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This article provides an updated review of the clinical issues related to human infection with highly pathogenic avian influenza

A (H5N1) virus. The clinical data available to date are presented, as well as recent findings on the pathogenesis of and

antiviral treatment and immunotherapy for H5N1 virus infection in humans and animal models.

The first recognized case of human illness from infection with

highly pathogenic avian influenza A (H5N1) virus occurred in

May 1997 [1, 2], and 17 additional cases were detected in late

1997 in Hong Kong; overall, there were 6 deaths [3]. Two cases

were identified in February 2003 among Hong Kong family

members who traveled to southern China [4]. From November

2003 through 2 June 2009, there were 433 sporadic cases of

H5N1 virus infection reported from 15 countries [5]; in 262

(61%) of those cases, the patient died. These cases were as-

sociated with the ongoing H5N1 panzootic among poultry and

have raised concerns of a possible H5N1 influenza pandemic,

stimulating global preparedness and response activities. Recent

reviews have summarized the development of H5N1 vaccines

and their potential use [6–8]. This article reviews the available

clinical data to date.

PATHOGEN

Highly pathogenic H5N1 virus has evolved, through a com-

plexity of genetic changes, from the 1996 progenitor strain and

comprises at least 10 groups, or clades, of antigenically and

genetically distinct strains that have infected domestic poultry

and wild birds in many countries [9–12]. To date, 4 clades (0,

1, 2, and 7) and 3 subclades (2.1, 2.2, and 2.3) of H5N1 virus
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strains have infected people [13]. During the period from late

2003 to mid-2005, most H5N1 virus infections in humans were

caused by clade 1 strains in Southeast Asia (i.e., Vietnam, Thai-

land, and Cambodia). Beginning in 2004–2005, a geographic

expansion of clade 2 H5N1 virus strains circulating among

poultry and wild birds occurred from Asia to Europe, the Mid-

dle East, and Africa [14]. Currently, subclade 2.1 virus strains

are circulating among poultry and have caused human infec-

tions in Indonesia, whereas subclade 2.2 virus strains have in-

fected birds and humans in Africa, Asia, and Europe [13].

Subclade 2.3 virus strains have been detected in poultry in

China and nearby Southeast Asian countries with transmission

to humans [10, 13, 15]. It is unknown whether differences exist

between H5N1 virus strains (by clade or subclade) in the risk

of avian-to-human transmission. The highly pathogenic H5N1

virus strains can be expected to continue evolving.

H5N1 virus is thought to bind primarily to receptors on

distal bronchiolar and alveolar cells (type II pneumocytes and

macrophages) expressing SA-a-2,3-Gal (sialic acid bound to

galactose by a-2,3 linkages) [16, 17]. However, these receptors

have also been reported in tracheal tissue, nasal mucosa, phar-

ynx, bronchi, paranasal sinus, neuronal, intestinal, hepatic,

splenic, renal, epithelial, and vascular endothelial tissue cells,

T cells, and neonatal respiratory tissues [18–20]. Additionally,

H5N1 viral replication was shown in ex vivo nasopharyngeal,

adenoid, and tonsillar tissue cultures without detectable SA-a-

2,3-Gal receptors [21], and H5N1 virus strains were isolated

from samples obtained from 4 patients that had the ability to

bind to upper respiratory tract SA-a-2,6-Gal receptors [22, 23].

Chandrasekaran et al. [24] demonstrated that a specific struc-

tural conformation, not the SA-a-2,6-Gal linkage alone, de-
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termines viral binding to upper respiratory tract SA-a-2,6-Gal

receptors, illustrating the complexity of receptor specificity.

