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Abstract

The brain constantly infers the causes of the inputs it receives and uses these inferences to

generate statistical expectations about future observations. Experimental evidence for

these expectations and their violations include explicit reports, sequential effects on reaction

times, and mismatch or surprise signals recorded in electrophysiology and functional MRI.

Here, we explore the hypothesis that the brain acts as a near-optimal inference device that

constantly attempts to infer the time-varying matrix of transition probabilities between the sti-

muli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious

Bayesian model, with a single free parameter, accounts for a broad range of findings on sur-

prise signals, sequential effects and the perception of randomness. Notably, it explains the

pervasive asymmetry between repetitions and alternations encountered in those studies.

Our analysis suggests that a neural machinery for inferring transition probabilities lies at the

core of human sequence knowledge.

Author Summary

We explore the possibility that the computation of time-varying transition probabilities

may be a core building block of sequence knowledge in humans. Humans may then use

these estimates to predict future observations. Expectations derived from such a model

should conform to several properties. We list six such properties and we test them success-

fully against various experimental findings reported in distinct fields of the literature over

the past century. We focus on five representative studies by other groups. Such findings

include the “sequential effects” evidenced in many behavioral tasks, i.e. the pervasive fluc-

tuations in performance induced by the recent history of observations. We also consider

the “surprise-like” signals recorded in electrophysiology and even functional MRI, that

are elicited by a random stream of observations. These signals are reportedly modulated

in a quantitative manner by both the local and global statistics of observations. Last, we

consider the notoriously biased subjective perception of randomness, i.e. whether humans

think that a given sequence of observations has been generated randomly or not. Our

model therefore unifies many previous findings and suggests that a neural machinery

for inferring transition probabilities must lie at the core of human sequence knowledge.
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Introduction

From bird song to music, sea waves, or traffic lights, many processes in real life unfold across

time and generate time series of events. Sequences of observations are therefore often under-

pinned by some regularity that depends on the underlying generative process. The ability to

detect such sequential regularities is fundamental to adaptive behavior, and many experiments

in psychology and neuroscience have assessed this ability by appealing to tasks involving

sequences of events. Various effects suggestive of local sequence learning have been consis-

tently reported, even when experimental sequences are devoid of any regularity (i.e. purely

random) and restricted to only two possible items or actions. Studies of “novelty detection” for

instance show that the mere exposure to a sequence of stimuli elicits reproducible “novelty”

brain responses that vary quantitatively as a function of the item infrequency and divergence

from previous observations [1–11]. Behaviorally, studies using two-alternative forced-choices

have revealed “sequential effects”, i.e. fluctuations in performance induced by local regularities

in the sequence. For instance, subjects become faster and more accurate when they encounter

a pattern that repeats the same instructed response, or that alternates between two responses,

and they slow down and may even err when this local pattern is discontinued [12–23]. Finally,

studies asking subjects to produce random sequences or to rate the apparent “randomness” of

given sequences, show a notorious underestimation of the likelihood of alternations [24–29].

Here, we propose a model that provides a principled and unifying account for those seem-

ingly unrelated results, reported in various studies and subfields of the literature quoted above.

We adopt a Bayesian-inference approach [30–37] which relies on three pillars. The first one

is that information processing in the brain relies on the computation of probabilities [30,38–

43]. A second pillar is that these probabilistic computations closely approximate Bayes’ rule.

This means that, in order to infer the hidden regularities of the inputs it receives, the brain

combines the likelihood of observations given putative regularities and the prior likelihood of

these regularities [44]. A third pillar is the predictive and iterative nature of Bayesian computa-

tions: once the hidden regularities of the inputs are inferred, the brain uses them to anticipate

the likelihood of future observations. Comparison between expectations and actual data allows

the brain to constantly update its estimates–a computational mode termed “active inference”

[45,46].

To apply this general framework to sequences, one must identify the models that the brain

computes when learning from a sequence. One possibility that we explore here is that there are

core building blocks of sequence knowledge that the brain uses across many different domains

[47]. Throughout this paper, our goal is to identify the minimal building block of sequence

knowledge. By “minimal”, we mean that a simpler hypothesis would demonstrably fail to

account for experimental effects such as surprise signals, sequential effects in reaction times

and the biased perception of randomness.

Our proposal can be succinctly formulated: the brain constantly extracts the statistical

structure of its inputs by estimating the non-stationary transition probability matrix between

successive items. “Transition probability matrix” means that the brain attributes a specific

probability to each of the possible transitions between successive items. “Non-stationary”

means that the brain entertains the hypothesis that these transition probabilities may change

abruptly, and constantly revises its estimates based on the most recent observations.

We formalized this proposal into a quantitative model, which we call the “local transition

probability model”. As we shall see, this model predicts that expectations arising from a

sequence of events should conform to several properties. We list these properties below and

unpack them, one at a time, in the Results section.
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To test whether the proposed model is general, we simulated the results of five different

tasks previously published [1,2,9,20,25]. They differ in the type of observable: either reaction

times [2,20], judgment of randomness [25], functional MRI signals [2] or EEG signals [1,9].

They also differ in the experimental task: either passive listening [1], two-alternative forced-

choice [2,9,20] or subjective ratings [25]. Last, they also differ in the way stimuli are presented:

sequential and auditory [1], sequential and visual [2,9,20] or simultaneous and visual [25]. Yet,

as we shall see, all of these observations fall under the proposed local transition probability

model.

We also tested the minimal character of the model, i.e. the necessity of its two main hypoth-

eses, namely, that transition probabilities are learned, and that such learning is local in time.

Instead of transition probabilities, simpler models previously proposed that subjects learn the

absolute frequency of items, or the frequency of alternations [9,20,23,48]. We evaluated the

predictive ability of these statistics, whose relationships are illustrated in Fig 1. We also tested

the non-stationarity hypothesis by comparing the local transition probability model with other

models that assume no change in the quantity they estimate, or a simple forgetting rule (as

illustrated in Fig 2). This model comparison is not exhaustive since many proposals were for-

mulated over the past fifty years; however, it allows to test for the necessity of our assumptions.

To anticipate on the results, we found that only a learning of local transition probabilities was

compatible with the large repertoire of experimental effects reported here.

Results

Description of the model

The local transition probability model assumes that several brain circuits involved in sequence

learning entertain the hypothesis that the sequence of items has been generated by a “Markov-

ian” generative process, i.e. only the previous item yt–1 has a predictive power onto the current

item yt. Those circuits therefore attempt to infer the “transition probability matrix” which

expresses the probability of observing a given item, given the identity of the preceding one.

Further, the model is local in time in that it assumes that the transition probabilities gener-

ating the observations may change over time (some theorists call this a model with a “dynamic

belief”). More precisely, it assumes that there is a fixed, non-zero, probability pc that the full

matrix of transition probabilities changes suddenly from one observation to the next (see Fig

2A). Therefore, at any given moment, the current and unknown generative transition proba-

bilities must be estimated only from the observations that followed the last change. Note that

the occurrence of such changes is itself unknown–the model must infer them. Bayes’ rule and

probabilistic inference allow to solve this challenging problem optimally. Intuitively, the opti-

mal solution discounts remote observations and adjusts the strength of this discounting pro-

cess to the trial-by-trial likelihood of changes. The estimation of transition probabilities is

therefore “local” and non-stationary.

