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A succession of storms reaching Southern England in the winter of 26 

2013/2014 caused severe floods and £451 million insured losses. In a 27 

large ensemble of climate model simulations, we find that, as well as 28 

increasing the amount of moisture the atmosphere can hold, 29 

anthropogenic warming caused a small but significant increase in the 30 

number of January days with westerly flow, both of which increased 31 

extreme precipitation. Hydrological modelling indicates this increased 32 

extreme 30-day-average Thames river flows, and slightly increased daily 33 

peak flows, consistent with the understanding of the catchment’s 34 

sensitivity to longer-duration precipitation and changes in the role of 35 

snowmelt. Consequently, flood risk mapping shows a small increase in 36 

properties in the Thames catchment potentially at risk of riverine 37 

flooding, with a substantial range of uncertainty, demonstrating the 38 

importance of explicit modelling of impacts and relatively subtle 39 

changes in weather-related risks when quantifying present-day effects 40 

of human influence on climate. 41 



The winter of 2013/2014, and January in particular, saw above-average 42 

precipitation over England and Wales1,2 and below-average sea level 43 

pressure (SLP) in the North Atlantic north and west of the British Isles (Fig. 44 

1a-b). This persistent synoptic situation was associated with a near-45 

continuous succession of low-pressure systems moving in from the Atlantic 46 

and across Southern England1. Like the very wet autumn of 2000 in England 47 

and Wales3, this winter was characterized by an anomalous eastward 48 

extension of the jet stream (Fig. 2a). This persistent atmospheric circulation 49 

pattern resulted in extreme precipitation (Supplementary Fig. 1), flooding and 50 

storm surges in large parts of Southern England and Wales, with serious 51 

consequences for infrastructure and livelihoods1. 18,700 flood insurance 52 

claims were reported4, leading to £451 million insured losses in Southern 53 

England. Although not unprecedented, this was a significant event; 54 

comparative UK insurance losses5 in recent history include flooding in the 55 

summer of 2007, which cost £3 billion, the 2005 floods in Carlisle (£272 56 

million) and Cumbrian floods in November 2009 (£174 million). Daily total 57 

precipitation, recorded since 1767 at the Radcliffe Observatory in Oxford 58 

(continuously since 1827), shows January 2014, as well as winter 2013/2014, 59 

precipitation set a record (Fig. 3a). Sustained high precipitation amounts 60 

during the whole winter led to this record, rather than a few very wet days, 61 

and none of the 5-day precipitation averages over the three winter months 62 

was a record (Fig. 3b). Similarly, while Thames’ daily peak river flows were 63 

not exceptional, the 30-day peak flow was the second highest since 64 

measurements began in 1883 (Supplementary Fig. 10). Whether 65 

anthropogenic climate change contributed to this event was much discussed 66 

at the time, with the British Prime Minister David Cameron telling Parliament “I 67 

very much suspect that it is”6. Although in a chaotic system a single extreme 68 

event cannot be attributed to changes in boundary conditions7, the change in 69 

risk of a class of extremes in the current climate relative to a climate unaltered 70 

by anthropogenic greenhouse gas (GHG) emissions can be estimated8. This 71 

study uses a range of models and observations to estimate anthropogenic 72 

influence on the risk of experiencing such atmospheric flow and precipitation, 73 



separating thermodynamic and dynamic factors. To estimate the impacts of 74 

climate change, we use a hydrological model to calculate the anthropogenic 75 

changes in risk in peak flows of the river Thames. Finally, with detailed flood 76 

maps of the Thames basin, we estimate the number of properties put at 77 

additional risk of flooding by anthropogenic GHG emissions. 78 

 79 

1. Experimental setup and model evaluation 80 

We use the citizen-science project “weather@home”9 to produce an ensemble 81 

of 134,354 simulations of possible weather under current climate and under 82 

counterfactual conditions as might have been without human influence on 83 

atmospheric composition. This project uses spare CPU time on volunteers’ 84 

personal computers to run the regional climate model (RCM) HadRM3P 85 

nested in the HadAM3P atmospheric general circulation climate model 86 

(AGCM)9 driven with prescribed sea surface temperatures (SSTs) and sea ice 87 

concentration (SIC). The RCM covers Europe and the Eastern North Atlantic 88 

Ocean, at a spatial resolution of about 50 km. 17,367 winters (December, 89 

January and February: DJF) were simulated under observed 2013/2014 GHG 90 

concentrations, SSTs and SIC (“Actual Conditions"). Initial conditions are 91 

perturbed slightly for each ensemble member on December 1 to give a 92 

different realisation of the winter weather9. The remaining simulations 93 

(“Natural”) represent different estimates of conditions that might have 94 

occurred in a world without past emissions of GHGs and other pollutants 95 

including sulphate aerosol precursors. In the Natural simulations, atmospheric 96 

composition is set to pre-industrial, the maximum well-observed SIC is used 97 

(DJF 1986/1987, the precise choice is unimportant: Supplementary Fig. 5) 98 

and estimated anthropogenic SST change patterns are removed from 99 

observed DJF 2013/2014 SSTs. To account for the uncertainty in our 100 

estimates of a world without anthropogenic influence, 11 different patterns are 101 

calculated from GCM simulations of the Coupled Model Intercomparison 102 

Project phase 5 (CMIP5)10 (Supplementary Information Section 2). We include 103 

all CMIP5 models with at least 3 ensemble members available regardless of 104 



how well their simulated trends fit observed SST trends in the North Atlantic, 105 

to provide a conservative estimate of uncertainty.  106 

We consider January precipitation and SLP, with Southern England 107 

Precipitation (SEP) averaged over land grid points in 50º–52ºN, 6.5ºW–2ºE.  108 

Simulated anomalies for Actual Conditions ensemble members with the 109 

wettest 1% SEP, i.e. return periods of 1-in-100-year and rarer, are 110 

comparable to observations of January 2014, consistent with previous model 111 

evaluation9 (Fig. 1c-d). The mean climate of the RCM has a wet bias of ~0.4 112 

mm day-1 in January over Southern England9 but most RCM simulations for 113 

January 2014 show smaller anomalies than observed, and show a weaker 114 

SLP pattern for the same precipitation anomaly (Fig. 1c-d). On average, the 115 

Actual Conditions simulations reproduce a stronger jet stream, compared to 116 

the 1986-2011 climatology, of January 2014 in the North Atlantic (ERA-117 

Interim11, Fig. 2a-b), suggesting some potential predictability for the enhanced 118 

jet stream of January 2014. The differences in SSTs, SICs and atmospheric 119 

composition between Actual Conditions and Natural simulations lead to an 120 

increase of up to 0.5 mm day-1 in the wettest 1% ensemble members for 121 

January SEP (Supplementary Fig. 8). While a warmer atmosphere holds more 122 

water vapour, causing an increase in risk of heavy winter rainfall, a dynamic 123 

effect, where anthropogenic forcings altered probability of occurrence of the 124 

atmospheric circulation that favoured the winter 2013/2014 conditions12, is 125 

also possible. Disentangling whether a change in precipitation extremes is 126 

caused by anthropogenic forcing via thermodynamic or dynamic processes 127 

remains a major challenge3,13, which we now address.  128 

 129 

2. Relationships between atmospheric circulation and precipitation 130 

To investigate the joint changes in precipitation and circulation, the observed 131 

and modelled Atlantic flows are classified into four main weather regimes 132 

using a classical cluster analysis14-16 (Supplementary Information Section 3). 133 

During January 2014, the atmospheric circulation was classified on 26 out of 134 

31 days as “zonal regime” (ZO). This is the highest ZO occupancy in January 135 



since 1871 (Supplementary Fig. 7f). The winter as a whole also set a record 136 

(70% of days in ZO), in both cases with record low pressure northwest of 137 

Scotland (20°W, 60°N, the centre of the anomaly associated with the ZO 138 

regime, Supplementary Fig. 7b, and where SLP is strongly associated with 139 

SEP, Supplementary Fig. 2a). In the following we use these two circulation 140 

indices - the January average SLP Northwest of Scotland and the number of 141 

days spent in the ZO regime - to characterize the circulation and its changes. 142 

In the RCM simulations, anthropogenic forcing is found to affect the joint 143 

distribution of precipitation in Southern England with both low pressure and 144 

ZO occupancy (Figs 4a-b). The joint distribution of the Actual Conditions 145 

ensemble is stretched towards lower pressures (higher ZO occupancies) and 146 

higher precipitation compared to the pooled Natural ensemble, while the other 147 

end of the joint distribution (lower precipitation and higher pressure) is 148 

unaffected. The model shows more low-pressure systems and days in the ZO 149 

regime in the current climate than in the counterfactual world without human 150 

influence on climate, with correspondingly higher monthly precipitation 151 

amounts in Southern England. Fig. 5a shows the return period (i.e. the 152 

inverse of the tail probability) of the pressure index values for all ensembles. 153 