DIAGNOSIS

Critical issues in diagnosing acute H5N1 virus infection are to

determine which patient to test (on the basis of epidemiological

and clinical findings), to collect proper clinical specimens, and

to use appropriate testing methods. The World Health Orga-

nization (WHO) issued definitions for the classification of sus-

pect, probable, and confirmed cases of H5N1 virus infection,

for epidemiologic and reporting purposes [25]. Risk factors for

H5N1 virus infection are direct physical contact with or close

exposure (i.e., !1 meter) to sick or dead poultry in the week

before illness onset [26–28] and visiting a live poultry market

[28–30]. However, for some cases, exposure to H5N1 virus was

not identified [31]. In a small number of cases in clusters,

limited, nonsustained human-to-human transmission of H5N1

virus likely occurred [32–34]. Therefore, H5N1 virus infection

should be considered in a person with febrile, acute respiratory

illness in countries where highly pathogenic H5N1 poultry out-

breaks have occurred, for whom there is a recent history of

direct or close exposure to sick or dead poultry, who has visited

a live poultry market, or who has had close contact (within 1–

2 meters) with an individual with H5N1 virus infection. Clinical

diagnosis during early H5N1 illness is challenging because of

the nonspecific signs and symptoms and rarity of H5N1 disease.

No cases of H5N1 virus infection have been identified in trav-

elers to date, and seasonal influenza A virus infection was di-

agnosed in 25 (42%) of 59 returned US travelers with suspected

H5N1 [35]. The Centers for Disease Control and Prevention

(CDC) has issued guidelines for testing suspected cases of H5N1

virus infection in the United States [36].

Diagnostic specimens. For patients who do not receive me-

chanical ventilation, both throat and nasal swab specimens

should be collected. Throat swab specimens appear to have a

higher yield for the detection of H5N1 virus than do nasal or

nasopharyngeal specimens [37], but viral RNA detection or

isolation from nasopharyngeal or nasal specimens of critically

ill patients was reported [37–39]. Because H5N1 virus binds

to and replicates primarily in lower respiratory tract tissue [16,

17], an endotracheal aspirate specimen should be obtained from

patients who receive invasive mechanical ventilation. Pleural

fluid and bronchoalveolar lavage specimens, if available, can

also be tested. Specimens should be collected from multiple

respiratory sites on consecutive days from patients with sus-

pected H5N1 virus infection. Blood or stool specimens should

not be tested for diagnostic purposes, but detection of H5N1

viral RNA in these specimens suggests a poor prognosis [37].

Diagnostic testing. The primary method to confirm acute

H5N1 virus infection is detection of viral RNA in respiratory

specimens by use of reverse-transcription polymerase chain re-

action (RT-PCR) [40, 41] (table 1). Real-time and conventional

RT-PCR can be performed under biosafety level 2 conditions.

A standardized protocol and reagents to detect H5N1 virus

[40] and an H5 real-time RT-PCR primer and probe platform

(developed by the CDC) were cleared for distribution [42]. Key

laboratory issues include proper RNA extraction, use of up-

dated primers and probes (because H5N1 strains are evolving),

use of proper controls, and optimization of the RT-PCR assay

[43]. Viral isolation should be performed under enhanced bio-

safety level 3 conditions, which can be performed at WHO H5

Reference Laboratories [41, 44, 45]. Genomic sequencing of

viral RNA from clinical specimens, from amplified RNA, or

from H5N1 isolates is important to assess genetic reassortment,

and to detect mutations that may affect transmissibility or an-

tiviral resistance. The antigenic characterization of viral isolates

is critical for monitoring the evolution of H5N1 virus strains

and for the development of vaccines. Commercially available

rapid diagnostic tests have poor sensitivity and specificity for

detecting H5N1 virus infection and are not recommended [40,

46].

Serological testing can diagnose H5N1 virus infection ret-

rospectively and can confirm RT-PCR results. The recom-

mended serological test is the microneutralization assay [40,

41, 47], which requires the use of live H5N1 virus, to detect

neutralizing antibodies, and enhanced biosafety level 3 con-

ditions. Limited data suggest that H5N1-neutralizing antibodies

are detectable in serum samples 10–16 days after onset of illness

[48]. The collection of paired acute (obtained within 1 week

after onset of illness) and convalescent (obtained 2–3 weeks

later) serum samples are needed. A single positive H5N1 an-

tibody titer in a convalescent serum sample may help establish

a retrospective diagnosis of H5N1 virus infection with a clin-

ically compatible illness but cannot determine the timing of

infection. The WHO has published criteria for seropositive re-

sults [41]. The use of a modified horse red blood cell hem-

agglutinin-inhibition assay [49] can confirm the results of the

microneutralization assay [38]. However, this modified horse

red blood cell hemagglutinin-inhibition assay as well as other

serological tests need further validation [50, 51] (table 1).