In this paper, we contrast the local transition probability model with an alternative model

which entertains a “fixed belief”, i.e. which assumes that the generative process never changes

(pc is exactly 0). The fixed-belief assumption greatly simplifies the estimation of transition

probabilities, which boils down to counting the occurrence of each transition between any two

items–but it prevents the model from adapting to the recent history of events. We also con-

sider models which only approximate the Bayes-optimal “dynamic belief” inference. One such

model is a forgetful count that discards old observations or weights recent observations more

than past ones [23]. The count may be forgetful because it is limited to a fixed window of

recent observations (the “windowed model”), or because it involves a leaky integration, such

that previous observations are progressively forgotten. Importantly, the time scale over which
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forgetting occurs is fixed at a preset value and therefore cannot be adjusted to the trial-by-trial

likelihood of changes, unlike the optimal solution.

The leaky integration and the Bayes-optimal dynamic belief are two algorithms, each with a

single free parameter, that result in local estimates of statistics. Both yield similar results in the

Fig 1. Three different hypothesis spaces (A) Sequences can be characterized by a hierarchy of statistics. We consider here binary sequences with
only two items: X and Y. The simplest statistic considers stimuli in isolation, based on the frequency of items, p(X) and p(Y). A second level considers
pairs of items irrespective of their order, distinguishing pairs of identical versus different items (XX and YY vs. XY and YX). The relevant statistic is the
frequency of alternations, or conversely, the frequency of repetitions: p(alt.) = 1 – p(rep.). A third level considers ordered pairs, distinguishing X1Y2 from
Y1X2. The relevant statistics are the two transition probabilities between consecutive items: p(Y2|X1) and p(X2|Y1). For brevity, we generally omit the
subscripts. For binary sequences, the space of transition probabilities is 2-dimensional. In this space, the diagonals are special cases where transition
probabilities coincide with the frequency of items and frequency of alternations. Out of the diagonals, there is no linear mapping between transition
probabilities and the frequency of items (shown in red/blue and iso-contours) or the frequency of alternations (shown with transparency and iso-
contours). (B) Example sequences generated from distinct statistics. From top to bottom: The sequences (1) and (2) differ in their frequency of X but
not in their frequency of alternations. To generate such sequences, one can select the next stimulus by flipping a biased coin. The sequences (3) and
(4) differ in their frequency of alternations, but not in their frequency of X. To generate such a sequence, one can start the sequence arbitrarily with X or
Y, and then decide whether to repeat the same item or not by flipping a biased coin. The sequence (5) is biased both in its frequency of alternations and
its frequency of items. It cannot be generated with a single biased coin, but instead two biased coins are required, one to decide which item should
follow an X and the other to decide which item should follow a Y. The sequence (6) is a purely random sequence, with no bias in either transition
probabilities, and hence, no bias in item nor alternation frequencies. It can be generated by flipping a fair coin.

doi:10.1371/journal.pcbi.1005260.g001
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present context, we therefore refer to both as the “local transition probability model”. We

reported the results for the leaky integration in the main text and the results for the Bayes-opti-

mal dynamic belief as supplementary information (see S1, S2 and S3 Figs).

These different inference styles of transition probabilities–fixed belief, dynamic belief, leaky

integration–are depicted in Fig 2B. For comparison, we also implemented variants that resort

to the same inference styles but estimate a different statistic: either the absolute frequency of

items, or the frequency of alternation between successive items. It is important to note that

these statistics are simpler than transition probabilities, because the information about the

Fig 2. Three different inference styles Panel A shows an example of a sequence in which the statistics change abruptly: the first half, from 1 to 150,
was generated with p(X|Y) = 1 – p(Y|X) = 2/3, and the second half with p(X|Y) = 1 – p(Y|X) = 1/3. In this paper, we consider different hypotheses
regarding the inference algorithm used by the brain to cope with such abrupt changes (panel B). Somemodels assume that a single statistic generates
all the observations received (“fixed belief”) while other assume volatility, i.e. that the generative statistic may change from one observation to the next
with fixed probability pc (“dynamic belief”). Models with fixed belief may estimate the underlying statistic either by weighting all observations equally
(“perfect integration”), or by considering all observations within a fixed recent window of N stimuli (“windowed integration”, not shown in the figure), or by
forgetting about previous observations with an exponential decayω (“leaky integration”). The heat maps show the posterior distributions of transition
probabilities generating the sequence in (A) as estimated by each model. The white dash line indicates the true generative value. The insets show the
estimated 2-dimensional space of transition probabilities at distinct moments in the sequence.White circles indicate the true generative values.

doi:10.1371/journal.pcbi.1005260.g002
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frequency of items and the frequency of alternations is embedded in the larger space of transi-

tion probabilities (see Fig 1A). Transition probabilities also dictate the frequency of ordered

pairs of items (see S1 Text for Supplementary Equations). Some of the models included in our

comparison were proposed by others, e.g. the fixed-belief model that learns item frequencies

was proposed by Mars and colleagues [4] and dynamic-belief models were also proposed by

Behrens, Nassar and colleagues [49,50] for learning item frequencies, and by Yu and Cohen

[23] for learning the frequency of alternations.

The local transition probability model makes several predictions:

1. In binary sequences, expectations should reflect at least two statistics: the absolute fre-

quency of items, and the frequency of alternations. This is because these statistics are spe-

cial cases of transition probabilities (see Fig 1A).

2. Transition probabilities should drive expectations both globally (given the entire

sequence) and locally (given the recent history of observations). Since the inference is

local, it captures both local statistics, and their average (the global statistics).

3. The local effects should be observed even in fully unbiased sequences where items and

transitions are equiprobable. Indeed, a local, non-stationary inference constantly captures

the local deviations from equiprobability that emerge by chance even in purely random

sequences.

4. The same observations received in different orders should produce different expecta-

tions. Since the model progressively discounts previous observations, the impact of a given

observation depends on its rank within the recent past.

5. Repeating stimuli should produce stronger expectations than the same number of alter-

nating stimuli. This is an emergent property of learning transition probabilities: a repeat-

ing sequence (e.g. XXXXX) provides twice as much evidence about a single transition type

(X!X) than an alternating sequence (e.g. XYXYX) where the evidence is spread among

two transition types (X!Y and Y!X).

6. The perception of randomness should be biased: although, the highest degree of ran-

domness is, by definition, achieved when there is no bias, a sequence that contains

slightly more alternations than repetitions should be perceived as “more random” than

a genuinely unbiased sequence. This is because stronger expectations arise from repetition

than alternation.

In the following, we characterize these predictions in greater detail in specific experimental

contexts, and we test them against a variety of data sets and by comparing with simpler

models.

Effects of sequence statistics in electrophysiological data

The P300 is an event-related potential that can be easily measured on the human scalp and is

sensitive to the surprise elicited by novel or unexpected stimuli. Squires et al. (1976) made a

seminal contribution: they showed that, even in a random stream of items, the P300 amplitude

varies strongly with the local history of recent observations. Even in purely random sequences

(like fair coin flips) the amplitude of the P300 elicited by a given stimulus X increases when it

is preceded by an increasing number of other stimuli Y, i.e. when it violates a “streak” of recent

repetitions of Y (e.g. XXXXX vs. YXXXX vs. YYXXX vs. YYYXX vs. YYYYX). The P300 ampli-

tude also increases when a stimulus violates a pattern of alternations enforced by the recent

history (e.g. XYXYX vs. YXYXX). Squires et al. (1976) plotted these history effects as “trees”
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reflecting the entire history of recent stimuli (Fig 3A). When they varied the overall frequency

of items in the sequence (from p(X) = 0.5 to 0.7 or 0.3), they also found that the entire tree of

local effects was shifted up or down according to p(X). Altogether, their data show that the

P300 amplitude reflects, in a quantitative manner, the violation of statistical expectations

based on three factors: the global frequency of items, their local frequency and the local fre-

quency of alternations. Importantly, these local effects emerged even in purely random

sequences (see the middle tree in Fig 3A).