Comparing return periods in the Actual Conditions and Natural ensembles 154 

gives the change in risk. The risk of experiencing a 1-in-100-year low-155 

pressure event Northwest of Scotland in the Actual Conditions ensemble 156 

increases by a best estimate of 55% due to climate change (with an 157 

uncertainty range of no change to over 120% increase). We have used all 158 

ensemble members available from the individual Natural simulations as our 159 

best estimate (Supplementary Information Section 2 discusses this choice 160 

and sensitivity of our results to it). 161 

This change in risk is of similar amplitude to the difference from the 1986-162 

2011 climatology (grey dots) and implies that the anomalous circulation in 163 

January 2014 was both a response to the January 2014 SSTs and sea ice 164 

concentration, hence potentially predictable, and influenced by anthropogenic 165 

forcing.  166 



Even with these SSTs, however, it still appears to have been relatively 167 

unlikely: monthly ZO occupancy of 24 days have on average a return period 168 

of 1-in-151-year in the pre-industrial climate (uncertainty range: 1-in-104-year 169 

to 1-in-230-year), which changes to 1-in-113-year due to climate change (Fig. 170 

5b). Flows under the ZO regime have an eastward-extended jet stream 171 

towards European coasts. A higher frequency of ZO regimes is thus 172 

consistent with recent studies of the effect of climate change on limiting large 173 

latitudinal fluctuations of the jet-stream17, thereby favouring occupancy of 174 

regimes like ZO, in line with Ref 18. Our results are not inconsistent with 175 

studies reporting insignificant future mean changes of the North Annular Mode 176 

or North Atlantic Oscillation (NAM/NAO)17,19 because we are detecting a weak 177 

signal in extremes, in a much larger ensemble than previously used. 178 

To examine changes in the frequency of extreme precipitation events, we use 179 

RCM outputs for the Southern England region and average observations from 180 

8 stations in this region with long records in Met Office archives. Using the 181 

time series from 1912-2013 for these 8 stations alone (Supplementary Fig. 1) 182 

and treating individual months as independent, the best estimate of the return 183 

period of January 2014 SEP is around 85 years (90% confidence interval of 184 

35-550 years; Fig. 5c). Observed Southern England monthly winter 185 

precipitation amounts show no statistically significant change in extreme 186 

values between the recent period and a century ago using a simple statistical 187 

model, although the sensitivity of the test is low (Supplementary Information 188 

Section 4).  189 

In the large RCM ensemble, the best estimate for the overall change in risk of 190 

a 1-in-100-year January precipitation event pooling all the Natural simulations 191 

is an increase of 43%, with a range from no change to 164% increase 192 

associated with uncertainty in the pattern of anthropogenic warming (Fig. 5d). 193 

Supplementary Fig. 5 shows that this uncertainty is mainly caused by the 194 

difference in SSTs and is not affected by the exact choice of sea ice 195 

conditions. The potential predictability identified for the pressure index (Fig. 196 

5a) does not appear to extend to precipitation for which the climatological 197 



distribution is consistent with the Actual Conditions ensemble. The Natural 198 

ensemble with the smallest change in risk of 1-in-100-year precipitation 199 

between Actual and Natural conditions (with the SST pattern from the 200 

HadGEM2-ES model) also shows a similar jet stream anomaly to the Actual 201 

Conditions ensemble (Fig. 2c). There is no such anomaly in the Natural 202 

ensemble showing the greatest change in this risk (with the SST pattern from 203 

the CCSM4 model, Fig. 2d). 204 

The 11 estimates of the SST response to anthropogenic forcing allow a 205 

statistical investigation into the drivers of the dynamic response. The obvious 206 

candidate indices are the global-mean warming and the anthropogenic 207 

change in meridional SST gradient upstream (since mid-latitude cyclones are 208 

forced by the atmospheric meridional temperature gradient). We represent the 209 

latter by the difference between the regions 30ºN–50ºN, 40ºW–0ºW and 210 

50ºN–70ºN, 40ºW–0ºW. Correlations across the 11 anthropogenic SST 211 

change patterns of the change in 1-in-100-year SEP with the global-mean 212 

warming and the anthropogenic change in meridional SST gradient upstream 213 

are 0.73 and 0.74 (in line with previous studies20,21) respectively (notional p-214 

value of 0.01 using a t-test). As expected, these two indices are themselves 215 

correlated, but only at 0.44 (p-value of 0.17). Dividing the change in gradient 216 

by the global-mean warming to leave only the pattern of change, not of its 217 

magnitude, still gives a correlation of 0.69 (p-value of 0.02). Thus both large-218 

scale warming and local dynamical changes play a role. 219 

We estimate the relative importance of thermodynamic and dynamic effects 220 

by using the pressure index as a proxy for the changes in circulation between 221 

Actual Conditions and Natural simulations. By weighting the Natural ensemble 222 

members to match the distribution of the Actual Conditions pressure index 223 

values (Fig. 4c and Supplementary Information Section 5) and applying this 224 

weighting to the precipitation index to remove the effect of circulation (Fig. 225 

4d), we estimate that the increase in risk of the 1-in-100-year precipitation 226 

event due to anthropogenic forcing is caused approximately 2/3 by 227 



thermodynamic changes, and approximately 1/3 by circulation changes. 228 

Previous studies such as Ref 3 found only a thermodynamic influence. 229 

 230 

3. Attributing changes in impacts 231 

Modelled precipitation and temperature are fed into the CLASSIC hydrological 232 

model of the Thames catchment22, spun up with observed data from January 233 

2010 to early December 2013 (Supplementary Information Section 6).  234 

For a 1-in-100-year event in the hydrological model, anthropogenic climate 235 

change increased the modelled risk of 30-day peak river flows at Kingston by 236 

a best estimate value of 21% (uncertainty range: -12% to 133%) (Fig. 5e). For 237 

daily peak flows however, the increase was a best estimate of 4% (uncertainty 238 

range: -17% to 30%). The impacts on daily peak flows are moderated by 239 

changes in snow (Supplementary Section 6.4). Snow has historically been 240 

one of the primary flood-generating mechanisms in the lower Thames 241 

(typically via rapid melt of large accumulations coincident with heavy rainfall, 242 

as occurred to cause the major flooding of March 1947), but has been less 243 

common in recent years23. However, the other primary flood-generating 244 

mechanism in the lower Thames is sustained heavy rainfall (typically over 4-7 245 

days) on saturated ground23. Thus differences in the anthropogenic influence 246 

on extreme 5-day and 30-day rainfall accumulations (Supplementary Fig. 14) 247 

further explain the more modest impacts on daily peak flows compared to 30-248 

day peak flows. These differences between 30-day and 5-day rainfall 249 

accumulations are correlated with the SST gradients of the 11 Natural 250 

ensembles at 0.65 (p-value of 0.03). Thus the anthropogenic increase in 251 

rainfall that we simulate is less on timescales that dominate flooding in this 252 

catchment, consistent with the mechanism being an increase in the frequency 253 

of the zonal regime, and so, successions of strong but fast-moving storms. 254 

Outputs from CLASSIC are combined with information about the location of 255 

properties at risk of flooding in the Thames catchment, for flood events of 256 

various magnitudes, in order to estimate the change in numbers of properties 257 



at risk (Supplementary Information Section 7). These estimates are derived 258 

using methods previously applied for official government flood zone maps in 259 

England24 (incorporating subsequent improvements in data and modelling). 260 

The Ordnance Survey, Britain’s official mapping agency, supplied property 261 

location data. Changes in risk reported here are calculated using daily peak 262 

flows, the closest available approximation to the data used in modelling 263 

properties at risk, even though the effects of changes in forcing are greater for 264 

flow volumes integrated over longer durations.  265 

For events with around a 100-year return period, the best estimate is that 266 

about 1,000 more properties are placed at risk of flooding in a human-altered 267 

climate (Fig. 5f). Again, the results span a range of possible outcomes from 268 

around 4,000 fewer to 8,000 more properties at risk. The average flood 269 

insurance claim during the period DJF 2013/2014 (which predominantly 270 

reflects flooding in Southern England, especially around the Thames) is 271 

reported by industry sources4 to be approximately £24,000. Therefore the 272 

best estimate additional exposure to flood risk in an event similar to DJF 273 

2013/2014 would be about £24 million in terms of potential losses (uncertainty 274 

range -£96 million to £192 million) suggesting a non-negligible contribution to 275 

risk when taking account of the ensemble uncertainty around the central 276 

estimate. Although there is only a small (ensemble average) increase in daily 277 

peak flows the results suggest that when winter flooding of the Thames does 278 

occur, it could be lasting longer which has implications both for damages and 279 

civil emergency management. 280 

The only human influence considered here is the change in atmospheric 281 

composition. In both Actual and hypothetical Natural conditions, the flood risk 282 

would have been affected by anthropogenic interventions, in particular flood 283 

defences, although only a relatively small proportion of floodplain properties 284 

benefit from significant defences (Supplementary Information Section 7) and it 285 

is not known how that infrastructure might have evolved in the counterfactual 286 

world represented in the Natural ensembles.  287 

 288 



4. Conclusions 289 

This is the first end-to-end attribution study from anthropogenic changes in 290 

atmospheric composition, through a meteorological extreme event and its 291 

hydrological impacts to an estimate of the value of those impacts in terms of 292 

flood damages. It illustrates how even relatively subtle changes in weather-293 

related risks could potentially have significant monetary impacts. In summary 294 

we find that human influence: 295 

 Increased the risk of low pressure Northwest of Britain and the number 296 

of days with zonal flow over the North Atlantic 297 

 Increased the risk of heavy precipitation in Southern England 298 

 Increased the chance of extreme 30-day flows for the river Thames 299 

 Had more modest effects on peak daily flows for the river Thames and 300 

the risk of flooding to properties in its basin. 301 

All these cases have large uncertainties due to sensitivity to the uncertain 302 

geographical pattern of anthropogenic SST warming. We further estimate that 303 

while thermodynamic effects cause most of the increase in precipitation, 304 

around 1/3 is caused by changes in circulation. 305 

Our results illustrate the importance of considering changing risks of extreme 306 