CLINICAL CHARACTERISTICS OF H5N1 VIRUS
INFECTION

Incubation period. The incubation period for H5N1 virus

infection has been estimated to be up to 7 days, but, more

commonly, it is usually 2–5 days after the last known exposure

to sick or dead poultry [26, 48, 52, 53]. However, longer periods

have been suggested [26, 27], and the incubation period after

visiting a live poultry market was estimated to be 8.5 days [54].

In cases for which limited human-to-human transmission likely

occurred, the incubation period was estimated to be 3–4 days

[32], 4–5 days [34], 8–9 days [32], and 2–10 days [33]. This
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Table 1. Methods for detecting human infection with highly pathogenic avian influenza A (H5N1) virus.

Purpose, assay Comments

Detection of H5N1 viral RNAa

Real-time RT-PCR and conventional
RT-PCR

Real-time RT-PCR is the recommended diagnostic test for respiratory (throat, nasal, nasopharyn-
geal, and endotracheal aspirate) specimens from patients with acute H5N1 virus infection;
highly sensitive and highly specific; may be performed under biosafety level 2 conditions con-
ditions; real-time RT-PCR can yield quantitative viral shedding data. RT-PCR methods require
updated primers and probes; can be performed on other clinical specimens (blood, serum,
plasma, pleural fluid, bronchoalveolar lavage fluid, cerebrospinal fluid, stool, bronchoalveolar
lavage fluid, and autopsy tissues).

Isolation of H5N1 virus
Viral culture (using embryonated

eggs) or tissue cell culture
Should only be performed in approved biosafety level 3 enhanced laboratory conditions by expe-

rienced personnel wearing appropriate personal protective equipment.
Detection of H5N1 viral antigen

Rapid influenza diagnostic test
(immunoassay)

Not recommended; poor sensitivity and poor specificity.

Immunofluorescence Lower sensitivity and poor specificity.
Immunohistochemical staining Used for autopsy tissue specimens.

Detection of H5N1 virus–neutralizing
antibodies
Microneutralization assay Gold standard serological test;b uses live H5N1 virus and is highly specific; generally requires

paired acute and convalescent serum samples; confirm with modified horse red blood cell
hemagglutinin-inhibition assay; or can also use Western blot or single radial hemolysis assay;
can establish retrospective diagnosis of H5N1 virus infection; the H5N1 virus strain used in
the microneutralization assay should match or be antigenically similar to the strain that the
patient was exposed to or infected with, because this assay is highly specific; humoral im-
mune response to H5N1 virus infection is not well defined, and understanding is limited by
high mortality and paucity of follow-up serological data from survivors; should only be per-
formed in approved biosafety level 3 enhanced laboratory conditions by experienced person-
nel wearing appropriate personal protective equipment.

a Other related assays used by research laboratories include H5 TaqMan real-time reverse-transcription polymerase chain reaction (RT-PCR), and RT-H5 loop-
mediated isothermal amplification.

b Other related assays used by research laboratories include microneutralization assay using reverse genetics-engineered attenuated H5N1 virus, enzyme-
linked immunosorbent assay, and pseudotype viral particle assay.

variability in incubation period could reflect the level of ex-

posure, multiple exposures, immunological factors, or other

factors.

Features of early illness. Available detailed clinical data are

limited. In most cases, during the early stage of H5N1 virus

infection, fever or feverishness is present. Other early symptoms

include cough, malaise, myalgia, headache, sore throat, abdom-

inal pain, vomiting, and diarrhea [15, 31, 48, 52, 53, 55–58].