These effects correspond to properties #1, #2 and #3 of the local transition probability

model. Because the P300 wave seems to reflect the violation of expectations, rather than the

expectations themselves, we quantified whether a given observation fulfills or deviates from

expectations with the mathematical notion of surprise [51,52]. We computed theoretical levels

of surprise, given the observations received (and no other information), from the local transi-

tion probability model and we found that they quantitatively reproduce the data from Squires

et al. (Fig 3B).

More precisely, the local transition probability model has a single free parameter, which

controls the non-stationarity of the inference. It is crucial to avoid conflating the dimensional-

ity of the estimated quantities (which is two here, for the transition–probability matrix

between two items) and the number of free parameters constraining this estimation (which is

one for the local transition probability model). In the approximate model that we tested here,

the only free parameter is the leak of the integration (ω) whose best fitting value was ω = 16 sti-

muli. This exponential decay factor means that the weight of a given observation is divided by

two after a half-life of ω � ln(2)� 11 new observations. We report in S1 Fig the results for the

exact inference (Bayes-optimal dynamic belief), for which the best fitting value of the a priori

probability of change was pc = 0.167.

While the assumptions of the local transition probability model seem sufficient to account

for the data, we can also demonstrate that each of them is actually necessary and that they can

be distinguished from one anther (see S4 Fig). Models with constant integration, i.e. without

leak or a recent observation window, become increasingly insensitive to the recent history of

observations as more observations are received. For such models, further details in the recent

history have little impact on their expectations, as seen in the corresponding shriveled trees

(see Fig 3C). Models that learn simpler statistics are also not able to fully reproduce the data.

The ones that learn the frequency of alternations show little effect of the global item frequency

(see the position of the roots of trees in Fig 3B). Those that learn the frequency of items capture

the effect of global item frequency, but they fail to reproduce the specific arrangement of

branches of the trees. For instance, in purely random sequences (when p(X) = 0.5), such mod-

els predict that the surprise elicited by YXYX patterns should be like the average response

(compare its position relatively to the root of the tree in Fig 3B) whereas it is not the case in the

data. A model that learns transition probabilities captures the lower-than-average activity for

YXYX patterns because it detects the repeated alternation (see Fig 3B).

We quantified the superiority of the local transition probability model using the Bayesian

Information Criterion (BIC), which favors goodness-of-fit while penalizing models for their

number of free parameters. The local transition probability model was better than the others:

all ΔBIC> 9.46 (see Table 1). Cross-validation accuracy, another metric for model compari-

son, yielded the same conclusion (see S5 Fig). We also included the model proposed by Squires

et al. (see Methods) that achieves a similar goodness-of-fit, but at the expanse of a higher com-

plexity. In addition, this model is descriptive (a linear regression of several effects of interest)

and not principled.

We tested the robustness of the local transition probability model with another dataset

from Kolossa et al. (2013). The authors introduced noticeable differences in the original design

Building Block of Sequence Knowledge
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by Squires et al.: stimuli were visual (instead of auditory) and subjects had to make a two-alter-

native button press for each item of the sequence (instead of listening quietly). Again, we could

reproduce all qualitative and quantitative aspects of the data. Notably, we found almost the

same best-fitting leak parameter (ω = 17 instead of 16). The BIC again favors the local transi-

tion probability model (see Table 1), even when compared to the model proposed by Kolossa

et al. (see Methods).

Sequential effects in reaction times

Reaction time tasks submit subjects to long and purely random sequences of two items. Sub-

jects are asked to press a dedicated button for each item, and response times typically vary

with the recent history of button presses. We compared subjects’ reaction times to the theoreti-

cal surprise levels computed from different leaky integration models in the same experiment.

Huettel et al. (2002) were interested in the effects of streaks on reaction times and brain signals

recorded with fMRI. Their data show that reaction times were slower for stimuli violating a

streak (see Fig 4A and 4B) than for those continuing it. This was true both for repeating

(XXXXY vs. XXXXX) and alternating streaks (XYXYX vs. XYXYY), with a correlation

with the streak length: the longer the streak, the larger the difference between violation and

Fig 3. The electrophysiological P300 response reflects the tracking of statistical regularities. A) Data redrawn from Squires et al. (1976). Subjects
passively listened to binary streams of auditory stimuli (denoted X and Y). Stimuli were generated randomly with global frequency p(X) = 0.5 (no bias), p(X) =
0.7 or p(X) = 0.3 (biased frequencies) in separate sessions. The P300 amplitude was averaged at the end of all possible patterns of 5 stimuli at most, and
plotted as a “tree” whose branches show the possible extensions for each pattern. (B-C) Average theoretical levels of surprise for all possible patterns. For
each model (i.e. each set of three trees), the theoretical surprise levels were adjusted for offset and scaling to fit the data. For local models with leaky
integration (B), we show the trees corresponding to the best fitting value of the leak parameterω. The insets show a direct comparison between data and
best-fitting theoretical surprise levels, with the regressionR2.

doi:10.1371/journal.pcbi.1005260.g003

Table 1. Model comparison

Statistics Integration Number of free parameters Best-fitting parameter MSE ΔBIC R
2 (%)

Item frequency Perfect 2 + 0 - / - 1.06 / 0.50 34.97 / 25.89 48 / 63

Windowed 2 + 1 14 / 15 0.75 / 0.28 22.39 / 15.07 63 / 79

Leaky 2 + 1 11 / 12 0.69 / 0.26 18.51 / 13.72 66 / 81

Dynamic 2 + 1 0.0190 / 0.013 0.58 / 0.20 9.83 / 7.68 71 / 85

Alternation frequency Perfect 2 + 0 - / - 1.51 / 1.15 52.18 / 45.93 25 / 15

Windowed 2 + 1 18 / 13 1.31 / 1.02 49.24 / 46.22 35 / 24

Leaky 2 + 1 16 / 10 1.31 / 1.00 49.26 / 45.92 35 / 25

Dynamic 2 + 1 0.0083 / 0.019 1.28 / 0.98 47.88 / 45.23 37 / 27

Transition probabilities Perfect 2 + 0 - / - 0.90 / 0.39 27.22 / 20.30 56 / 71

Windowed 2 + 1 18 / 20 0.57 / 0.18 9.46 / 4.86 72 / 87

Leaky 2 + 1 16 / 19 0.47 / 0.15 0 / 0 77 / 89

Dynamic 2 + 1 0.0130 / 0.013 0.51 / 0.17 3.88 / 2.53 75 / 88

Squires et al. (1976) model 2 + 3 - / - 0.51 / - 11.48 / - 75 / -

Kolossa et al. (2013) model 2 + 6 - / - - / 0.24 - / 27.62 - / 82

The table compares the fit of several models onto the dataset from Squires et al. (1976) and Kolossa et al. (2013). Values around the slash correspond to

Squires / Kolossa data sets. The number of fitted parameters includes 2 linear transformations (scaling and offset) plus model-specific free parameters

(from 0 to 6), see Methods for a description of the models. Best fitting parameter values are reported, excepted for the models corresponding to Squires

et al. 1976 and Kolossa et al. (2013) (the values are reported in the original publications) and for perfect models that have no free parameter. Bayesian

Information Criterion (BIC) was computed from the mean squared error (MSE) and n = 48 data points (one per pattern of 5 stimuli) in Squires and n = 24 in

Kolossa (one per pattern of 4 stimuli). BIC values are reported relatively to the best model as difference in BIC values: ΔBIC. Smaller values of MSE indicate

better goodness-of-fit and smaller ΔBIC values indicate better models.

doi:10.1371/journal.pcbi.1005260.t001
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continuation. Importantly, the violation vs. continuation difference in reaction times increased

more steeply with the length of repeating streaks compared to alternating streaks. This corre-

sponds to property #5 of the local transition probability model.

