up to clinically relevant sizes while maintaining their

physiological properties.

Among others, Healy’s group [127] developed an interesting microphysiological system (MPS)

that integrated the use of hiPSC-derived CMs with advanced microfluidic platforms that has proved

useful in pharmacological studies. Their design ensured that cells self-organized into an aligned

3D micro-tissue and enabled the generation of tissue-like gradients of drugs in a shear-protective

environment (Figure 1A), mimicking that provided by the endothelial barrier. hiPSCs-derived

CMs organized and started to spontaneously contract within seven days of culture, and their

movement could be tracked and measured online with non-destructive imaging techniques (Figure 1B).

The authors successfully used their MPS to test the cardiac response of four model drugs and obtained

data showing half maximal inhibitory/effective concentration values that were more representative

of whole organ responses than those typically obtained at the cellular scale. Overall, their results

suggested how these approaches could significantly improve the outcomes of in vitro screening studies

of drug efficacy and cardiotoxicity.

Great efforts are also being devoted towards the development of heart-on-chip technologies

to model human disease. In a relevant example of this matter, Wang et al. [128] used

advanced technologies to gain insight into the pathophysiology underlying the frequent

cardiomyopathy experienced by patients affected by Barth syndrome (BTHS), a mitochondrial

disorder. Their bioengineered microchips were based on thin elastomer films that functionalized

with micropatterned thin strips of fibronectin (rectangles ~100 × 15 µm length × width, and lines

15 × 2 µm width × spacing). BTHS hiPSCs-CMs, when seeded on top of these films were organized

following the pattern dictated by the adsorbed protein, generating a laminar anisotropic myocardium.

Their dual approach allowed: (i) the quantification of the contractile properties of the engineered

myocardial tissues (Figure 1C); and (ii) the evaluation of the phenotypic maturation of the constructs

based on the analysis of sarcomeres and fibrous structures organization (Figure 1D). The main results

proved that: (i) engineered BTHS hiPSCs-CMs micro-tissues exhibited impaired sarcomere assembly;

and (ii) they correctly recapitulated the pathophysiology of BTHS cardiomyopathy by developing

significantly lower twitch and peak systolic stress, both when compared to the controls. Finally, and

most importantly, the authors proved that engineered tissues effectively modeled disease correction

showing restored contractile function after treatment with TAZ modRNA.

In a concerted effort, a consortium led by top scientists across the US is actively working to

develop an integrated microphysiological platform, HeLiVa, capable of reproducing the complexity

of the “whole body” [129]. HeLiVa is an integrated heart–liver–vascular system for drug testing in

human health and diseased settings. The micro-tissues are produced starting from a single line of

human pluripotent stem cells (and are thus patient-specific), and the platforms are compatible with

real-time biological readouts. Once again, the technology-enabled production of functional human

tissue units and their use in studies seeking to measure physiological responses to known or pipeline

drugs, greatly benefit from their higher biological fidelity and can be transformative to drug screening

and the modeling of disease.

In recent years, there has also been a great drive towards the birth of start-ups and

university spin-offs devoted to the fast translation of laboratory-scale discoveries to their wider

adoption and application. An example is Novoheart (www.novoheart.com), a company offering

customized screening and phenotyping services on hESC-derived ventricular cardiomyocytes

based on their proprietary MyHeart™ platform. The platform can be adapted to single cells,

anisotropic sheets, and tissue strips. Their human ventricular cardiac organoid chambers provide a

comprehensive bioreactor model enabling force and electrophysiology measurements with minimal

manipulation [130].

www.novoheart.com
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Figure 1. (A). Schematic of the device: the central cell loading channel is connected to the lateral