Conjunctivitis is very rare [53, 59]. In some cases, the initial

signs and symptoms were fever and diarrhea [57, 60], and some

individuals with H5N1 virus infection were diagnosed with

typhoid fever or dengue [13]. A pediatric patient with H5N1

virus infection presented with fever, diarrhea, and seizures pro-

gressing to coma and was diagnosed with encephalitis [58]. It

has been reported that pediatric patients with a clinically mild

case of H5N1 virus infection have presented with febrile acute

upper respiratory tract illness [39, 48, 53, 59, 61]. Whether the

severity of illness varies by clade or subclade of H5N1 virus

infection, by age, or by immunological, genetic, or other factors

is unknown.

Findings and complications at hospital admission. As the

clinical course of H5N1 virus infection progresses in severe

cases, fever and nonproductive cough are often followed by

dyspnea, shortness of breath, tachypnea, and chest pain, re-

flecting the progression of lower respiratory tract disease [15,

31, 38, 53]. The majority of patients (median age, 20 years

[range, !1–81 years]) had no underlying medical conditions

[62]. Rapid disease progression in observed in most cases. Gen-

erally, patients with H5N1 virus infection have been hospital-

ized 4–6 days after onset of illness [13, 31, 56, 63, 64] (table

2) In fatal cases, the median time from onset to death was 9

days [63]. At hospital admission, some patients have had spu-

tum production, and the most severely ill patients with H5N1

virus infection have had respiratory distress, tachypnea, rales

on auscultation, and evidence of pneumonia [15, 31, 34, 48,

52, 53, 55–57, 64, 65]. In a case series by Liem et al. [64], the

mean room air oxygen saturation at hospital admission was

85%. Common laboratory findings at hospital admission in-

clude leukopenia, lymphopenia, and mild-to-moderately de-

creased platelet counts [48, 52, 56, 64]. However, for patients

with a clinically mild illness, there was no decrease in the white

blood cell count [48, 53]. Chest radiographic findings included
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patchy, interstitial, lobar, and/or diffuse infiltrates, consolida-

tion, pleural effusion, and pneumothorax [15, 34, 48, 52, 53,

55, 56, 64–68]. Respiratory failure is common, and some pa-

tients have developed the acute respiratory distress syndrome

with very high mortality [15, 55, 56]. A small number of cases

showed evidence of secondary bacterial [52, 53], fungal [15,

19], suspected nosocomial bacterial [69], or ventilator-associ-

ated pneumonia [15, 39]. In Chotpitayasunondh et al. [55], it

was reported that a patient was coinfected with H5N1 virus

and human immunodeficiency virus. It is unknown whether

the rarity of reported bacterial complications reflects infrequent

bacterial coinfection, inadequate microbiological workup, or

the use of broad-spectrum antibiotic therapy.

Extrapulmonary complications due to H5NI virus infection

include cardiac failure [55, 56], renal disease [55, 56], enceph-

alitis [58], multiorgan failure [66], and disseminated intravas-

cular coagulation [56, 70]; these complications occurred in

patients with fatal outcomes. Some patients had nonbloody

diarrhea, which may have been due to H5N1 virus infection

or may have been associated with antibiotic therapy [37–39,

48, 56, 58]; in a study by Liem et al. [64], nonbloody diarrhea

was associated with death. The laboratory findings for severely

ill patients have included hypoalbuminemia [48] and elevated

levels of hepatic transaminases [38, 48, 56], creatinine kinase

[53, 56], and lactic dehydrogenase [56]. A poor prognosis was

observed among patients with neutropenia and increased levels

of alanine aminotransferase at hospital admission [64]. Spon-

taneous abortions have been reported among pregnant women

[13, 56].