Fig 4. Tracking of statistical regularities and reaction times. (A-B) Experimental data redrawn from Huettel et al. (2002) [2]. Subjects were
presented with a purely random stream of two items. They had to press a key corresponding to the presented item as fast as possible. Reaction
times are sorted depending on whether the local sequence of items followed a local streak of repeated or alternated items, and whether the last
item continued or violated the preceding pattern. For instance, in XXXXY, the last item violates a previous streak of four repeated items. (C)

Experimental data redrawn from Cho et al. (2002) [20]. The task was similar to Huettel et al. (2002) but reaction times are now sorted based on
all possible patterns of repetition (R) or alternation (A) across the five past stimuli. For instance, the pattern AAAR denotes that the current item is

a repetition of the previous item, and that the four preceding stimuli all formed alternations (e.g. XYXYY). (D-L) Theoretical surprise levels

estimated in purely random sequences by three different local models. These local models differ only in the statistic they estimate. Their single
free parameter is the leak of integration, it was fitted to each dataset. We report the regressionR2 for these best parameters. Note that
regressions include the data for both repetitions and alternations in the case of Huettel et al. Note that only a learning of transition probabilities
predicts several aspects of the experimental data.

doi:10.1371/journal.pcbi.1005260.g004
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Importantly, this property is specific to a model that learns transition probabilities. A

model that learns the frequency of alternations has identical expectations for repeating and for

alternating streaks, because alternations and repetitions play symmetrical roles for this statistic.

A model that learns the frequency of items has expectations in repeating streaks but not in

alternation streaks. Indeed, as the streak length increases, the frequency of the repeated item

increases but in alternating streaks, the frequency of either item remains similar. On the con-

trary, in a model that learns transition probabilities, expectations build up for both streak types

by counting all possible transition types between successive items. In that case, an asymmetry

emerges because repeating sequences offer twice the evidence about the current transition

than do alternating sequences. For instance, in XXXXXXX, one may predict that the item fol-

lowing the last X should be another X, since six transitions X!X preceded without a single

X!Y transition. In XYXYXYX, one can predict that the item following the last X should be a

Y, since three transitions X!Y preceded without a single X!X transition. However, the ratio

of evidence supporting the transition currently expected is stronger in the repeating sequence

(6:0) compared to the alternating sequence (3:0).

One could argue that such an asymmetry is not a property of statistical learning but a sim-

ple consequence of motor constraints or motor priming. However, such a conclusion would

be inconsistent with the EEG data recorded from passive subjects in Squires et al. study, in

which the P300 difference between XXXXY and XXXXX was also larger than between XYXYY

and XYXYX. In addition, Huettel et al. also recorded fMRI signals while participants per-

formed the task in a scanner. Activity levels in several non-motor brain regions such as the

insula and the inferior frontal gyrus showed the same sequential effects as the reaction times,

again with a larger brain activation for violations of repetition patterns than for violations of

alternation patterns.

Cho et al. (2002) were interested not only in the effect of the preceding number of repeti-

tions and alternations on reaction times, but also in their order. To do so, they sorted reaction

times based on all patterns of five consecutive stimuli (see Fig 4C). Each pattern contains four

successive pairs, which can either be an alternation (denoted A) or a repetition (denoted R) of

the same item. There are in total 24 = 16 possible patterns of repetition and alternation. Their

analysis confirmed several effects already mentioned above, such as the effect of local fre-

quency (e.g. RRRR vs. RRAR vs. RAAR vs. AAAR).

Their data also show clear evidence for property #4 of the local transition probability

model: the same observations, in a different order, produce different expectations. Consider,

for instance the sequences ARRR, RARR and RRAR. The local frequency of R is the same in

these three patterns since they each contain a single discrepant observation (A); yet, the order

of the observations matters: reaction times are slower when the discrepant A was observed

more recently. In the local transition probability model, it is due to the non-stationarity of the

estimation, which weights recent observations more than remote ones.

This order effect could also be reproduced by a model that learns the frequency of alterna-

tion (see Fig 4I). However, this model predicts that surprise levels should be symmetrical for

alternations and repetitions. This contradicts property #5, according to which expectations

build up more rapidly for alternations than repetitions. The data conform to this property:

reaction times for patterns ending with a repetition are lower than those ending with an alter-

nation (see Fig 4C), similarly to surprise levels in the local transition probability model (see Fig

4L).

Interestingly, the local transition probability model also captures additional aspects of the

data that are left unexplained by a model that learns the frequency of alternations. When pat-

terns are ordered as in Fig 4C, reaction times show gradual increases over the first eight pat-

terns and gradual decreases for the last eight. There are also local deviations from this global
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trend: it is particularly salient for patterns RAAR and ARAA. The local transition probability

model reproduces these local deviations. A model learning the frequency of alternations also

predicts local deviations, but for other patterns (RRAR and AARA). The observed deviations

are thus specific to a learning of transition probabilities. RAAR corresponds to XXYXX where

the last pair XX was already observed once, whereas in ARAR, which corresponds to XYYXX,

the last pair XX was not observed. Surprise is therefore lower (and not higher, as predicted by

a model learning alternation frequency) for RAAR than ARAR. A similar explanation holds

for ARAA vs. RAAA.

Finally, note that a model that learns the frequency of items fails to reproduce many aspects

of the data (see Fig 4F) since it is completely insensitive to repetition vs. alternation effects.

We obtained the results shown in Fig 4 by fitting the leak parameter ω of each model. The

best-fitting value for Huettel / Cho data was: ω = 8 / ω = 4 with a learning of stimulus fre-

quency, ω = 6 / ω = 1 with alternation frequency, and ω = 6 / ω = 3 with transition probabili-

ties. However, simulations using the leak value fitted to the independent dataset by Squires

et al. (Fig 3) led to the same qualitative conclusions. Thus, a single set of parameters may cap-

ture both data sets.

Asymmetric perception of randomness

The asymmetry in expectation for alternation vs. repetition is probably the least trivial prop-

erty of the local transition probability model (#5). This property is evidenced above in sequen-

tial effects and it entails a prediction in another domain: judgments of randomness should also

be asymmetric. This prediction is confirmed: the human perception of randomness is notori-

ously asymmetric, as shown in particular by Falk & Konold (1997) (see Fig 5A). Sequences

with probabilities of alternations p(alt.) that are slightly larger than 0.5 are perceived as more

random than they truly are. This is an illusion of randomness: in actuality, the least predictable

sequence is when p(alt.) = 0.5, i.e. when the next item has the same probability of being identi-

cal or different from the previous one.

This bias in the perception of randomness is actually rational from the viewpoint of the

local transition probability model. In order to quantify the perceived randomness of a

Fig 5. Asymmetric perception of randomness. (A) Data redrawn from Falk (1975) and reported in [25]. Subjects were presented with
various binary sequences of 21 stimuli. They were asked to rate the apparent randomness of each sequence. The range of perceived
randomness was normalized between 0 and 1. Ratings were sorted based on the alternation frequency in the sequences. (B-D) Theoretical
levels of entropy estimated by distinct local models. The entropy characterizes the unpredictability of a sequence. For each model, we
generated random sequences differing in their alternation frequencies. For each sequence and model, we computed the estimated probability
of the next stimulus of the sequence, given the preceding stimuli. We then converted these predictions into entropy levels and plotted the
average for different values of the leak parameter of the model. Note that only a learning of transition probabilities predicts a slight asymmetry of
perceived randomness.

doi:10.1371/journal.pcbi.1005260.g005
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sequence in the local transition probability model, we estimated the unpredictability of the

next outcome. This unpredictability is formalized mathematically by the notion of entropy.