weather in quantifying climate change impacts and highlights that a holistic 307 

assessment of the risk requires the consideration of both the thermodynamic 308 

and dynamic response of the climate system to human-induced changes in 309 

the atmospheric composition25,26. 310 

Although the central estimate of increase in the number of properties at risk is 311 

small, the ensemble uncertainty spans a range of changes in flood damages 312 

that includes some chance of reductions, and also a substantial chance of 313 

increased damages that would be significant relative to total flood claims 314 

during DJF 2013/2014. A broader assessment could include the risks from 315 

storm surge in the Thames estuary and from a wider range of extreme 316 



weather and flood events. It should be noted that this analysis does not 317 

account for other factors influencing flood risk in southern England, including 318 

continuing development on flood plains and levels of spending on flood 319 

defences that have been criticized as inadequate27, nor that some residual 320 

risk will need to be managed under investment strategies regarded as 321 

economically optimal28,29. It is noted that impacts on flows and damages for 322 

other catchments are likely to differ from those estimated for the Thames at 323 

Kingston, because of differences in catchment characteristics and potential 324 

spatial differences in rainfall patterns. 325 

This study is based on one AGCM where physical model uncertainty is 326 

represented only by the differing SST patterns representing the difference 327 

between current and pre-industrial obtained from 11 different GCMs. It would 328 

clearly be desirable to replicate these results with a broader range of climate 329 

models to better understand the sensitivities to model formulations as well as 330 

biases and forcings, including model resolution and the pattern and 331 

magnitude of the anthropogenic SST signal used to simulate the ‘climate that 332 

might have been’ without human influence. Similarly, potential sensitivity of 333 

results to the choice of hydrological model should be assessed, although this 334 

is likely to be less important than the choice of climate model30. More studies 335 

of this nature are needed if loss and damage from anthropogenic climate 336 

change are to be quantified objectively31 and future assessments of the 337 

impacts of climate change are to progress from attributing them simply to 338 

changes in climate which are not themselves explained32, to attributing them 339 

specifically to human influence33.  340 
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Figures 370 

 371 

Figure 1: Precipitation34 (colours, in mm day-1) and mean sea level pressure11 (contours, in hPa) as 372 

observed for January 2014 absolute values in a and as anomalies from the observed 1981-2010 373 

climatology in b, and in the wettest 1% of the Actual Conditions ensemble as absolute values in c and 374 

as anomalies from the model 1986-2011 climatology in d. 375 
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 376 

 377 

Figure 2: Anomalies of zonal wind at 200 hPa for January 2014 a in ERA-interim11, relative to the 1986-378 

2011 ERA-interim climatology, and b in the ensemble mean of the Actual Conditions simulations, 379 

relative to the model 1986-2011 climatology. c and d, as b, but for the ensemble means of the Natural 380 

simulations with the HadGEM2-ES and CCSM4 models respectively.  381 

a b

c d

[m/s] [m/s]
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 382 

Figure 3: a Time series of monthly mean rain/precipitation for January 1768-2014 at the Radcliffe 383 

Observatory, Oxford. Above/below overall average values are plotted in blue/brown. January 2014 is 384 

highlighted in red. The black line is the 20-year Lowess-smoothed monthly mean precipitation. The 385 

measurements are rain only until around 1867 (dotted thin vertical line), but include snow since then. b 386 

Comparison of all the 5-day mean precipitation for all winter months from 1827/28-2013/14. The 5 387 

wettest years are highlighted in dark grey. Winter 2013/14 is plotted in red. 388 

a

b 



 389 

 390 

Figure 4: a Relationship between modelled January monthly average Southern England precipitation 391 

and mean sea level pressure at 20°W, 60°N. The 50th, 75th, 95th and 99th percentiles of the distribution 392 

of the Actual Conditions and all Natural simulations are estimated using a Gaussian bivariate kernel 393 

density estimator. Grey dots represent January averages for each individual Actual Conditions 394 

simulations and the black dots show values from observations (“8 stations” refers to the average of 8 395 

stations in Southern England for the precipitation index and the NCEP reanalysis35 for the pressure 396 

index, “E-OBS” refers to the same definition as the modelled precipitation index using the gridded E-397 

OBS dataset36 also with NCEP pressure index). The Actual Conditions and Natural joint distributions are 398 

significantly different at the 0.05 level based on a two-sided bivariate version of the Kolmogorov-Smirnov 399 

test37. b As a but showing the relationship between modelled January Southern England precipitation 400 

binned in 7 categories and the January ZO index binned in three categories of number of days per 401 

month. For all three categories, the distributions of Actual Conditions and Natural are statistically 402 

different at the 0.05 level, according to both a two-sided Kolmogorov-Smirnov and a two-sided Cramer-403 

von Mises test. The number of ensemble members in each of the three categories is given on the 404 

bottom-right corner of each sub-panel. c Return periods for pressure for the Actual Conditions and 405 

pooled Natural simulations along with pooled Natural weighted to make its pressure values match the 406 

Actual Conditions simulation. d as c but for precipitation, using the same weights as in c. 407 
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 408 

Figure 5: Return periods for a modelled January pressure index (each dot represents an ensemble 409 

member) with 5-95% confidence intervals for 1-in-50-year events and 1-in-100-year events in Actual 410 

Conditions estimated by resampling the distribution 100 times, represented as horizontal lines. Red 411 

represents Actual Conditions simulations, grey a similar ensemble but for 1986-2011 (the model 412 

climatology), dark blue the pooled Natural simulations, and light blue individual Natural (sub-) 413 

ensembles, with solid circles for the 6 of the 11 Natural ensembles with around 15,000 simulations, and 414 

empty circles for the other 5 with around 7,000 simulations. Only four 5-95% confidence intervals for 1-415 

in-50-year events and 1-in-100-year events (red: Actual Conditions, grey: Climatology, light blue: Natural 416 

ensembles with around 15,000 ensemble members and dashed light blue: Natural ensembles with 417 

around 7,000 simulations) are shown because the confidence intervals represent only the sampling 418 

uncertainty, not the uncertainty in the estimation of the model simulations. b as a but modelled 419 

d

a

c

b

Observed January 2014

GDP>80% scale  t 2013/2014
GDP>80% scale  t 1912/1913

e f



frequency of the ZO regime. No confidence intervals are shown due to the categorical nature of return 420 

values. c observed monthly precipitation averaged for 8 stations across Southern England for the 421 

months of November to February individually for the years 1912-2013 fitted to a Generalised Pareto 422 

Distribution with location and scale parameters linearly dependent on the low-pass filtered global mean 423 

temperature. Red lines indicate the fit and 90% confidence interval for the current temperature 424 

(2013/2014), blue for a temperature representative of pre-industrial conditions (1912/1913). The red 425 

(blue) crosses show the observations shifted up (down) to these years using the fitted trend. The 426 

horizontal grey line represents the observed value for January 2014. The fit has been performed for 427 

monthly means of four calendar months to increase the sample size, the return period is given per 428 

month for comparison with the other results. d as a for modelled January mean precipitation in Southern 429 

England, e as a for modelled 30-day peak flows for the Thames at Kingston, and f difference between 430 

the Natural and the Actual Conditions simulations in number of properties individually at risk of flooding 431 

with annual probability 1/T, where T is the return period.  432 

 433 

References 434 

1 Huntingford, C. et al. Potential influences on the United Kingdom's floods of winter 435 

2013/14. Nature Climate Change 4, 769-777, doi:10.1038/nclimate2314 (2014). 436 

2 Matthews, T., Murphy, C., Wilby, R. L. & Harrigan, S. Stormiest winter on record for 437 

Ireland and UK. Nature Climate Change 4, 738-740 (2014). 438 

3 Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and 439 

Wales in autumn 2000. Nature 470, 382-385 (2011). 440 

4 Association of British Insurers, https://www.abi.org.uk/Insurance-and-savings/Topics-441 

and-issues/Flooding/2014-floods-in-numbers (Accessed September 2015)  442 

5 Association of British Insurers, https://www.abi.org.uk/News/News-443 

releases/2010/11/massive-rise-in-britains-flood-damage-bill-highlights-the-need-for-444 

more-help-for-flood-vulnerable-communities-says-the-abi.aspx (Accessed September 445 

2015)  446 

6 http://www.bbc.co.uk/news/uk-politics-25656426 447 

7 Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European 448 

heatwave of 2003. Nature 432, 610-614, doi:10.1038/nature03089 (2004). 449 

8 Kay, A. L., Crooks, S. M., Pall, P. & Stone, D. A. Attribution of Autumn/Winter 2000 450 

flood risk in England to anthropogenic climate change: A catchment-based study. 451 

Journal of Hydrology 406, 97-112, doi:10.1016/j.jhydrol.2011.06.006 (2011). 452 

9 Massey, N. et al. weather@home - development and validation of a very large 453 

ensemble modelling system for probabilistic event attribution. Quarterly Journal Of 454 

The Royal Meteorological Society, doi:10.1002/qj.2455 (2014). 455 

10 Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and the 456 

Experiment Design. Bull. Amer. Meteorol. Soc. 93, 485-498 (2012). 457 

11 Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the 458 

data assimilation system. Quarterly Journal of the Royal Meteorological Society 137, 459 