PATHOGENESIS OF H5N1 VIRUS INFECTION

Pulmonary pathogenesis. Limited autopsy studies of patients

with H5N1 virus infection have identified diffuse alveolar dam-

age [19, 71, 72]. High pharyngeal H5N1 viral replication was

correlated with low T lymphocyte counts and high levels of

chemokines and cytokines in peripheral blood of critically ill

patients [37]. H5N1 viral RNA was detected in respiratory spec-

imens up to 15–16 days after onset of illness [19, 37] and in

trachea and lung autopsy specimens 27 days after onset of

illness [19]. Elevated levels of proinflammatory cytokines were

documented in clinical specimens from patients infected with

H5N1 virus, in human primary alveolar and bronchial epithelial

cells, and in macrophages in vitro [73–75], although differential

expression of cytokines and chemokines in lung tissue from

patients who died was reported [76]. Nonhuman primates that

were experimentally infected with H5N1 virus had severe lower

respiratory disease, with H5N1 virus targeting type II pneu-

mocytes [77, 78] and macrophages [77]. In macaques that were

infected with H5N1 virus, severe necrotizing bronchiolitis and

alveolitis were noted within 24 hours (with induction and se-

cretion of high levels of interferons and inflammatory cyto-

kines), interleukin (IL)–6 cytokinemia was documented, and

disruption of the cell-mediated antiviral response was observed

[78].

Additional data suggest how cytokine induction by H5N1

virus damages lung tissues. In 3 fatal cases of H5N1 virus

infection, extensive expression of cyclo-oxygenase (COX)–2

was found in bronchial epithelial cells and pneumocytes, but

not in alveolar macrophages [75]. However, Lee et al. [75]

observed the rapid induction and elevation of proinflammatory

cytokines such as tumor necrosis factor (TNF)–a in uninfected

lung epithelial cells by soluble factors secreted by H5N1 virus–

infected macrophages, which was attenuated by selective COX-

2 inhibitors in vitro. Acute lung injury induced by inactivated

H5N1 virus was observed in mouse alveolar macrophages, and

respiratory oxidative stress induced by inactivated H5N1 virus

was observed in human peripheral blood monocytes [79]. In

a murine model, inactivated H5N1 virus caused respiratory

oxidative stress and the release of oxidized phospholipids,

which activated Toll-like receptor 4 and stimulated IL-6 pro-

duction, leading to inflammation and alveolar damage [79].

High levels of oxidized phospholipids were found in inflam-

matory exudates that lined the injured air spaces and alveolar

macrophages of lungs from H5N1 virus–infected patients with

acute respiratory distress syndrome [74]. Mice deficient in IL-

6, TNF-a, or the chemokine CCL2 or mice treated with cor-

ticosteroids died when infected with H5N1 virus [80]. Apo-

ptosis of human alveolar epithelial cells has been reported [81].

Overall, these studies appear to implicate high and prolonged

viral replication and the induction of high levels of proinflam-

matory cytokines in the pathogenesis of acute lung injury.

Extrapulmonary pathogenesis. Some complications may

be related to H5N1 virus infection outside of the respiratory

tract. H5N1 viral RNA was detected in or virus was recovered

from blood [37], serum [58], or plasma [82] specimens from

severely ill patients who died. Nine fatal cases of H5N1 virus

infection—in which H5N1 viral RNA was detected in blood

during critical illness—had higher pharyngeal viral loads than

did 5 nonfatal cases of H5N1 virus infection and 6 nonfatal

cases of seasonal influenza in patients without detectable viral

RNA in the blood [37]. H5N1 virus was isolated from a ce-

rebrospinal fluid specimen obtained from a pediatric patient

with encephalitis who had died [58]. Reactive hemophagocy-

tosis with lymphoid depletion was reported [19, 83]. H5N1

viral antigen, RNA, or nucleic acid was detected in extrapul-

monary tissue specimens (e.g., lymph node T cells, cerebral

neurons and astrocytes, the small and large intestines, and bone

marrow) obtained from a small number of patients who had

died [19, 84]. Among critically ill patients who later died, H5N1

viral RNA was detected in rectal swab specimens or diarrheal

stool specimens, or H5N1 virus was isolated from these spec-

imens [37, 38]. Vertical transmission was documented in a
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pregnant woman, with infection of placenta, fetal lung, liver

macrophages, and mononuclear cells [19]. H5N1 viral infection

of placental neutrophils was reported, suggesting a mechanism

for viral dissemination [85]. Thus, in critically ill patients with

fatal outcomes, extrapulmonary H5N1 viral dissemination, in-

cluding viremia, can occur.