The resulting estimated entropy level was maximal for sequences with p(alt.) larger than 0.5

(see Fig 5D). This bias was all the more pronounced that fewer stimuli were taken into account

in the estimation: a model with a stronger leak results in a larger bias. This aspect is specific to

the local transition probability model. In contrast, a model that learns the frequency of alterna-

tion shows no bias because alternations and repetitions play symmetrical roles for such a

model (see Fig 5C). On the other hand, a model that learns the frequency of items shows an

extreme bias: the maximal entropy level is reached for p(alt.) = 1 (see Fig 5B). This is because

when stimuli alternate, their observed frequencies are identical, closest to chance level (50%)

from the point of view of an observer that focuses solely on item frequency.

To understand how the asymmetry emerges, one should note that, in the local transition

probability model, expectations arise from both repeating transitions (XX and YY) and alter-

nating transitions (XY and YX). High expectations arise when one transition type is much

more frequent than the other. The estimated entropy therefore decreases when p(alt.)

approaches 1, where alternating transitions dominate, and when p(alt.) approaches 0, where

repeating transitions dominate. However, remember that stronger expectations arise from rep-

etitions than alternations in the local transition probability model (property #5). Therefore,

expectations are not symmetric with respect to p(alt.), but higher for p(alt.)< 0.5 than p(alt.)

> 0.5, so that the ensuing estimated entropy peaks at a value of p(alt.) that is slightly higher

than 0.5.

This asymmetry is also dampened, without being abolished, when the leaky integration

parameter of the local transition probability model is weaker. Indeed, experimental evidence

confirms that the difference in expectations arising from repeating and alternating transitions

is more pronounced for shorter sequences (see the results from Huettel et al, Fig 4A and 4B).

Discussion

We showed that learning non-stationary transition probabilities entails six properties. First,

expectations derived from such a learning show effects of both the frequencies of items and

their alternations because these statistics are specific aspects of transition probabilities (#1).

Second, these effects emerge both globally and locally in the learning process because the infer-

ence is non-stationary (#2). Third, this non-stationarity also entails that local effects emerge

even in purely random sequences (#3). Fourth, it depends on the exact order of observations

within the local history (#4). Fifth, since the space of transition probabilities is more general

than the frequencies of items and their alternations, the local transition probability model

makes a non-trivial prediction, unaccounted for by simpler statistics: expectations build up

more strongly from repetitions than from alternations (#5). Sixth, this asymmetry translates

into a subjective illusion of randomness which is biased toward alternations (#6). We identi-

fied many signatures of expectations and their violation in human behavior (such as reaction

times) and brain signals (measured by electrophysiology and fMRI) which conformed both

qualitatively and quantitatively to these predictions. We therefore conclude that transition

probabilities constitute a core building block of sequence knowledge in the brain, which

applies to a variety of sensory modalities and experimental situations.

Early studies [14,16] proposed that the information provided by stimuli modulates reaction

times within sequences [12]. According to the information theory framework, an observation

is informative inasmuch it cannot be predicted [51]. In line with this information-theoretic

approach, the local transition probability model quantifies the extent to which an observation

deviates from the preceding ones. The central role of expectations in cognitive processes has
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also been put forward by the predictive coding [7,53] and the active inference [46,54] frame-

works, and applied, for instance, to motor control [55,56] or reinforcement learning [57].

However, some have claimed that sequential effects in reaction times arise from low-level

processes such as motor adaptation. For instance, Bertelson wrote in 1961 “one must thus

admit that the shorter reaction times [for repetitions] cannot depend on something which

must be learnt about the series of signals–unless one assumes that this learning is fast enough

to be completed and give already its full effect on performance in the first 50 responses” [13].

In contrast, the local transition probability model shows that, with optimal statistical learning,

sequence effects can arise from a very local integration: our fit of Squires et al. (1976) data sug-

gests a leak factor ω of 16 stimuli, meaning that the weight of a given observation is reduced by

half after 16 � ln(2)� 11 observations. In addition, facilitation of reaction times is observed for

both streaks of repetitions and streaks of alternations, which speaks against a pure motor inter-

pretation [17,18]. Moreover, similar sequential effects are also observed in electrophysiological

and fMRI measures of brain activity in the absence of any motor task. Therefore, although

motor constraints may also contribute to reaction times fluctuations, a parsimonious and gen-

eral explanation for sequential effects is that they arise from learned statistical expectations.

The non-stationary integration also explains why both local and global effects emerge and

why local effects persist in the long run even within purely random sequences [20,23]. From

the brain’s perspective, the constant attempt to learn the non-stationary structure of the world

could be a fundamental consequence of a general belief that the world can change at unpre-

dictable times, as already suggested by others [23]. Many studies indeed show that the brain

can perform non-stationary estimation and thereby efficiently adapt to changes in the environ-

ment [49,50,58–60]. Technically, the belief in a changing world can be captured in two differ-

ent ways: either by the a priori likelihood of a sudden change (a.k.a. volatility) pc in the exact

dynamic belief model, or by the leaky integration factor ω in the approximate model. The pres-

ent data do not suffice to separate those two possibilities. This is because the latter (leaky inte-

gration) is such a good approximation of the former that both are difficult to disentangle in

practice. Leaky integration is a popular model in neuroscience because it seems easy to imple-

ment in biological systems [23,58,61,62]. However, the dynamic belief model may not be less

plausible given that neuronal populations have been proposed to represent and compute with

full probability distributions [33,41]. Furthermore, only the full Bayesian model recovers an

explicit probabilistic representation of change likelihood and change times. Several recent

experimental studies suggest that the brain is indeed capable of estimating a hierarchical

model of the environment, and that human subjects can explicitly report sudden changes in

sequence statistics [60,63].

Our results suggest that, during sequence learning, the brain considers a hypothesis space

that is more general than previously thought. We found that sequential effects in binary

sequences are better explained by a learning of transition probabilities (a 2-dimensional

hypothesis space) than of the absolute item frequencies or the frequency of their alternations

(which are one-dimensional spaces). Importantly, all of these models have the same number of

free parameters, so that the local transition probability model is more general without being

more complex or less constrained. The critical difference lies in the content of what is learned

(e.g. item frequencies vs. transition probabilities). More is learned in the latter case (a 2D space

is larger than a 1D space) without resorting to any additional free parameter. The value of the

learned statistic is not a free parameter, it is instead dictated by the sequence of observations

and the assumptions of the model. In general, a Bayesian learner may consider a vast hypothe-

sis space (see the many grammars used by Kemp and Tenenbaum [64]) and yet, as a model

that attempts to capture human behavior, it may possess very few or even zero adjustable

parameters.
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An alternative to the full 2D transition-probability model would be to combine two

learning processes: one for the frequency of items and one for the frequency of alternations.

However, such a model introduces a new free parameter compared to the local transition

probability model: the relative weight between the predictions based on the frequency of items

and the predictions based on the frequency of alternations. In addition, the distinction

between learning transition probabilities vs. the frequency of items and their alternations is

not a simple change of viewpoint: the correspondence between the two is extremely non-linear

as shown in Fig 1A. Learning the frequency of items and the frequency of alternations is there-

fore not only less parsimonious than learning transition probabilities, it is also genuinely

different.