C-shaped medium-delivering channels by a “ladder” of thin microchannels, purposely design to protect

cells from shear and switch to a diffusive mass transport regime. The colors are representative of the

linear velocities on a chosen plane, and show decreasing values from red to blue; (B). Characterization

of the 3D cardiac tissue formed in the middle channel. Top: optical microscopy image showing

tissue density and overall organization and alignment; middle: heat map of the average motion

generated by the contractile activity and, bottom: corresponding average beating kinetics. Adapted

with permission from Mathur et al. [127]; (C). Top: schematic representation of contracting constructs

and approach to measurements; Bottom: iPSC-CMs seeded onto thin elastomers with patterned lines

of fibronectin self-organized into microscaled myocardial tissues and exhibited contractile properties

in response to electrical stimulation; (D). Representative images showing actinin staining of iPSC-CMs

on micropatterned fibronectin rectangles. BTHS iPSC-CM micro-tissues show impaired sarcomere

organization (BTHS1 and 2 in Galactose and Glucose medium, respectively), while cells transfected

with TAZ modRNA (Mod BHTS) clearly demonstrate a rescued organization, comparable to that of the

control cultures (CTRL). Adapted from Wang et al. [128].
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7. The Promise of hiPSCs-CMs in Biomedical Applications

hiPSCs demonstrate pluripotency, the ability to self-renew and are patient-specific. Based on these

features, hiPSCs are expected to be applicable in drug discovery, disease modeling, and cell therapy.

Screening for drug discovery and cardiotoxicity testing. Safety in pharmacology is important as

the heart is sensitive to the side effects of drugs. In fact, drugs that cause heart damage as a side

effect have been implicated in around 30% of drug withdrawals in the US over the past 30 years [44].

The relative ease of efficient reprogramming and directed cardiogenesis has accelerated progress

towards biomedical application, with particular attention to drug screening. This is helped by hiPSCs

largely eliminating ethical or legal restriction that prohibited use of hESC in many companies or

countries. Drug-induced cardiotoxicity can adversely affect myocardial contractility through structural

(non-proarrhythmic) or electrophysiological (proarrhythmic) changes in CMs, either of which can

result in loss of contractility and cardiac function. hiPSCs-CMs are a promising human cardiac

in vitro model system to assess both proarrhythmic and non-proarrhythmic cardiotoxicity of new

drug candidates and published studies have demonstrated that they hold great promise in cardiac

safety testing [131]. Current in vitro cardiac models for contractility include primary cultures of

adult human CMs, isolated Langendorff heart and primary cultures of neonatal mouse or rat CMs.

One big challenge to the use of primary cultured CMs is that this in vitro model does not remain

viable for long-term culturing; moreover, it is known that acutely isolated CMs are quickly overrun

with fibroblasts. Because of this culture limitation, most primary CMs experiments are designed

with a short drug exposure time (a few minutes to a few days). For drugs given to humans on a

long-term basis, such as kinase inhibitors, acute exposure in vitro studies may not detect effects related

to long-term structural damage. In contrast, the Langendorff heart model keeps the intact function

of the working myocardium and the coronary vessels following longer-term dosing in animals and

therefore a variety of functional parameters can be measured within one single heart. However, this

model is somewhat difficult to perform routinely and does not address the concerns for detecting

human-specific responses. On the other hand, the hiPSCs represent a renewable cell source of CMs

and overcome species differences present in animal models allowing a human-specific assessment of

drug-induced contractility changes: expressing human cardiac ion channel, hiPSC-CMs respond to

major channel blockers [132] and can also be useful to detect drug effects mediated by cell surface

receptor binding [133] mitochondrial damage [134], oxidative stress [135], Ca2+ handling [136,137], or

intracellular messengers [138].

Recently, Sharma et al. [136] used hiPSC-CMs to screen FDA-approved Tyrosine kinase inhibitors

(TKIs) by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium

handling, and signaling. With these data, they generated a “cardiac safety index” to assess

cardiotoxicities of existing TKIs (Table 4).
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Table 4. Cardiac Safety Index of the Tyrosine kinase inhibitors (TIKs). Adapted from Sharma et al. [136].