Intranasal inoculation of mice with clade 1 or subclade 2.2

H5N1 virus caused respiratory, brain, and gastrointestinal tract

infections, whereas only intragastric inoculation with subclade

2.2 virus produced systemic infection [86]. In ferrets, intrana-

sal inoculation with subclade 2.3 or 2.1 virus produced very

mild disease or no infection, respectively, and consumption of

chicken meat infected with subclade 2.3 virus produced mild

respiratory disease [86]. These and other animal data suggest

differences in pathogenicity and site of infection by route of

exposure, H5N1 virus clade and/or subclade, as well as multiple

viral gene factors [86–91].

CLINICAL MANAGEMENT AND TREATMENT
OF PATIENTS

In most cases, the clinical management of patients consists of

antiviral treatment and supportive care for complications. Only

general guidelines exist for the clinical management of severely

ill patients with H5N1 virus infection in intensive care units

[92]. No detailed data on the clinical management of severely

ill patients with H5N1 virus infection are available, and only

very limited data on the clinical course of patients with H5N1

virus infection have been published [56, 64]. The WHO rec-

ommends that H5N1 virus–infected patients with acute respi-

ratory distress syndrome be managed similarly to patients with

acute respiratory distress syndrome of other etiologies (i.e., with

the use of lung-protective strategies, including low tidal volume

ventilation) [92]. The WHO has proposed collection of a min-

imal clinical data set [93], and a standard data collection in-

strument that includes epidemiological and clinical data was

proposed [94].

Antiviral treatment. In addition to supportive care and

ensuring adequate oxygenation [92], oral antiviral treatment

with the neuraminidase inhibitor oseltamivir is recommended

[13, 92, 95]. In a small study by de Jong et al. [96], clade 1

H5N1 viral levels were observed to decrease substantially in 4

surviving patients after 3–5 days of oseltamivir treatment. How-

ever, oseltamivir resistance developed in other patients during

treatment, including 1 patient treated early (i.e., beginning on

the second day of illness) [96]. The optimal dose and duration

of oseltamivir treatment in H5N1 patients are unknown. The

WHO recommends consideration of higher oseltamivir doses

and a longer duration of treatment for patients with severe

disease or diarrhea and for patients with late clinical presen-

tation [13, 92]. The administration of oseltamivir via a naso-

gastric tube for patients who receive mechanical ventilation can

achieve sufficient drug levels [97].

Limited data from Egypt [13] and Indonesia [31] suggest

that early treatment with oseltamivir may prevent severe H5N1

virus infection and improve survival, and other data suggest

that antiviral treatment may be beneficial, compared with no

treatment [13, 64]. In China, receipt of any antiviral medication

was associated with survival [56]. However, analyses are needed

that control for severity of illness, other treatments, H5N1 virus

clade and/or subclade, and the timing of antiviral treatment

for a large number of patients. Data from oseltamivir clinical

treatment trials in patients with H5N1 virus infection are un-

available. Because the pathogenesis of H5N1 virus infection

appears to be driven by high viral replication that triggers cy-

tokine dysregulation [37, 98], and because most patients do

not receive a diagnosis of H5N1 virus infection until late in

their clinical course [62], antiviral therapy alone may not be

beneficial.