553-597 (2011). 460 

12 van Haren, R., van Oldenborgh, G. J., Lenderink, G. & Hazeleger, W. Evaluation of 461 

modeled changes in extreme precipitation in Europe and the Rhine basin. Environ. 462 

Res. Lett. 8, 7, doi:10.1088/1748-9326/8/1/014053 (2013). 463 

13 van Haren, R., van Oldenborgh, G. J., Lenderink, G., Collins, M. & Hazeleger, W. 464 

SST and circulation trend biases cause an underestimation of European precipitation 465 

trends. Climate Dynamics 40, 1-20, doi:10.1007/s00382-012-1401-5 (2013). 466 



14 Vautard, R. Multiple weather regimes over the North Atlantic - Analysis of precursors 467 

and successors. Mon. Weather Rev. 118, 2056-2081, doi:10.1175/1520-468 

0493(1990)118<2056:mwrotn>2.0.co;2 (1990). 469 

15 Michelangeli, P. A., Vautard, R. & Legras, B. Weather regimes - Reccurence and 470 

quasi stationarity. J. Atmos. Sci. 52, 1237-1256, doi:10.1175/1520-471 

0469(1995)052<1237:wrraqs>2.0.co;2 (1995). 472 

16 Yiou, P., Goubanova, K., Li, Z. X. & Nogaj, M. Weather regime dependence of 473 

extreme value statistics for summer temperature and precipitation. Nonlinear Process 474 

Geophys. 15, 365-378 (2008). 475 

17 Barnes, E. A. & Polvani, L. Response of the Midlatitude Jets, and of Their Variability, 476 

to Increased Greenhouse Gases in the CMIP5 Models. Journal of Climate 26, 7117-477 

7135 (2013). 478 

18 Zappa, G., Hoskins, B. J. & Shepherd, T. G. Improving Climate Change Detection 479 

through Optimal Seasonal Averaging: The Case of the North Atlantic Jet and 480 

European Precipitation. Journal of Climate 28 (16) (2015). 481 

19 Cattiaux, J. & Cassou, C. Opposite CMIP3/CMIP5 trends in the wintertime Northern 482 

Annular Mode explained by combined local sea ice and remote tropical influences. 483 

Geophysical Research Letters 40 (2013). 484 

20 Rodwell, M. J., Rowell, D. P. & Folland, C. K. Oceanic forcing of the wintertime North 485 

Atlantic Oscillation and European climate. Nature 398, 320-323, doi:10.1038/18648 486 

(1999). 487 

21 Haarsma, R. J., Selten, F. & van Oldenborgh, G. J. Anthropogenic changes of the 488 

thermal and zonal flow structure over Western Europe and Eastern North Atlantic in 489 

CMIP3 and CMIP5 models. Climate Dynamics 41, 2577-2588, doi:10.1007/s00382-490 

013-1734-8 (2013). 491 

22 Crooks, S. M. & Naden, P. S. CLASSIC: a semi-distributed rainfall-runoff modelling 492 

system. Hydrol. Earth Syst. Sci. 11, 516-531 (2007). 493 

23 Marsh, T. & Harvey, C.L. 2012. The Thames flood series: a lack of trend in flood 494 

magnitude and a decline in maximum levels. Hydrology Research, 43(3), 203-214 495 

24 Bradbrook, K., Waller, S., & Morris, D. National floodplain mapping: Datasets and 496 

methods - 160,000 km in 12 months. Natural Hazards, 36(1-2), 103-123 (2005). 497 

25 Trenberth, K., Fasullo, J. T. & Shepherd, T. G. Attribution of climate extreme events. 498 

Nature Climate Change 5, 725-730, doi:10.1038/nclimate2657 (2015). 499 

26 Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. PNAS 109 (37), 500 

E2415-2423, doi:10.1073/pnas.1205276109 (2012). 501 

27 Crichton D. Flood Risk and Insurance in England and Wales: Are there lessons to be 502 

learned from Scotland? (Benfield Hazard Research Centre, UCL, London, 2005). 503 

28 Committee on Climate Change. Managing climate risks to well-being and the 504 

economy. (Adaptation Sub-Committee Progress Report, Committee on Climate 505 

Change, London, 2014). http://www.theccc.org.uk/wp-506 

content/uploads/2014/07/Final_ASC-2014_web-version-4.pdf (Accessed September 507 

2015) 508 

29 Environment Agency. Flood and coastal erosion risk management. (Long-term 509 

investment scenarios, Report No. LIT10045, Environment Agency, Bristol UK, 2014). 510 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/381939511 

/FCRM_Long_term_investment_scenarios.pdf (Accessed September 2015) 512 

30 Kay, A. L., Davies, H. N., Bell, V. A. & Jones, R. G. Comparison of uncertainty 513 

sources for climate change impacts: flood frequency in England. Climatic Change 92, 514 

41-63, doi:10.1007/s10584-008-9471-4 (2009). 515 

31 James, R. et al. Characterizing loss and damage from climate change. Nature Clim. 516 

Change 4, 938-939, doi:10.1038/nclimate2411 (2014). 517 

32 Cramer, W. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. 518 

Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth 519 

Assessment Report of the Intergovernmental Panel on Climate Change (eds C. B. 520 

Field et al.) (Cambridge University Press, 2014). 521 



33 Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis. 522 

Contribution of Working Group I to the Fifth Assessment Report of the 523 

Intergovernmental Panel on Climate Change (eds T. F. Stocker et al.) (Cambridge 524 

University Press, 2013). 525 

34 Perry, M. & Hollis, D. The generation of monthly gridded datasets for a range of 526 

climatic variables over the UK. Int. J. Climatol. 25, 1041-1054, doi:10.1002/joc.1161 527 

(2005). 528 

35 Kistler, R. et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and 529 

documentation. Bull. Amer. Meteorol. Soc. 82, 247-267, doi:10.1175/1520-530 

0477(2001)082<0247:tnnyrm>2.3.co;2 (2001). 531 

36 Haylock, M. R. et al. A European daily high-resolution gridded data set of surface 532 

temperature and precipitation for 1950-2006. J. Geophys. Res.-Atmos. 113, D20119-533 

D20119 (2008). 534 

37 Peacock, J. A. Two-dimensional goodness-of-fit testing in astronomy. Mon. Not. Roy. 535 

Astron. Soc. 202, 615-627 (1983). 536 



Supplementary Information: 

Human influence on climate in the 2014 Southern England 

winter floods and their impacts 

Nathalie Schaller, Alison L. Kay, Rob Lamb, Neil R. Massey, Geert Jan van Oldenborgh, 

Friederike E. L. Otto, Sarah N. Sparrow, Robert Vautard, Pascal Yiou, Ian Ashpole, Andy 

Bowery, Susan M. Crooks, Karsten Haustein, Chris Huntingford, William J. Ingram, Richard 

G. Jones, Tim Legg, Jonathan Miller, Jessica Skeggs, David Wallom, Antje Weisheimer, 

Simon Wilson, Peter A. Stott & Myles R. Allen 

 

 

 

1. Observational evidence 

1.1 Precipitation 

The winter 2013/2014 precipitation set a record for several rain gauge stations in 

Southern England. Supplementary Fig. 1 shows the location and time series of 14 

stations with long-term observations. The 8 series with observations since at least 

1912 are averaged to give a regional precipitation index. The daily station data were 

extracted from the UK Met. Office digital archives. Particularly noteworthy are the 

extremely high values in 2013/2014 at some sites in the Thames basin, and the 

range of values across stations, which is wider than the second highest value since 

1912 (in 1913/1914).  



 

Supplementary Figure 1: a Location of the 14 rain gauges in Southern England. b Time series of seasonal 

(DJF) rain amount for each gauge. For 8 gauges, time series are available since 1912 and these 8 time series 

are averaged to produce the observed precipitation index defined in the main text. 

 

1.2 Sea level pressure 

Sea level pressure (SLP) was persistently low northwest of Scotland during winter 

2013/2014, implying south-westerly flows over Southern England. To characterize 

this SLP anomaly and such south-westerly flow, we define a simple index, the SLP 

value at 20°W and 60°N. Supplementary Fig. 2 shows time series of monthly and 

seasonal averages of this index for winter. The seasonal mean SLP had a record low 

in 2013/2014, and the January mean was second lowest on record, in both the 

National Center for Environmental Prediction (NCEP1) and 20CR2 reanalyses, 

starting in 1948 and 1871 respectively. However neither the SLP nor precipitation 

series have a trend significant at the 95% level over the 144 years of 20CR (using a 

Student’s t-test).  
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Supplementary Figure 2: a Regression of summed DJF precipitation for 8 gauges shown in Supplementary Fig. 

1 on DJF SLP
3
 for 1912-2010. b Time series of DJF SLP at 60ºN, 20ºW. c Time series of December, January 

and February SLP at 60ºN, 20ºW. d Extreme value fit of DJF average SLP at 60ºN, 20ºW in the years 1901–

2013 extrapolated to 2013/2014 (red crosses and the red lines for the current climate correspond to the 90% 

confidence interval estimated with a non-parametric bootstrap, blue crosses and lines represent the same but in 

the climate of 1901, and the horizontal pink line represents the observed value for DJF 2013/2014). e Same 

as d but for all winter months separately against the observed value in January 2014. 