The difference between learning transition probabilities vs. the frequency of items and their

alternation may have been overlooked in the past. However, the distinction is important since

these learning strategies make distinct predictions about the asymmetry of expectations arising

from repetitions and alternations. This asymmetry is a classical aspect of data, in particular

response times [13]. In previous models, this asymmetry was simply assumed and incorpo-

rated as a prior [23,25]. We show here, to our knowledge for the first time, how this asymmetry

follows naturally from first principles (Bayes’ rule) in the local transition probability model.

Moreover, our account is also unifying since it addresses not only sequential effects but also

judgments of randomness.

We claim that the learning of transition probabilities is a core and general building block of

sequence knowledge because we found supportive evidence in five representative datasets.

There is also additional evidence from other fields. For instance, word segmentation in lan-

guage relies on transition probabilities between syllables [65]. Moreover, neurons in the mon-

key inferior temporal cortex reduce their firing in direct proportion to the learned transition

probabilities [66,67]. Ramachandran et al. (2016), in particular, present single-cell recordings

suggesting that the expectation about the next item does not depend on its absolute frequency

or the absolute frequency of the pair it forms with the previous item, but instead on the condi-

tional probabilities of items learned with a covariance-based rule. Additional sources of evi-

dence that human subjects learn transition probabilities is provided by studies of “repetition

suppression” [68,69], choices in decision-making problems [70] and explicit reports of learned

transition probabilities [60]. The study by Bornstein and Daw [70] in particular shows that

humans can learn transition probabilities among 4 items. Our local transition probability

model naturally extends from the binary case to a larger number of categories, a situation that

is pervasive in every-day life. Learning only the frequency of items and of alternations becomes

gradually inadequate when the number of items increases, because most environmental regu-

larities are captured by various item-specific transition probabilities rather than absolute fre-

quencies. For instance, the probability of imminent rain is typically high after a thunderstorm,

but very low during a sunny day, and intermediate in case of strong wind. The learning of

transition probabilities may even operate without awareness [71–73].

Our claim that a learning of transition probabilities accounts for a variety of experimental

effects does not rule out the possibility that the brain also computes simpler statistics. Many

studies report effects of item frequencies or alternation frequency. Electrophysiology in partic-

ular shows that these effects unfold across time and across brain circuits, as reflected in signals

such as the mismatch negativity and the P300 [6,7,11,19]. In particular, Strauss et al. (2015,

experiment 2) identified two distinct time windows in magneto-encephalographic recordings,

during which the absolute frequency of items and the frequency of alternations, respectively,

affected the human brain responses to simple sounds. However, in most studies, it is not clear

whether such effects are particular cases of a general learning of transition probabilities or

whether they are genuinely limited to item frequency or alternation frequency. Both hypotheses
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are indistinguishable in most studies because of their experimental design. Therefore, it is not

clear for the moment whether different brain circuits are tuned to these different statistics and

compute them in parallel [48], or whether most brain regions are equipped for the computation

of transition probabilities. By contrast, it seems that more sophisticated building blocks of

sequence knowledge, such as ordinal knowledge, chunking, algebraic patterns and tree struc-

tures are operated by specific brain circuits [47]. Future work should aim to incorporate these

additional levels of representation to the local transition probability model, which we propose

here as a minimal building block, likely to be duplicated in many brain regions and shared by

humans and other animals alike.

Methods

We provide the MATLAB code for our ideal observer models to reproduce our simulations

and figures: https://github.com/florentmeyniel/MinimalTransitionProbsModel. In particular

the “trees” corresponding to Fig 3 and simulated with the dynamic belief model are not shown

in the article, but they can be easily generated with our code.

Formal description of the models

The models are “ideal observers”: they use Bayes’ rule to estimate the posterior distribution of

the statistic they estimate, θt, based on a prior on this statistic and the likelihood provided by

previous observations, y1:t (here, a sequence of Xs and Ys). Subscripts denote the observation

number within a sequence.

pðytjy1:t;MÞ / pðy
1:tjyt;MÞ pðyt;MÞ ðEq 1Þ

Different ideal observer models (M) estimate different statistics. The parameter θ can be the

frequency of items, the frequency of alternations, or transition probabilities between items.

The estimation of θ depends on the assumption of the ideal observer model: it can either con-

sider that θ is fixed and must generate all the observations (“fixed belief models”) or that θmay

change from one observation to the next (“dynamic belief models”). For all models, we use a

prior distribution that is non-informative: all possible values of θ are considered with equal

probability.

Note that a model estimating the frequency of alternations is equivalent to a model estimat-

ing the frequency of items after recoding of the stimuli as repetitions or alternations. There-

fore, we only present below the derivation for the item frequency and transitions probabilities,

in the case of both fixed belief and dynamic belief models.

Fixed belief models. For fixed belief, θ should not depend on the observation number.

Therefore, the likelihood function can be decomposed as follows using the chain rule:

pðy
1:tjyÞ ¼ pðy

1
; . . . ; ynjyÞ

¼ pðy
1
jyÞpðy

2
jy

1
; yÞpðy

3
jy

1
; y

2
; yÞ . . . pðynj11

; . . . ; yn�1
; yÞ

ðEq 2Þ

For models that estimate the frequency of items, the likelihood of a given observation

depends only on the estimated frequency:

pðy
1:tjyÞ ¼

Y

t

i¼1

pðyijyÞ

¼ y
NX

X ð1� yXÞ
NY

ðEq 3Þ
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Where θX is the frequency of X, NX and NY the numbers of X and Y in the sequence y1:t.

This likelihood is a Beta distribution whose parameters are NX + 1 and NY + 1. In order to

derive the posterior, the likelihood must be multiplied by the prior. Here, the prior is a non-

informative, flat distribution: a Beta distribution with parameters [1, 1]. Since the product of

two Beta distributions is also a Beta distribution in which the parameters are simply added, the

posterior distribution has an analytical solution:

pðyjy
1:tÞ ¼ BetaðyjNX þ 1;NY þ 1Þ ðEq 4Þ

For models that estimate transition probabilities between consecutive stimuli, the likelihood

of a given observation depends only on the estimated transition probabilities and the previous

stimulus:

pðy
1:tjyÞ ¼ pðy

1
jyÞ

Y

t

i¼2

pðyijy; yi�1
Þ

¼
1

2
y
NXjY

XjY ð1� yXjYÞ
NYjY

� �

y
NYjX

YjX ð1� yYjXÞ
NXjX

� �

ðEq 5Þ

Where θ denotes a vector of two transition probabilities θ = [θX|Y, θY|X], and NX|Y denotes

the number of YX pairs in the sequence y1:t. For simplicity, the first observation can be consid-

ered as arbitrary, so that p(y1|θ) = 1/2. Eq 5 therefore corresponds to the product of two Beta

distributions, with parameters corresponding to the transition counts plus one. The product of

this likelihood and a uniform prior distribution results in an analytical solution:

pðyjy
1:tÞ ¼ BetaðyXjY jNXjY þ 1;NYjY þ 1ÞBetaðyYjXjNYjX þ 1;NXjX þ 1Þ ðEq 6Þ

For models that estimate frequency and transition probabilities, we distinguish between dif-

ferent ways of counting. The leaky integration was modeled with a free parameter: an expo-

nential decay ω on the previous observations, i.e. a weight e–k/ω for the k-th past stimulus. The

perfect integration was modeled by counting all stimuli equally. For the sake of completeness,

we also included a model that counts perfectly in a window of recent observations. The length

of this window is a free parameter. Note that “perfect integration” is a special case of the win-

dow size being equal or larger than the number of stimuli in the sequence.