Antiviral resistance. Antiviral resistance in H5N1 virus

strains may exist prior to treatment or can develop during

treatment. Oseltamivir resistance in clade 1 H5N1 virus variants

associated with a specific H274Y mutation in the neuraminidase

gene was reported during treatment of 2 patients who died [96]

and was detected in subpopulations of strains recovered from

samples obtained from a surviving patient who received osel-

tamivir chemoprophylaxis [99]. Oseltamivir resistance associ-

ated with a different neuraminidase gene mutation (N294S)

was reported during and before treatment among patients in-

fected with clade 1 and subclade 2.2 virus strains, respectively

[99, 100]. In vitro data suggest that the H274Y mutation confers

relatively high oseltamivir resistance, compared with interme-

diate resistance conferred by the N294S mutation [101] Most

clade 1 and subclade 2.1 viruses are resistant to the adamantanes

(amantadine and rimantadine) [8]. Clade 1 virus strains resis-

tant to oseltamivir retained susceptibility to the neuraminidase

inhibitor zanamivir [78, 79]. H5N1 virus strains circulating

among birds can exhibit variable susceptibilities to oseltamivir

over time and across clades and subclades [102, 103]. An up

to 8-fold reduced oseltamivir susceptibility in vitro was reported

in subclade 2.3.4 viruses, compared with the highly susceptible

clade 1 virus strains isolated from patients in Vietnam before

treatment [15]. These subclade 2.3.4 viruses demonstrated re-

duced susceptibility to zanamivir but remained sensitive to

amantadine and rimantadine [15].

The clinical significance of in vitro oseltamivir resistance

identified in H5N1 virus strains is unknown, including whether

higher dosing of oseltamivir has clinical effectiveness in patients

infected with strains with intermediate resistance. However,

these data suggest that combination antiviral treatment with a

neuraminidase inhibitor and an adamantane drug [104] or

other combinations (oseltamivir-ribavirin) [105] for subclade
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2.2 and 2.3.4 virus infections should be strongly considered.

Combination antiviral treatment has been administered to

some patients with H5N1 virus infection, although data are

limited [56]. Triple therapy (amantadine, ribavirin, and osel-

tamivir) may suggest a strategy for antiviral resistance [106].

Animal data suggest a benefit of treatment with intramuscular

peramivir [107], intravenous zanamivir [108], or type 1 inter-

ferons [109, 110], but no data on patients with H5N1 virus

infection are available for these drugs. Other strategies that

target viral endonuclease or viral RNA polymerase have been

proposed [111].

Immunomodulator and anti-inflammatory agents. Al-

though cytokine dysregulation is believed to be a major factor

in acute lung injury and in the pathogenesis of H5N1 virus

infection, the role of immunomodulator therapy for patients

with H5N1 virus infection is unclear. No benefit has been iden-

tified for the use of corticosteroids, and the WHO recommends

against administering corticosteroids except for septic shock

with adrenal insufficiency [13, 92]. Zanamivir treatment com-

bined with anti-inflammatory therapy, including COX-2 in-

hibitors, of clade 1 H5N1 virus–infected mice resulted in a

higher survival, compared with the use of monotherapy [112],

but data are unavailable on combined antiviral and anti-in-

flammatory therapy for patients with H5N1 virus infection.

Aspirin should not be administered to H5N1 virus–infected

patients aged !18 years because of the risk of Reye syndrome

[2, 39]. Use of generic anti-inflammatory or immunomodu-

lator therapy (statins, fibrates, or chloroquine) during the next

pandemic has been proposed [113], but their effectiveness in

treating patients with H5N1 virus infection is unknown.

Immunotherapy. A small number of severely ill patients

with H5N1 virus infection in China received passive immu-

notherapy. Two patients with respiratory failure who required

invasive mechanical ventilation received transfused convales-

cent serum samples from H5N1 virus–infected patients who

survived, and both recipients recovered [56, 114]. A third pa-

tient with subclade 2.3.4 H5N1 virus infection and with pneu-

monia requiring positive-pressure ventilation received conva-

lescent plasma from a participant in a clade 1 H5N1 vaccine

clinical trial and also made a full recovery [34]. Given the small

number of patients and the uncontrolled use of immunother-

apy and other coadministered therapies, including antivirals,

the effectiveness of convalescent plasma therapy among pa-

tients with H5N1 virus infection is unclear. Nevertheless, such

results should stimulate further investigations of immunother-

apy for H5N1 virus–infected patients with clinical and viro-

logical outcomes.