 

2. Climate model experiment setup and validation 

Perturbed initial-conditions simulations performed with the citizen science global and 

nested regional climate modelling project weather@home are obtained by applying a 

difference derived from one-day differences in potential temperature from a single 

year-long integration of the global model. The regional climate model (RCM), 

HadRM3P, is nested in the atmosphere-only general circulation model (AGCM) 

HadAM3P4. The spatial domain of the RCM is roughly rectangular, with the 

coordinates of its corners given in Supplementary Table 1. 
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Supplementary Table 1: Coordinates of the spatial domain of the RCM. 

 Longitude Latitude 

Top left 53.7ºW 59.9ºN 

Top right 76.5ºE 67.1ºN 

Bottom right 38.5ºE 21.0ºN 

Bottom left 11.5ºW 17.7ºN 

 

In the Actual Conditions experiment, the AGCM uses observed sea surface 

temperature (SST) data from 1 December 2013 until 15 February 2014 from the 

Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset5,6 and 

present day atmospheric composition (well-mixed greenhouse gases, ozone and 

reflective sulphate aerosols)4 to simulate weather events consistent with the 

observed climate boundary conditions. The simulations were set up at the end of 

February 2014 when no SST and sea-ice data was available for the last two weeks 

of February. Therefore the modelled last two weeks of February are driven with the 

average of 10-15 February 2014. For the Natural experiments, 11 estimates of the 

changes in SST patterns due to anthropogenic forcing have been subtracted from 

the observed 2013/2014 SSTs used for the Actual Conditions simulations, and pre-

industrial atmospheric composition is specified7. Thus they simulate the winter 

2013/2014 in 11 counterfactual worlds with no human influence.  

The estimated anthropogenic changes in SST we subtract are based on 11 coupled 

general circulation models (GCM) simulations from the Coupled Model 

Intercomparison Project phase 5 (CMIP5) archive8. We use the “Historical” 

simulations (which include both anthropogenic and natural forcings, the latter from 

volcanoes and solar fluctuations, for 1850-2005) and the “HistoricalNat” simulations 

(which include only natural forcings for the same period). We selected all 11 GCMs 

that had more than 3 ensemble members for both these experiments in the CMIP5 

archive. For each model and experiment, we average the monthly climatologies over 

all ensemble members available, and for 1996-2005 i.e. the last decade available, 

and then subtract those of HistoricalNat from those of Historical. The resulting 

anomaly patterns thus represent 11 estimates of the impact on SSTs of human 



activity. They are shown in Supplementary Fig. 3 for the month of January, and 

referred to as Delta SSTs.  

 

Supplementary Figure 3: January SST response pattern to anthropogenic forcing from the 11 CMIP5 models 

used). 

To assess the sampling error in the Delta SSTs, Fig S4 shows them divided by the 

standard deviation of the Historical ensemble members for the two GCMs that give 

the most different response of Southern England precipitation, CCSM4 and 

HadGEM2-ES. Using the standard deviation between the ensemble members of the 

HistoricalNat simulations gives similar results (not shown). CCSM4 has a generally 

strong response pattern (Supplementary Fig. 3d), with Delta SST typically at least 

three times the standard deviation. However, HadGEM2-ES has a generally smaller 

response pattern (Supplementary Fig. 3k), and the apparent signal is comparable to 

the standard deviation in many places. 
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Supplementary Figure 4: Ratio of the Delta SSTs to standard deviation between the ensemble members 

available for a) CCSM4 Historical and b) HadGEM2-ES Historical, with the number of ensemble members 

indicated in the top right corner in brackets. 

 

To assess the sensitivity of our results to the uncertain specification of sea ice in the 

Natural simulations, an additional ensemble uses 2013/2014 SSTs and atmospheric 

composition but the sea ice conditions from the Natural simulations. Supplementary 

Fig. 5 shows no significant effect on the probability of the 1-in-100-year event for 

January precipitation in Southern England. The changes in risk caused by 

anthropogenic forcings identified in this study are therefore mainly due to changed 

SSTs.  

 

 

Supplementary Figure 5: Return periods for modelled January mean precipitation in Southern England. Each 

dot represents an ensemble member, with 5-95% confidence intervals for 1-in-50-year and 1-in-100-year events 

in Actual Conditions, estimated by resampling the distribution 100 times, represented as horizontal lines. Red 

represents the Actual Conditions ensemble, dark blue the pooled Natural ensembles, and light blue individual 

Natural ensembles, with solid circles for 6 of the 11 Natural ensembles with around 15,000 members, and empty 

circles for the other 5 with around 7,000 members, grey a similar ensemble to Actual Conditions but for 1986-
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2011 (the model climatology), and black for the ensemble with SSTs and atmospheric gas concentrations from 

Actual Conditions but sea ice extent from Natural. Only five 5-95% confidence intervals for 1-in-50-year events 

and 1-in-100-year events (colours as before) are shown because the confidence intervals only represent the 

sampling uncertainty, not the physical uncertainty. 

Supplementary Table 2 summarizes the three types of experiments performed, along 

with further information about the forcings used and the number of simulations 

returned. The climatology used to calculate the anomalies in Fig. 1d, Figs 2b-d and 

shown in Fig. 5a and Fig. 5d is a weather@home perturbed-initial-conditions 

ensemble with SSTs and sea ice extent prescribed from the OSTIA dataset for 

December 1985-November 2011 and with observed atmospheric composition. 

Around 900 simulations are available for each year.  

Initially, around 8,000 simulations were submitted for each of the 11 Natural 

experiments. With the storage capacity available limited, not all Natural ensembles 

could have as many members as the Actual Conditions ensemble. 6 Natural 

experiments were then increased in size (based on the CCSM4, GFDL-CM3, GISS-

E2-H, HadGEM2-ES, IPSL-CM5A-MR and MIROC-ESM Delta SSTs, see 

Supplementary Table 2), chosen because they were well-distributed across the 

range of 1-in-100-year precipitation response, and because they were from different 

modelling centres.   



Supplementary Table 2: Summary of the number of experiments performed and boundary conditions used. 

There are 134,354 simulations in total, of which 116,987 are Natural ones (e-o). 

Ensemble 
letter 

Applied SSTs Size of 
ensemble 

Atmospheric 
GHG 
concentrations 

Sea ice conditions 

a  2013/2014 SSTs 17,367 2013/2014 2013/2014 

c 2013/2014 SSTs 9,067 2013/2014 Maximum extent  
Northern Hemisphere: 1986/1987 
Southern Hemisphere: 2007/2008 

e  2013/2014 SSTs – 
CanESM2 
anthropogenic pattern 

7,243 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 
Southern Hemisphere: 2007/2008 

f  2013/2014 SSTs – 
CCSM4 anthropogenic 
pattern 

13,989 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 
Southern Hemisphere: 2007/2008 

g  2013/2014 SSTs – 
CNRM-CM5 
anthropogenic pattern 

7,394 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 
Southern Hemisphere: 2007/2008 

h  2013/2014 SSTs – 
CSIRO-Mk3-6-0 
anthropogenic pattern 

7,595 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 

Southern Hemisphere: 2007/2008 

i 2013/2014 SSTs – 
GFDL-CM3 
anthropogenic pattern 

15,726 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 
Southern Hemisphere: 2007/2008 

j  2013/2014 SSTs – 
GISS-E2-H 
anthropogenic pattern 

15,484 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 
Southern Hemisphere: 2007/2008 

k 2013/2014 SSTs – 
GISS-E2-R 
anthropogenic pattern 

7,220 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 
Southern Hemisphere: 2007/2008 

l 2013/2014 SSTs – 
HadGEM2-ES 
anthropogenic pattern 

11,034 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 

Southern Hemisphere: 2007/2008 

m 2013/2014 SSTs – 
IPSL-CM5A-LR 
anthropogenic pattern 

7,730 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 
Southern Hemisphere: 2007/2008 

n 2013/2014 SSTs – 
IPSL-CM5A-MR 
anthropogenic pattern 

10,250 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 
Southern Hemisphere: 2007/2008 

o  2013/2014 SSTs – 
MIROC-ESM 
anthropogenic pattern 

13,322 Pre-industrial Maximum extent  
Northern Hemisphere: 1986/1987 

Southern Hemisphere: 2007/2008 

 

We define our best estimate of the percent change in risk 1-in-100-year events (RR) 

due to human influence as follow: 

RR = (ACE/NE – 1)*100 

where ACE is the fraction of the Actual Conditions simulations exceeding its 1-in-

100-year event, and NE is the fraction of the Natural runs exceeding that threshold. 

We calculate RR for each individual Natural (providing an uncertainty range) and for 

the pooled Natural, which consists of all ensemble members available pooled 



together, i.e., our best estimate. The effect of having different ensemble sizes on our 

best estimate of the change in risk in 1-in-100-year precipitation index, pressure 

index, 30-day peak river flow and 1-day peak river flow is tested by using two 

methods. First, we calculate the change in risk using only the first 7,220 ensemble 

members for each Natural experiment (smallest ensemble size available, see 

Supplementary Table 2). The second method is to increase the ensemble size for 

each individual Natural to 15,726 (largest ensemble size available, see 

Supplementary Table 2) by randomly resampling with replacement the available 

ensemble members. This is repeated 100 times and we present the average, 5th and 

95th percentiles obtained in Supplementary Table 3, along with the best estimates 

shown in the main article and from the first method. The resulting best estimates are 

consistent for the three methods and show no sign of any systematic effect of having 

different ensemble sizes. 

Supplementary Table 3: Best estimates of the change in risk between Actual Conditions and Natural 

simulations for three different pooling methods and different variables, along with the 5
th

-95
th

 uncertainty range 

for the third method.  