The posterior distribution can then be turned into the likelihood of the next stimulus using

Bayes’ rule (again):

pðytþ1
jy

1:tÞ ¼

Z

pðytþ1
jy; ytÞpðyjy1:tÞdy ðEq 7Þ

Note that for models that learn frequencies, θ is a single number (and not a vector, as for

transition probabilities) and the conditional dependence on yt can be ignored.

Dynamic belief models. In dynamic belief models, θmay change from one observation

to the next with probability pc, which is the only free parameter of the model. The computation

is tractable given the so-called Markov property of the generative process. If one knows θ at

time t, then the next observation yt+1 is generated with θt+1 = θt if no change occurred and

with another value drawn from the prior distribution otherwise. Therefore, if one knows θt,

previous observations are not needed to estimate θt+1. Casting the generative process as a Hid-

den Markov Model (HMM) allows to compute the joint distribution of θ and observations

iteratively, starting from the prior, and updating this distribution by moving forward in the
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sequence of observations:

pðytþ1
; y

1:tþ1
Þ ¼ pðytþ1

jytþ1
; ytÞ

Z

pðyt; y1:tÞpðytþ1
jytÞdyt ðEq 8Þ

The first term in the right hand side is the likelihood of the current observation. The first

term within the integral is the joint distribution from the previous iteration. The last term cap-

tures the a priori changes in θ from one observation to the next: the probability that it stays the

same is 1 – pc and the probability of another value is pc times the prior probability of θ for that

particular value. This integral can be computed numerically by discretization on a grid. The

posterior probability can be obtained by normalizing the joint distribution.

The posterior distribution can then be turned into the likelihood of the next stimulus, using

Bayes’ rule (again) and the a priori changes in θ.

pðytþ1
jy

1:tÞ ¼

Z

pðytþ1
jytþ1

; ytÞpðytþ1
jy

1:tÞdytþ1

¼

Z

pðytþ1
jytþ1

; ytÞ

Z

pðytjy1:tÞpðytþ1
jytÞdyt

� �

dytþ1

¼

Z

pðytþ1
jytþ1

; ytÞ½ð1� pcÞpðytþ1
¼ ytjy1:tÞ þ pcpðy0Þ�dytþ1

ðEq 9Þ

Note that for the estimation of transition probabilities, θ has two dimensions. For the esti-

mation of frequencies, the likelihood of yt+1 given θt+1 does not depend on the previous obser-

vation yt so that yt should be omitted on the right-hand side.

Summary of the experimental procedure in Squires et al.

Squires et al. (1976) presented 7 subjects with sequences of two auditory stimuli (pure tones of

1500 Hz and 1000 Hz, denoted X and Y) during electroencephalogram (EEG) recordings. In sepa-

rate sessions, the sequences were generated randomly with p(X) equals to 0.5 (no bias) or 0.7

(biased condition). In the biased condition, p(Y) = 1 – p(X) = 0.3. Because X and Y play symmetri-

cal roles, the authors present results for a virtual condition “p(X) = 0.3” which actually corresponds

to analyzing the responses to item Y in the biased condition. Subjects were not told about these

exact probabilities. The stimulus duration was 60 ms and the stimulus onset asynchrony was 1.3 s.

Subjects were asked to count the number of X items silently and report their count after each

block of 200 trials. They were presented in total and in each condition, with 800 to 1600 stimuli.

Squires et al. measured a P300 score for each stimulus. This score is a weighted combination

of signals measured at central electrodes (Fz, Cz, Pz) and latencies corresponding to the N200,

P300 and slow-wave. The weights derive from a discriminant analysis to separate optimally the

signals elicited by rare and frequent patterns (XXXXY vs. XXXXX). The average scores are

reported in each condition, for all patterns of five stimuli terminated by X.

Summary of the experimental procedure in Kolossa et al.

Kolossa et al. collected EEG data from 16 subjects who were presented with a stream of two

visual stimuli (red or blue rectangles, denoted X and Y; the mapping was counterbalanced

across participants). In separate blocks, stimuli were generated with p(X) = 0.5 (no bias condi-

tion) or 0.7 (biased condition). A virtual condition p(X) = 0.3 corresponds, as in Squires et al.,

to the response to item Y in the biased condition. Subjects were not told about these exact

probabilities. Subjects completed 12 blocks of 192 stimuli with 6 blocks in a row for each

condition. The order of conditions was counterbalanced across participants. The stimulus
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duration was 10 ms and the stimulus onset asynchrony was 1.5 s. Subjects were asked to press

a dedicated button for each item as quickly and accurately as possible.

Kolossa et al. measured the P300 amplitude at electrode Pz. The exact latency of the mea-

surement varied across trials and participants. The authors first identified subject-specific peak

latencies for the difference between rare and frequent items in the biased condition. Then, in

each trial they extracted the maximum value of the signal within a window of 120 ms centered

on subject-specific peaks. P300 levels are reported for each condition, for all patterns of four

stimuli terminated by X.

Fitting procedure for Squires et al. and Kolossa et al. data

We generated three sequences of 200 stimuli with probabilities p(X) equal to 0.3, 0.5 and 0.7.

For each sequence, we computed the inference of the hidden statistics for each observer model

and different values of their free parameters (if any). We computed surprise, in bit of informa-

tion, for each model and each stimulus in the sequences, as log2(p(yt|y1:t–1)), where p(yt|y1:t–1)

is the likelihood of the actual observation. We sorted surprise levels by patterns of five stimuli

terminated with X. We repeated this simulation 200 times and we averaged over simulations

to reach stable results.

To compare our simulation with the data from Squires et al, we extracted their values from

figure 1 in [1]. For each model, we adjusted the offset and scaling to minimize the mean

squared error (MSE) between simulated and experimental data. We repeated this procedure

for different values of the free parameter ω in fixed belief models with leaky integration, and

different values of pc in dynamic belief models. For all models, we fitted the data only for pat-

terns of 5 stimuli since shorter patterns are not independent from longer ones: they are

weighted averages of the data obtained for longer patterns. Including shorter patterns would

have thus inflated some aspects of the data. For instance, the effect of item frequency can be

seen for all pattern lengths, including length 1, but by definition, the effect of alternations can

be seen only in longer patterns. Therefore, including shorter patterns would have over-

weighted the effect of global item frequency relatively to local alternations.

Our fitting procedure gives the same weight to all patterns of 5 stimuli, although rare pat-

terns are more likely to be corrupted by noise in the experimental data. However, our results

are robust to this choice and are replicated when using a weighted MSE, taking into account

the expected frequency of patterns. We also checked that the grids of values used for pc or ω

were sufficiently dense around the global maxima, as shown in S1 Fig.

We replicated this procedure with the data from Kolossa et al., taking their values from fig-

ure 8 in [9]. The only difference was that we used patterns of length 4, as reported by Kolossa

et al., instead of length 5 as Squires et al.

For comparison, we implemented the models previously proposed by Squires et al. and

Kolossa et al. These models are fully described in the related articles [1,9]. In short, the model

by Squires et al. is a weighted sum of three factors (the variables within brackets correspond to

the notations by Squires et al.):

• the global frequency of X in the sequence (P),

• the local number of X within each pattern of 5 stimuli (M),

• an alternation score for each pattern of 5 stimuli (A).

The free parameters of this model are the relative weight of global frequency (P) vs. local

frequency (M), the relative weight of global frequency (P) vs. patterns of alternations (A), and

a decay factor for counting the local number of stimuli (M).
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The model by Kolossa et al. is a sophistication of the model by Squires et al. It is a weighted

sum of three factors, thought of as the output of digital filters computing probabilities. These

filters correspond to:

• a count function for the occurrence of items with a short-term memory,

• a count function for the occurrence of items with a long-term memory,

• a count function for alternations.