Drug Cardiac Safety Index

Afatinib 0.444
Erlotinib 0.635
Gefitinib 0.409
Lapatinib 0.209
Axitinib 1.000

Cabozatinib 0.769
Pazopanib 0.671
Ponatinib 0.483

Regorafenib 0.010
Sorafenib 0.004
Sunitinib 0.218

Vandetanib 0.041
Bosutinib 0.315
Dasatinib 0.524
Imatinib 0.126
Nilotinib 0.104

Dabrafenib 0.459
Vemurafenib 0.003
Trametinib 1.000
Ibrutinib 0.507

Crizotinib 0.063

The cardiac safety index is a value ranging from 0 to 1 that, analyzing the drug effects on both the viability and
physiological parameters, provides a relative metric for TKI cardiotoxicity. Drugs with a safety index at or below
0.10 are highly cardiotoxic compounds.

Burridge et al. [134] showed that patient-specific hiPSCs-CMs can recapitulate individual

propensities to doxorubicin-induced cardiotoxicity.

The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative represents a paradigm

shift for proarrhythmic risk assessment, and, recently, hiPSCs-CMs have been proposed in

the CiPA scheme to improve the non-clinical evaluation of proarrhythmic liabilities of new

drugs [139]. Yang and Papoian [140] have recently suggested to complement the electrophysiological

evaluation of the CiPA platform by adding a structural assessment of hiPSCs-CMs, thus, allowing

to analyze both potential proarrhythmic and non-proarrhythmic effects on cardiac contractility.

Even if the in vitro screening assays for cardiotoxicity are predominately focused on identifying

proarrhythmia risk, some platforms have already been developed to detect both proarrhythmic

and structural toxicities [141]. Importantly, this combined approach provide an integrated

structural and electrophysiological assessment in CMs that might better predict the drug-induced

contractility changes.

In Japan, the Consortium for Safety Assessment using hiPSCs HEART team has been working

on hiPSCs-CMs in the Multi-electrode array (hiPSCs-CMs/MEA) under a standardized protocol

for proarrhythmic risk assessment. Recently, Nozaki et al. [142] evaluated the responses of

hiPSCs-CMs/MEA to 31 compounds of different categories (ERG channel blocker or activator, late Na

current inhibitors and enhancer, Ca channel activator, multi-ion channel blockers, etc.) associated with

cardiac toxicities, demonstrating that the hiPS-CMs/MEA assay might constitute a core platform for

cardiac safety assessment where drug-induced arrhythmogenesis might be evaluated using hiPSC-CMs

under non-clinical setting. This report would provide CiPA with informative guidance on the use of

the hiPSCs-CMs/MEA assay, and promote the establishment of a new paradigm, beyond conventional

in vitro and in vivo assays for cardiac safety assessment of new drugs.

As each cell culture model, hiPSCs-CMs present some limitations which may impact their utility

in safety assessment. A major criticism of hiPSC-CMs is their immature phenotype when compared to

adult CMs [71,93]. The immaturity is reflected in a less-negative resting membrane potential, lack of

T-tubules and fetal-like morphological parameters. Because of this immaturity, hiPSC-CMs display
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a different contractile response to inotropic compounds when compared to adult cells: hiPSC-CMs

are indeed unable to generate a positive inotropic response to isoproterenol treatment and display a

negative force–frequency relationship [143].

Finally, the discover that the miRNA profile of hiPSC-CMs is affected during early and late stages

of treatment with the cardiotoxic drug doxorubicin [144] might lead the discovery of novel class of

biomarkers, useful to monitor potential drug-induced cardiotoxicity in patients before irreversible

cardiac damage has occurred.

CV disease modeling. Since hiPSCs generated from individuals with genetic disorders maintain

the anomalies [145], patient-derived hiPSCs are candidates to model the molecular basis of pathologies

and to investigate their phenotypes, the disease mechanisms and the drug response/toxicity.

Recently, hiPSCs have been modeled for several cardiac pathologies including familial dilated

cardiomyopathy [146], Barth syndrome [128], arrhythmias (LQT1, LQT2, LQT3, and LQT8/Timothy

syndrome) [40,94], catecholaminergic polymorphic ventricular tachycardia [40,147], and LEOPARD

syndrome [148].