 All members 

of each 

Natural 

ensemble 

First 7,220 

members of 

each Natural 

ensemble 

Increasing size of each Natural 

ensemble to 15,726 (100 resamples) 

Mean 5
th
 percentile 95

th
 percentile 

Precipitation index 43% 46% 45% 39% 52% 

Pressure index 55% 46% 50% 42% 57% 

30-day peak flows 21% 21% 22% 17% 28% 

1-day peak flows 4% 6% 5% 1% 9% 

 

Ref 4 evaluates the RCM's temperature and precipitation over Europe. As Fig. 2 

shows the Westerly wind at 200 hPa, Supplementary Fig. 6 shows the 1986-2011 

January climatology estimated from observations9 and in the GCM, along with the 

bias of the model. Overall the GCM has a good representation of this quantity over 

the region of interest, although the maximum off the East coast of North America is 

too weak, and the jet extends too far into Northern Europe. 



 

Supplementary Figure 6: The 1986-2011 January Westerly wind climatology in a ERA-Interim
9
 and b 

HadAM3P. c shows the bias of HadAM3P for the same period. 

 

3. Regime analysis 

Our different regimes are data-based, and computed for winter (DJF) from the SLP 

fields of the NCEP reanalysis, which covers years 1948-20141. We compute the first 

10 principal components10 (PCs) of the seasonal daily anomalies of SLP over the 

North Atlantic region (80°W-30°E; 30°N-70°N). We then apply a k-means clustering 

classification algorithm11 to these principal components, to obtain four weather 

patterns. These can be characterised as a Blocking (BLO), a North Atlantic Ridge 

(AR), a Zonal regime (ZO, note that the anomaly centre is south of the NAM/NAO 

negative centre) and negative North Atlantic Oscillation (NAO-) (Supplementary Fig. 

7a-d). We find that the time spent in the zonal regime, ZO, exceeds 83% for January 

2014, and 70% in DJF 2013/14, which are both records since 1948. Repeating the 

cluster analysis with an alternative reanalysis, 20CR, covering 1871-2012 reveals 

similar frequencies for all four regimes. The frequency of regime ZO for January 

2014 has been previously reached only once since 1871, whereas the mean 

frequency over DJF 2013/14 has never occurred before in that reanalysis. 

We interpolate the SLP of the RCM simulations onto the NCEP grid, to facilitate the 

comparison of model projections with known weather regimes. The mean winter SLP 

from the Actual Conditions simulations is subtracted from all RCM simulations. The 

resulting SLP anomalies are then classified into the four NCEP weather regimes by 

minimizing a root-mean-square distance, and ensemble model simulations of times 

spent in each were calculated (Supplementary Fig. 7e-l). 

a b c

[m/s] [m/s] [m/s]



 

Supplementary Figure 7: Panels (a-d): SLP patterns of the four weather regimes obtained from the January 

daily averages in the NCEP reanalysis. From top to bottom these are North Atlantic Ridge (AR), Zonal regime 

(ZO), negative North Atlantic Oscillation (NAO-) and Blocking (BLO). Panels (e-h) show time series of the 

corresponding weather regime frequency in two reanalysis datasets (NCEP: black line and 20CR: blue line) for 

January, during the 20
th

 century, with the medians as horizontal dashed lines. (i-l) show the distribution of 

frequency in each regime from the NCEP reanalysis and the different RCM ensembles; the box and whisker plots 

show the 25
th

, median and 75
th

 percentiles of the regime frequencies (coloured boxes). The upper whisker is the 

value of min(1.5(q75-q25)+q50,maxF). The lower whisker comes from a symmetrical formulation. The dots above 

the upper whisker represent outliers. The diamonds indicate the mean ZO frequency when it exceeds 20 days for 

comparison with Fig. 4. 
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4. Details of statistical techniques 

Both the Kolmogorov-Smirnov test and the Cramer-von Mises test, used in Fig. 4, 

are based on the assumption that both samples are drawn from single distributions 

of continuous variables. While pressure and precipitation are continuous, a 

potentially important caveat is that we are varying the forcing of the natural ensemble 

discontinuously, by selecting one of 11 SST patterns from the CMIP5 ensemble. 

Nevertheless, the size of the noise due to internal variability and the mean response 

across the CMIP5 models both significantly exceed the discrete sampling intervals, 

so we do not consider this to be a serious issue and it clearly does not impact our 

non-parametric uncertainty estimates on the one-dimensional return period plots. 

Fig. 5 and Supplementary Figs 5 show return periods. The horizontal axis is actually 

the rank of each ensemble member but labelled as the equivalent return period. The 

longer the return period, the smaller the sample size and the greater the uncertainty, 

so spread can be seen to generally increase with return period. 

In Fig. 5c, observed Southern England monthly winter precipitation amounts show no 

statistically significant change in extreme values between the recent period and a 

century ago. This is assuming a Generalized Pareto Distribution that scales with low-

pass (4-year running mean) filtered global mean temperature but the signal-to-noise 

ratio for precipitation is so low that a linear trend gives the same answer. The 

significance was assessed using a non-parametric bootstrap test using all data 

points. However, this test would not detect any change smaller than a factor of about 

four due to the short observational record so this does not preclude anthropogenic 

forcing having a smaller influence on winter precipitation.   



5. Separation of the dynamical and thermodynamical effects on the changes in 

extreme precipitation 

Supplementary Fig. 8 shows the difference in precipitation between the wettest 1% 

Actual Conditions and wettest 1% Natural, both selected using the precipitation 

index. We wish to estimate the separate contributions to the increase in precipitation 

in the Actual Conditions simulations compared to the pooled Natural simulations for 

the 1-in-100-year event potentially given by thermodynamic processes (i.e. the 

Clausius-Clapeyron relationship12) and by dynamic ones (via changes of circulation 

caused by anthropogenic forcing). 

The idea of our method is to adjust each of the pooled Natural simulations to remove 

the effects of any circulation changes, which we assume to be represented by the 

pressure index. Specifically, we adjust the ranks in the “return period” plots so as to 

force the distribution of the pressure index to match the Actual Conditions 

simulations. 

As a first step, we calculate histograms of the pressure index at 1 hPa resolution for 

Actual Conditions and Natural. The ratio between their frequencies for each bin is 

used as a weight for the corresponding values of the pooled Natural ensemble. We 

then plot the pressure or precipitation index of each Natural ensemble member, not 

against the original rank, but against an adjusted rank, calculated by dividing the 

sum of all weights by the cumulative sum up to the given sorted pressure or 

precipitation index. Fig. 4c shows the original and adjusted Natural pressure indices 

along with the Actual Conditions pressure indices, showing how closely the 

adjustment fits. Fig. 4d then shows the corresponding plot for the precipitation index. 

The increase in risk for the 1-in-100-year event in Actual Conditions due to 

anthropogenic forcing decreases from 43% to 28% when the dynamic effect is 

removed, implying that both potential effects do play a role, with around a 1/3 of the 

change in risk due to changes in circulation, and 2/3 due to the Clausius-Clapeyron 

relationship. 



 
Supplementary Figure 8: Difference of modelled January mean precipitation (colours) and sea level pressure 

(contours: hPa) between the wettest 1% Actual Conditions simulations and the wettest 1% Natural simulations.  

 

 

6. Hydrological modelling 

6.1 The rainfall-runoff model 

River flows are simulated for the Thames at Kingston using the Climate and Land-

use Scenario Simulation In Catchments model, CLASSIC13, including its 

temperature-based snow module14. CLASSIC was specifically developed for 

simulating the impacts of climate and land-use change in large catchments in Britain, 

including the Thames, and so is the ideal choice for this study. It has been used for a 

number of studies of the potential impacts of climate change on floods in catchments 

across Great Britain15,16 as well as a previous flood event attribution study17; the 

catchment of the Thames to Kingston was included in each case. 

CLASSIC is a semi-distributed rainfall-runoff model13 applied on a grid (here set as 

10x10km) with the catchment boundary overlaid (Supplementary Fig. 9), and 

simulates daily mean river flows using input time-series of daily precipitation and 

monthly potential evaporation (PE) for each grid box. Parameter values in the model 

are determined using generalized relationships with physical catchment properties 

based on land use, soil type and topography13. The snow module is used as a pre-

processor on the precipitation and operates with accounting in separate elevation 

zones, areas of which are derived for each grid box using data from the Integrated 

Hydrological Digital Terrain Model IHDTM18. Inclusion of the snow module requires 

-1    -0.6   -0.2    0.2   0.6      1 [mm/day]



daily mean temperature data, and its corresponding altitude in order to lapse the 

data to the elevation zones within each grid box. 

	

Supplementary Figure 9: a The outlet location (green dot) and catchment boundary (black) for the Thames at 

Kingston. b shows the 10x10 km CLASSIC grid (blue) and the ~50x50km climate model grid (red) over the 

catchment. The axes are labelled with the GB national grid. 