This model includes six free parameters (we use the notations from Kolossa et al.): a decay

factor for short-term memory (βS), two normalized time constants for the dynamic long-term

memory (τ1 and τ2), the relative weight of item probabilities computed from short- and long-

term memory (αS), the relative weight of probabilities computed for items and their alterna-

tions (αΔ), and a parameter capturing the subjective distortion of probabilities (γΔ,2).

We use the best-fitting values of the free parameters reported by Squires et al. and Kolossa

et al. in their respective article.

To compare the fit provided by our models and by the models by Squires et al. and Kolossa

et al., we used the Bayesian Information Criterion (BIC). The BIC favors the goodness-of-fit

but penalizes model for their number of free parameters [74]. For maximum likelihood esti-

mate of the model parameters and Gaussian residuals, BIC = n � log(MSE) + k � log(n), with n

the number of fitted data points and k the number of free parameters in the model. Note that

here, k counts the scaling and offset parameter to adjust the model’s data and the experimental

data, and the internal free parameters of the model (from 0 for fixed belief model with perfect

integration, to 6 for the model by Kolossa et al.).

Summary of the experimental procedure in Huettel et al.

Huettel et al. presented 14 subjects with a stream of two visual stimuli (a square and a circle)

randomly generated with equal probability. The sequence length was 1800. Each stimulus was

presented for 250 ms, and the stimulus onset asynchrony was 2 s. Subjects were asked to press

a dedicated button for each item as quickly as possible. Subjects performed the experiment in

an MRI scanner for functional recordings.

Simulation of the results by Huettel et al.

We extracted the data by Huettel et al. from their figure 2 in [2]. We simulated these results

using the fixed belief model with leaky integration. We fitted the leak constant to the data

using a grid search. We replicated the simulation results with the dynamic belief model, using

pc = 0.019 for the estimation of frequencies and pc = 0.167 for the estimation of transition

probabilities, which are the best fitting values for Squires et al. data.

We generated a sequence of 105 stimuli with p(X) = 0.5. This large number of observations

ensured stable simulation results. Another solution is to generate many short sequences. Both

options actually yield similar results because of the limited horizon of the non-stationary esti-

mations used here.

Similar to our fit of Squires et al., we computed posterior inferences and surprise levels. The

difference was that surprise levels were sorted based on whether local patterns of stimuli were

alternating or repeating, whether the last item violated or continued the pattern, and the length

of the pattern (up to 8).
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Summary of the experimental procedure in Cho et al.

Cho et al. presented 6 subjects with a stream of two visual stimuli (a small and a large circle),

generated randomly with equal probabilities. Subjects were asked to press a dedicated button

for each item as quickly and accurately as possible. Each stimulus was presented until a

response was made within a limit of 2 s. The next stimulus appeared after a delay of 0.8 s. Sub-

jects performed 13 series of 120 trials (1560 stimuli in total) with a short break between series.

Simulation of the results by Cho et al.

We extracted the data by Cho et al. from their figure 1B in [20]. We used the same simulation

as for Huettel et al. The only difference being that surprise levels were sorted based on all pat-

terns of alternations and repetitions formed by 5 stimuli.

Summary of the experimental procedure in Falk et al.

Ass described in [25], Falk presented 219 subjects with sequences of 21 binary visual stimuli

(“X” and “O”). The sequences had ratios of alternations ranging from 0.1 to 1 with 0.1 steps.

The order of the sequences varied randomly across participants. Each sequence was printed as

a row on a paper sheet: stimuli were therefore presented simultaneously. Subjects were asked

to rate the apparent randomness of each sequence from 0 to 20, with the indication that this

judgment should reflect the likelihood of the sequence having been generated by flipping a fair

coin. Ratings were later rescaled between 0 and 1.

Simulation of the results by Falk

We extracted the data by Falk from figure 1, condition “ARI” in [25]. Following the original

experiment, we generated sequences of 21 binary stimuli with various probabilities of alterna-

tions. For each sequence, we computed the posterior inference of the hidden statistics and the

prediction about the next stimulus (the 22th) given the previous ones, for each observer model.

We used different values for their leak parameter. To quantify the “randomness” of the sequence,

we computed the entropy of the prediction: H(p) = – p � log2(p) – (1 – p)
� log2(1 – p). For each

leak parameter and alternation frequency, we averaged over 104 sequences to reach stable results.

Note that instead of focusing on the last prediction, one could average across successive predic-

tions in each sequence. This alternative yields the same qualitative results as shown in Fig 5.

Supporting Information

S1 Fig. Goodness-of-fit of electrophysiological data for different parameter values and

models. The plot shows the mean squared error of model fit, for different models, different

values of their free parameter and different datasets. The inset shows a zoom around the best-

fitting parameter. Note that different models have different inference styles: fixed belief with

perfect integration within a window of observation, fixed belief with leaky integration and

dynamic belief (presented in different columns) and they estimate different statistics: item fre-

quency, alternation frequency and transition probabilities (presented as colored lines within

each plot).

(TIF)

S2 Fig. Sequential effects in reaction times predicted by the dynamic belief model. This fig-

ure is similar to Fig 4. The only difference is that theoretical surprise levels are computed from

the dynamic belief model (see Methods). The free parameter of the models, the a priori change

probability for the estimated statistics, was selected independently, as the best fitting value for
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Squires et al. data.

(TIF)

S3 Fig. Judgement of randomness predicted by the dynamic belief model. This figure is sim-

ilar to Fig 5. The only difference is that theoretical entropy levels are computed from the

dynamic belief model (see Methods) using different a priori change probabilities for the esti-

mated statistics.

(TIF)

S4 Fig. The models make qualitatively different predictions.We estimated whether the

models we consider make predictions that can be distinguished quantitatively from one

another. We started by simulating the results of the Squires et al. experiment, using the best-fit-

ting parameters of each model. As in Squires et al., each simulated data set contained 48 data

points, corresponding to 16 patterns times 3 block types. We then estimated the ability of a

given model to recover the predictions of another model with a leave-one out procedure.

More precisely, we took the 48 simulated values of a given model and we adjusted the free

parameters of another model to 47 of these simulated values, leaving one out. Given these fit-

ted parameters, we then computed the prediction of the second model about the left-out point

and we measured the error (the unsigned difference) compared with the original simulation.

The bars show, for all pairs of models, the mean error and SEM across left-out points. The

comparison of a model against itself yields no error (see arrows). Different models that make

similar predictions should yield an error close to 0. This occurs in only one case (see dashed

arrows): the predictions of a model learning perfectly a given statistic can be recovered almost

exactly by a model learning the same statistic with a leaky integration. This is because the leak

can be adjusted so as to approach a perfect integration. Critically, models that learn different

statistics all produced quantitatively different predictions.

(TIF)

S5 Fig. Comparison of the predictive accuracy of different models (Squires et al. dataset).

We estimated the predictive accuracy of each model using a leave-one out procedure. The

parameters of each model (the offset and slope of the linear transformation from theoretical

surprise to P300 data, and the leak of leaky integration models) were fitted to all data points

but one. We then measured the error of a given model, as the distance between the actual left-

out point and the value predicted by the model and its fitted parameters. Since Squires et al.

report data for 16 patterns in 3 different block types, we repeated the leave-one out procedure

16 � 3 = 48 times. Bars show the mean error with SEM, and the numbers indicate the mean

(and SEM) of the best-fitting leak parameter ω across left-out points. The model learning local

estimates of transition probabilities achieved the best predictive accuracy, i.e. the smallest

error.

(TIF)

S1 Text. Supplementary Equations

(DOC)
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