Another approach is the production of monoclonal anti-

bodies that neutralize H5N1 virus strains using different

sources, and some studies reported evidence of broad cross-

clade activity [115–127]. H5-specific neutralizing antibodies

were observed to have therapeutic and prophylactic benefits in

H5N1 virus–infected mice [116], including efficacy when ad-

ministered up to 5 days after H5N1 virus infection, compared

with control mice [121], and after extrapulmonary H5N1 virus

dissemination had occurred [122]. Sui et al. [120] identified

high-affinity human antibodies that targeted the postviral at-

tachment fusion process and that demonstrated high efficacy

in vitro and in vivo against H5N1 and seasonal influenza A

(H1N1) viruses. Overall, these findings suggest the potential

for targeted monoclonal or polyclonal antibody therapy with

broad neutralizing ability for human H5N1 virus infection,

including against strains of different virus clades and subclades.

INFECTION CONTROL ISSUES

Nosocomial H5N1 virus transmission from patients to family

members [32, 34] and to a health care worker [128] was re-

ported after prolonged, close, unprotected contact with a se-

verely ill patient, and serological evidence of patient–to–health

care worker transmission was reported [129]. Patients with

suspected, probable, or confirmed H5N1 virus infection should

be isolated in single rooms with designated caregivers. Respi-

ratory secretions, body fluids, stool, and all other clinical spec-

imens should be considered potentially infectious, although the

detection of H5N1 virus in urine has not been reported. The

WHO recommends use of personal protective equipment

(gown, gloves, goggles, and surgical mask) and implementation

of standard, contact, and droplet precautions for routine care

of patients with H5N1 virus infection [92, 130, 131]. For aer-

osol-generating procedures (suctioning, intubation, or admin-

istering aerosolized bronchodilators), the WHO recommends

using a fit-tested N95-equivalent or higher particle-filtering res-

pirator [91, 130, 131], whereas the CDC recommends imple-

mentation of airborne precautions, if available, for all patients

suspected of having H5N1 virus infection in the United States

[132]. Aerosol-generating procedures should be performed in

a single ventilated room with at least 12 air exchanges per hour

or in a negative pressure room, if available [92]. It is extremely

important to educate health care workers and family member

caregivers about H5N1 virus transmission and infection control

and to provide them with personal protective equipment, given

the transmission of infection to blood-related family members

described in past studies [32, 34]. H5N1 vaccine is unavailable

outside of clinical trials, but annual influenza vaccination is

recommended for health care workers to prevent seasonal in-

fluenza. Oseltamivir chemoprophylaxis of H5N1 virus-exposed

persons is recommended, and the WHO issued guidelines for

prioritization depending on antiviral availability [95]. Close

monitoring of family members, health care workers, and others

who have had close contact with H5N1 virus–infected patients

is needed.
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CONCLUSIONS

To date, there is a paucity of detailed clinical data and available

information on optimal evidence-based clinical management

of patients with H5N1 virus infection, and much more clinical

research is needed. The systematic collection, analysis, and pub-

lication of detailed clinical data are needed to standardize and

improve clinical care of H5N1 virus–infected patients world-

wide and especially to guide intensive care management. Given

that sporadic human infections with H5N1 virus are expected

to continue among exposed persons, many challenges remain,

including the ability to detect and treat H5N1 virus infection

early. The development and availability of highly accurate, spe-

cific, simple, rapid, and inexpensive point-of-care H5N1 di-

agnostic tests are needed. Comprehensive data on clinically

mild cases and additional autopsy data will help further un-

derstanding of the pathogenesis of H5N1 virus infection.

Although the pathogenesis of human H5N1 virus infection

is not completely understood, data suggest that controlling viral

replication and cytokine dysregulation should be targeted.

Given the high mortality for patients with H5N1 virus infection

and lack of definitive treatment to date, there is an urgency to

consider and assess new treatment strategies, including com-

bination antiviral treatment (oral, inhaled, or parenteral ad-

ministration and higher dosing) with anti-inflammatory agents

and immunotherapy, and to make any effective therapies widely

available.
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