	

6.2 The Thames catchment 

The Thames is one of the largest rivers in Great Britain, and Kingston, west London, 

is the location of its lowest gauging station (Supplementary Fig. 9), which lies at the 

tidal limit and has been recording since 1883; both observed (gauged) flows and 

naturalised flows (gauged flows adjusted to allow for the net impact of upstream 

abstractions and discharges19) are available from the UK National River Flow 

Archive (nrfa.ceh.ac.uk). The catchment is very heterogeneous, particularly in terms 

of hydrogeology with significant areas of both responsive clay soils and much more 

slowly responding soils underlain by chalk or limestone aquifers20. The latter give the 

catchment a relatively high baseflow index of 0.64 (the proportion of flows derived 

from groundwater sources), and mean that antecedent conditions, and therefore 

temporal patterns of precipitation and temperature over multi-day to seasonal 

durations, are an important influence on river flows in the catchment.  
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Supplementary Fig. 10 shows observed and naturalised flows for the Thames at 

Kingston for April 2013-March 2014, along with mean, maxima and minima through 

the year using naturalised flows since 1961 and since 1883, for several durations. 

These show that the flows in DJF 2013/2014 were more unusual in terms of longer 

durations than daily means21. The 60-day mean flow beginning late December 2013, 

combining the two main periods of rainfall in January and February 2014, is the 

highest in the 130-year record by around 30% whereas the peak daily flow in 

February 2014 was exceeded in six previous years. Following the wet summer of 

2012, mean daily flows were slightly higher than average in April 2013 (green line 

compared with dashed blue line) but, with a drier summer in 2013, by September 

flows were below average and in mid-December were well below average for the 

time of year. Hence, antecedent conditions would have mitigated the impact of the 

rainfall in the latter part of December 2013 and high groundwater levels would not 

have been a contributory factor until February 2014. 

Also shown in Supplementary Fig. 10 are flows simulated with CLASSIC using 

observed input data (CEH-GEAR 1km daily precipitation22, MORECS 40km monthly 

PE23 and 5km Met Office temperature24, each transformed onto the model 

10kmx10km grid). These show that CLASSIC performs well for this period over all 

durations, with the rapid increase in flows in mid-December well-replicated (note that 

although flows are only shown for one year, the simulation was run from January 

2010 to allow for the influence of antecedent conditions). A recent study used 

CLASSIC to simulate daily flows for the Thames at Kingston for 1890-201325 and 

showed relatively good performance throughout the period, despite changes in 

rainfall seasonality for example, demonstrating the relative stability of the 

catchment’s response to climatic inputs and thus the stability of the model parameter 

values. 

 



 

Supplementary Figure 10: Hydrographs showing observed (black), naturalised (green) and simulated (using 

CLASSIC: red) flows for the Thames at Kingston for April 2013 to March 2014, for four durations (1-, 10-, 30- and 

60-day mean flows in a-d). Shaded areas indicate maxima and minima from naturalised flows up to March 2013, 

from 1961 (pale blue) and 1883 (dark blue), with the respective mean naturalised flows shown as blue dashed 

lines. The dates are for the start of the averaging-period. 
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6.3 Use of ensemble data to drive CLASSIC 

The precipitation and temperature data required by CLASSIC are available directly 

from the climate model runs, but PE data are not and so have been estimated from 

the temperature data using the Oudin formula26. This method of calculating PE has 

been shown to perform well when using baseline climate model data27,28 (although 

projections for future PE using temperature-based formulae can differ from 

projections using more physically-based formulae, and there is on-going debate 

about the best formulae to use29). Precipitation and PE are then converted from the 

climate model grid to the CLASSIC grid using area-weighting, plus extra weighting 

for precipitation based on standard average annual rainfall patterns30. The climate 

model temperature data are lapsed to the CLASSIC grid, using altitudes from the 

orography file of the climate model and from the IHDTM.  

For each ensemble member, CLASSIC was then run for the period January 2010-

February 2014, using observed data up to 10th December 2013 followed by the 

simulated data from 11th December 2013 up to the end of February 2014. This 

allows plenty of time for spin-up of stores, given the importance of antecedent 

conditions on flows in DJF 2013/2014. The first 10 days of the RCM simulations are 

not used so as to allow the atmosphere to spin up. Precipitation in the first few days 

of the Natural simulations is unrealistically high, but has stabilised after 10 days (due 

to these simulations being started on the 1st December 2013 from restart files from 

the 30th November 2013 using a slightly different set of delta SSTs). CLASSIC was 

run both with and without the snow module, to assess the importance of snow 

processes on the results. 

6.4 Analysis of flow data 

From each run of CLASSIC, the daily mean flows for DJF 2013/2014 are extracted. 

These are shown in Supplementary Fig. 11 as envelopes around the observed flows 

over the period, with 10th, 25th, 50th, 75th and 90th percentiles shown for each 

ensemble separately (Actual Conditions, a, and Natural, e to o) and for the 11 

Natural ensembles pooled together (e-o). Supplementary Fig. 11 shows how 

extreme the observed flows in this period were, relative to the ensemble simulated 

flows, but the ensemble minima and maxima contain the observed flows. The 

maxima from the pooled Natural ensemble are generally higher than those from the 



Actual Conditions ensemble, due to the much larger size of the former, but there is 

little difference for the other percentiles. Note that the percentiles from the ensemble 

simulations would not be expected to follow the peaks/troughs of the observed flows 

– the climate model cannot reproduce the actual, effectively random pattern of 

chaotic “weather noise”. 

 

Supplementary Figure 11: Simulated daily mean flow time-series (modelled with the snow module), plotted as 

probabilistic envelopes for each ensemble and each day, compared to the observed (naturalised) daily mean 

flows (green solid line). For each ensemble (Actual - a and Natural - e to o) and for the pooled Natural ensemble 

(e-o), the 50
th

 (solid), 25
th

 and 75
th

 (dashed) and 5
h
 and 95

th
 (dot-dashed) percentiles are shown, along with 

minima and maxima (dotted). 

To analyse flow peaks at a range of durations, the daily mean flows are first turned 

into running mean flows for longer durations (10-, 30- and 60-days), then the 

maximum flow is extracted at each duration, for each run. These calculated maxima 

are grouped by ensemble, and plotted against return period using the Gringorten 

plotting position, an approximate unbiased estimator of exceedance probability, the 

reciprocal of the return period31. The 11 Natural ensembles are also pooled and 
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plotted as one large ensemble. The Actual Conditions and pooled Natural ensembles 

are also resampled 10,000 times (to assess sampling uncertainty), to calculate 5th-

95th percentile confidence ranges. The results when run with the snow module are 

shown in Supplementary Fig. 12 (left), while the equivalent results when run without 

the snow module are shown in Supplementary Fig. 13 (left). 

	

Supplementary Figure 12: Plots of simulated flood peaks (modelled with the snow module) against return 

period (left) and box-plots of FAR ranges (right) for durations of 1-, 10-, 30- and 60-day (top to bottom). The flood 

peak plots show the Actual Conditions ensemble (red crosses), the pooled Natural ensemble (large blue circles) 

and each of the Natural ensembles individually (smaller circles) (note that the inset plots show coloured lines, 

rather than symbols, for clarity). Also shown for each duration are horizontal lines giving the peaks from observed 

flows (dot-dashed) and from flows simulated with observed inputs (dotted), and the simulated 100-year return 

period flow from the Actual Conditions ensemble (dashed), used as the threshold for calculating FAR. The box-
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plots show the FAR, with uncertainty ranges, calculated for the pooled Natural ensemble (“e-o”) and each of the 

Natural ensembles (“e”-“o”) individually. The boxes show the 25
th

-50
th

-75
th

 percentile range, while the whiskers 

show the 5
th

-95
th

 percentile range. Markers outside the whiskers show the overall extrema. 

 

Supplementary Figure 13: As Supplementary Fig. 12 but modelled without the snow module. 

The Fraction of Attributable Risk (FAR) is given by:  

FAR = 1 - (NE/ACE) 

where ACE is the fraction of the Actual Conditions runs with peak flows exceeding a 

given threshold, and NE is the fraction of the Natural runs exceeding the threshold32. 

This is calculated for the pooled Natural ensemble and for each individual Natural 

ensemble separately, relative to the threshold given by the Actual Conditions 1-in-
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100-year flow, and uncertainty ranges are calculated by resampling (Supplementary 

Figs 12 and 13 right). Positive FAR indicates that past emissions have increased the 

chance of extreme river flows, and hence flooding, whereas negative FAR indicates 

a decrease. The magnitude of FAR for the pooled Natural ensemble varies with 

duration; there is a large positive influence on 30-day and 60-day peak flows (>95% 

confidence), but a lesser positive influence on 10-day peak flows (>75% confidence) 

and only a small positive influence on daily peak flows (>60% confidence) with the 

snow module (Supplementary Fig. 12). Four of the individual Natural ensembles 

show a decreased chance for the best estimate for some or all durations. Without the 

snow module (Supplementary Fig. 13) the positive influence on both 10-day and 

daily peak flows increases (although the confidence for the increase in daily peak 

flows is still only just over 70%). Thus changes in snow moderate the increases that 

would otherwise have occurred in shorter duration peak flows, consistent with results 

for the floods of Autumn/Winter 200017. This result is also consistent with analyses 

showing that, while snow has historically been one of the main flood-generating 

mechanisms on the lower Thames (typically via rapid melt of large accumulations 

coincident with the occurrence of heavy rainfall), its relative contribution has declined 

over time19,25.  