Cell therapy and myocardial infarction repair. hiPSCs-CMs are of great interest for cell-based

heart regeneration. To avoid arrhythmia, which is the most severe side-effect of cell replacement

therapy, it is essential to implant relatively homogeneous, probably mature CMs that have

ventricular phenotypes. Several groups have reprogrammed murine embryonic fibroblasts to iPSCs,

that when injected intramyocardially in immunodeficient mice after coronary artery ligation were

able to differentiate into CMs, vascular smooth muscle cells, and endothelial cells determining an

improvement of the ventricular function. However, the observation that transplanted iPSCs could

generate tumors in the recipient mice strongly limited the possibility of translating these research

findings into clinical practice [7,149]. Following studies focused on transplanting iPSC-derived cardiac

progenitors cells [63] or iPSC-CMs [150] into the infarcted area of immunocompetent mice, the data

showed an improvement of ventricular contractility without tumor formation.

The main limitation of regenerative medicine is the poor cell retention into the organ after injection,

with 95–99% of grafted cells lost within a few days. Cell retention can be enhanced by delivering cells

on biomaterials such as hydrogels, tissue patches, or scaffolds [67]. Myocardial tissue engineering

structures may be porous or dense (patches), depending on the purpose of the construct. If the

engineered biomaterial is to support and possibly remold the infarcted area over a period of time, then

it is that vital the construct is a scaffold that consists of interconnected pores (>90% porosity) with

diameters ranging between 300 and 500 µm for cell survival. This will allow cells to exchange nutrients

and remove cellular secretions, enhance cell penetration and tissue vascularization. On the other hand,

if the biomaterial will serve solely as a means of cell transport, to deliver cells to the desired region

only and degrade over a given period of time (e.g., within 3 months), a dense patch will be adequate

for this purpose. Both these approaches can reduce mechanical stem loss and provide a protective

environment for cell survival [151]. Considering that growth factors are important signaling molecules

in the control of tissue regeneration, the application of growth factors within biomaterials in tissue

engineering represents a powerful tool for controlling cell survival and differentiation.

Recently, Menaschè et al. [152] showed the feasibility of generating a clinical-grade population of

human ESC-derived cardiac progenitors on the first clinical case report. These cells were combined

within a tissue-engineered (a fibrin scaffold) construct and then transplanted in patients with

ischemia-induced heart failure [153]: of the six enrolled patients, one died early post-operatively

for treatment-unrelated comorbidities while all others had uneventful recoveries. None of the

patients developed tumors or presented arrhythmias. Three patients developed clinically silent

alloimmunization. All patients were symptomatically improved, one patient died of heart failure

after 22 months. This trial demonstrates the short- and medium-term safety of hESC derived cardiac

progenitors. Considering the similarity between hESCs-CMs and hiPSCs-CMs, this result opens new

opportunities for the clinical application of hiPSCs.
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8. The Immunological Challenges of hiPSCs and the Generation of Haplobank for the Cell Therapy

To date, it is still unclear how the immune system of potential recipients might perceive tissues

differentiated from hiPSCs (reviewed in [154]). Some studies predicted that iPSCs-derived tissues may

not be immunogenic since, unlike solid organs from living or cadaveric donors, tissues from hiPSCs

lack both the endogenous dendritic cells and the lymphatic drainage required for the emigration

of the immunological cells into the secondary lymphoid tissues of the recipient; other studies

have highlighted the capacity of hiPSCs to actively exert a local nonspecific suppressive effect on

T cells [155–157]. Interestingly, some authors suggested that the epigenetic memory of the hiPSCs

could influence the immune response elicited by their administration. Wang et al. [158] demonstrated

that the iPSCs lines derived from Sertoli cells of the mouse testis, an immunological-privileged

site, were significantly less immunogenic when transplanted into allogeneic recipients than iPSCs

derived from fibroblasts. Thus, in addition to the intrinsic immunosuppressive features of iPSCs,

the epigenetic characteristics associated with immune privilege may also be exploited to reinforce

the iPSCs’ capacity to evade immune recognition. Unfortunately, the immunological consequences of

iPSCs transplantation are still uncertain and affect the planning of clinical trials. Indeed, although iPSCs

seem to be immunologically privileged, evidence suggests that the immune response of the recipient

may oppose the engraftment and-/or the persistence of the iPSCs. It has been reported that iPSCs lines

transplanted in syngeneic recipients attracted a significant T-cell infiltrate that led to their rejection [159].