The other main flood-generating mechanism on the lower Thames is sustained 

heavy rainfall (typically over 4-7 days) on saturated ground19. To investigate the 

influence of extreme rainfall accumulations on the flow results, similar analyses are 

done for maximum rainfall accumulations over a range of durations as are presented 

above for peak flows. That is, using the climate model rainfall data for a grid box over 

the Thames, the maximum accumulation over 1, 5, 10 and 30 days is calculated for 

each run (11th December 2013 to end of February 2014). For each duration, the 

rainfall accumulations are plotted against return period (Supplementary Fig. 14 left) 

and FAR values are calculated relative to the threshold given by the Actual 

Conditions 1-in-100-year accumulation, with uncertainty ranges calculated by 

resampling (Supplementary Fig. 14 right). These plots show that, while there is a 

large positive influence of past emissions on extreme 30-day rainfall accumulations, 

there is a smaller influence on shorter duration accumulations, especially the 5 day 

accumulation, thus explaining the lower influence on daily peak flows than 30-day 

peak flows for the Thames at Kingston. 



 

Supplementary Figure 14: Plots of maximum rainfall accumulations against return period (left) and box-plots of 

FAR ranges (right) for durations of 1, 5, 10 and 30 days (top to bottom). The rainfall accumulation plots show the 

Actual Conditions ensemble (red crosses), the pooled Natural ensemble (large blue circles) and each of the 

Natural ensembles individually (smaller circles) (note that the inset plots show coloured lines, rather than 

symbols, for clarity). Also shown for each duration is a horizontal line showing the 100-year return period rainfall 

accumulation from the Actual Conditions ensemble (dashed), used as the threshold for calculating FAR. The box-

plots show the FAR, with uncertainty ranges, calculated for the pooled Natural ensemble (“e-o”) and each of the 

Natural ensembles (“e”-“o”) individually. The boxes show the 25
th

-50
th

-75
th

 percentile range, while the whiskers 

show the 5
th

-95
th

 percentile range. Markers outside the whiskers show the overall extrema. 
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7. Flood inundation modelling and indicative flood damages  

This part of the analysis is based on flood maps developed using a combination of 

hydrological frequency analysis and hydrodynamic flood flow modelling, following a 

methodology previously applied33 for national flood risk mapping in England. Firstly, 

the methods for statistical analysis of river flooding set out in the industry-standard 

“Flood Estimation Handbook”34 are applied to watercourses in the Thames 

catchment upstream of Kingston to derive estimates of flood flows at approximately 

every 200 metres along the stream network for five annual exceedance probabilities: 

1/20, 1/75, 1/100, 1/200, 1/1000. The analysis includes all watercourses draining 

areas of more than 3 km2. Then a hydrodynamic model is applied to simulate the 

limits of possible floodplain inundation (i.e. areas “at risk” of flooding) for each set of 

flow estimates. The software used, JFlow+, solves the two-dimensional depth-

averaged shallow water equations with a finite volume implementation of Roe’s 

scheme35,36 and has been demonstrated to be suitable for flood risk modelling in 

benchmark tests published by the official flood management authority in England37. 

We apply it on a 5 m horizontal resolution grid with the ground elevations derived 

primarily from airborne LiDAR survey over the urban areas. The vertical resolution in 

LiDAR-derived terrain models is variable, but vertical root mean square errors are 

typically of the order of ~50mm38. 

Floodplain inundation is modelled for a notional world without flood defences, which 

would mitigate the actual risk in any specific flood event. This approximation, which 

we return to later, helps to assess the effects of climate forcing in isolation from other 

anthropogenic factors, and is consistent with the reporting of risk in official flood 

management plans39. The resulting inundation maps are envelopes representing 

areas that could potentially be flooded with a given annual probability. Ordnance 

Survey “AddressPoint” data is then used to identify and count the properties within 

these areas. Supplementary Fig. 15 represents the number of properties thereby 

assessed to be at risk of flooding, with likelihood greater than the specified annual 

probability, in the absence of flood defences. By interpreting the annual exceedance 

probability of modelled river flows at Kingston as an index variable representing the 

severity of flooding in the catchment, Supplementary Fig. 15 is used as a lookup 

function to estimate, as a first approximation, how many properties could be at risk 

for any ensemble member.  



Supplementary Figure 15: Number of properties individually at risk of flooding from the River Thames upstream 

of Kingston with annual probability greater than 1/T, not accounting for flood defences, as a function of return 

period T. Five scenarios were modelled (solid dots) for the specified river flow annual exceedance probabilities 

on watercourses draining sub-catchments larger than 3 km
2
. 

This relationship is adopted as an approximate impact function, applied so as to 

obtain an indication of the number of properties flooded in each of over 130,000 

ensemble simulations of a complex hydro-meteorological model chain. It is 

acknowledged that this does not account for uncertainties in the flood inundation 

modelling process, nor the effect of biases in the outputs of the hydro-meteorological 

modelling chain relative to actual extreme flows in the Thames catchment. A 

comprehensive uncertainty analysis of the entire modelling chain would ideally be 

performed, but was not feasible in the present study. However the property counts 

for the Actual Conditions simulations are broadly in line with the Environment 

Agency’s Thames Catchment Flood Management Plan34, which estimated that 

approximately 135,000 properties would have more than a 1-in-100 chance of 

riverine flooding in any one year, without flood defences. That figure differs in detail 

from the estimates adopted here because it is based on a composite of several 

inundation model outputs, and also different property datasets and property counting 

assumptions. 
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To assess the difference in the number of properties at risk of flooding between 

Actual Conditions and Natural, the frequency distributions of the simulated river flows 

at Kingston are derived from the hydrological model outputs for the Actual Conditions 

case, and for each of the Natural ensembles. For each ensemble, the Natural forcing 

river flows Q expressed on the physical river flow scale, are compared with the 

distribution of flows from the Actual Conditions simulations, GA(Q), to calculate the 

corresponding annual probabilities of exceedance 1 - GA(Q) on the Actual Conditions 

scale. This effectively translates the empirical distribution of peak flows from the 

Natural ensembles onto the same scale as the Actual Conditions simulations, 

allowing the relationship shown in Supplementary Fig.15 to be used to estimate the 

change in number of properties at risk for return times on the Actual Conditions 

scale, as shown in Fig. 5f. 

Flood protection measures within the Thames river basin have evolved as a complex 

mixture of raised embankments, artificially straightened drainage channels, river 

diversions and other structures. Official flood management plans40 describe how the 

geology of the Thames floodplain makes construction of raised flood defences 

impractical in many places, and show that although there are numerous assets 

acting to reduce flood risk, only 3%40 of the total floodplain area is classified as being 

protected by “significant” flood defences, benefitting 5% of properties that would 

otherwise be at risk of flooding with a 1% or greater annual probability. Some 10% of 

the floodplain is classed as heavily populated and not protected by flood defences, 

and these areas contain around 40% of properties at risk (numbering 56,000). 

Approximately 69% of the Thames floodplain (or 14% of properties at risk) is classed 

as being in “open floodplain”, which includes a mixture of defended and undefended 

areas. Neglecting the role of flood defences is thus considered a reasonable 

approximation for the purposes of this analysis.  

Sensitivity of the estimated change in risk to the assumptions made about flood 

defences can be assessed in terms of the average annual economic cost of flooding. 

The annual average flood damage for a typical UK residential property without 

protection is estimated41 to be £4,947 (at 2015/16 prices), hence the annual 

economic cost associated with the changes in risk attributable to human-induced 

climate change in this study can be estimated as between approximately -£19.8 

million (a reduction corresponding to 4000 fewer properties at risk) and +£39.6 



million (an increase corresponding to 8,000 more properties at risk). The most 

favourable standard of protection for areas benefitting from “significant” defences in 

the Thames catchment is reported to be 1/200 annual probability40, for which the 

average annual damages of a typical property reduce41 to £40. Assuming that flood 

defences of this standard would have benefitted the same proportion of properties in 

any of the Natural ensembles as in the actual catchment (i.e. 5% of properties, see 

above), then the upper bound of the change in risk attributable to climate change 

would be reduced by £1.96 million to £37.6 million, a relatively insignificant 

reduction.  

The results presented here are intended as a realistic indication of the potential flood 

risk, under different climatic forcing scenarios, based on detailed contemporary flood 

mapping and property data. Inputs to CLASSIC are spatially distributed on a grid, as 

are its internal runoff calculations, but the runoff is then routed to the catchment 

outlet at Kingston in order to predict the river flow there, which is the primary model 

output. In the absence of spatially distributed estimates of river flow, the return 

period T (years) of the daily peak river flows at Kingston is applied as an indicator of 

the relative extremeness of flooding throughout the catchment. This approximation 

neglects the spatio-temporal details of individual events, but is consistent with the 

strong spatial dependence in extreme river flows in this catchment, especially for 

prolonged flood events in the winter season42.  

Also the figures are based on a recent snapshot of properties in the Thames region, 

which is assumed to be a fixed representation of the built environment. The analysis 

therefore takes no account of how property development might have differed under 

climate conditions consistent with the Natural forcing. 

The results are based on statistical analysis of peak river flows and a robust, 

physics-based floodplain model applied at a relatively high spatial resolution. 

However, the modelling necessarily involves some approximation of the real flood 

risk in the Thames catchment. A further, more comprehensive analysis of potential 

flood damage for the Thames region might be able to take into account additional 

factors, including: 

• The specific locations, standards and performance of flood defence systems  



• Variation in the spatial extent and timing of flood events 

• The evolution and duration of flooding within an event 

• The risk associated with sea surge in the tidal Thames (i.e. “downstream” of 

Kingston) 

• Surface water flooding associated with overland runoff and the performance 

of surface and sub-surface drainage systems 

• Groundwater levels 

At present the integration of these factors in assessments of flood risk remains a 

challenge both for researchers and for the flood risk management industry. 
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