The extent of such immunogenicity appeared to decrease with differentiation, but some terminally

differentiated cell types, such as smooth muscle cells, retained significant immunogenicity that led to

their demise upon transplantation [159,160].

The immune response evoked by transplanted iPSCs may be ascribed to the ectopic expression of

“developmental antigens” [154]. Pluripotency-associated genes are expressed at high levels within the

early embryo and are normally downregulated upon implantation, being extinguished long before

thymic development and selection of the T-cell repertoire. Reprogramming of adult somatic cells to

pluripotency is responsible for the re-expression of developmental antigens, which are not properly

downregulated during differentiation in vitro, most likely accounting for their rejection, even by

autologous recipients.

hiPSCs technology supports also the possibility to establish a “stem cell haplobank” in order

to facilitate rudimentary matching with potential recipients. The opportunity to pre-select donors

with a desirable haplotype for the generation of hiPSC lines opens up an opportunity, not feasible

with hESC, to create a bank of cell lines specifically chosen to match the widest possible number of

recipients worldwide [161]. This shall be done by recruiting donors who are blood group O and are

homozygous for common human leukocyte antigens (HLA). The haplobank would allow to match

hiPSCs and recipient for selected HLA loci (in particular HLA-A, -B and -DR), as well as in solid organ

transplantation. In any case, it should be taken into consideration that different HLA loci and minor

histocompatibility antigens might be responsible of rejection. This event is generally prevented by

a long-term immunosuppressive therapy, that should be discouraged with hiPSCs transplantation,

because of the recognized risks of tumorigenesis of these cells. Consequently, the success of an hiPSC

haplobank is linked with the development of alternative strategies for immune intervention. While

studies have proposed the encapsulation of the hiPSC-derived tissues in order to provide a protective

barrier against the recipient’s immune system, other recent studies have suggested more subtle

opportunities for immune intervention and for inducing the tolerance state [159–161]. Although the

challenge remains considerable, evidence indicates that the induction of immunological tolerance to

hiPSC-derived tissues is feasible and significantly easier than the establishment of tolerance to tissues

from conventional sources. In particular, the microenvironment created by hiPSC-derived tissues

supports the establishment and maintenance of tolerance, suggesting that such grafts may actively

participate in their own survival.
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9. Conclusions

hiPSCs-CMs are a promising tool in drug discovery, disease modeling, and cell therapy, but despite

the high hopes and expectancy, issues with the reprogramming technology and the biology of

reprogrammed cells still cast a shadow on the clinical application of hiPSCs. The technical hurdles in

reprogramming have resulted in diversity in the quality of hiPSCs generated, the “epigenetic memory”

influences the differentiation efficiency, and the reprogrammed cells present poorly controlled risks of

unpredictable reactions in both the processes of dedifferentiation and subsequent differentiation of the

cell strains employed for therapeutic or experimentation goals.

However, although the reprogramming technology that creates hiPSCs-CMs is currently imperfect

and much additional basic research will be required before its clinical application, these cells will

likely impact future therapy, representing multi-purpose tools for medical research and illuminating

many areas related to CV disease. Use of patient-specific hiPSCs-CMs may mirror clinical outcomes of

drug-induced cardiotoxicity [134,162], and may be used for drug screening in the future. For precision

medicine, creating biobanks that include both diseased hiPSCs and genetically matched controls

has been proposed as a useful resource to study interpatient variation and changes in metabolic

and stress-response genes that help risk-stratify patient-specific susceptibility to drug-induced

cardiotoxicity [163].
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