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Abstract

Having unified representations of human walking gait data is of paramount importance for 

wearable robot control. In the rehabilitation robotics literature, control approaches that unify the 

gait cycle of wearable robots are more appealing than the conventional approaches that rely on 

dividing the gait cycle into several periods, each with their own distinct controllers. In this article 

we propose employing algebraic curves to represent human walking data for wearable robot 

controller design. In order to generate algebraic curves from human walking data, we employ the 

3L fitting algorithm, a tool developed in the pattern recognition literature for fitting implicit 

polynomial curves to given datasets. For an impedance model of the knee joint motion driven by 

the hip angle signal, we provide conditions by which the generated algebraic curves satisfy a 

robust relative degree condition throughout the entire walking gait cycle. The robust relative 

degree property makes the algebraic curve representation of walking gaits amenable to various 

nonlinear output tracking controller design techniques.

INTRODUCTION

Wearable robot control and biomechanical gait assessment require compact and reduced 

order representations of human walking data during the entire gait cycle. In the rehabilitation 

robotics literature, wearable robot controllers that aim at unifying the entire human gait 

cycle [1-8] are more preferable to the conventional control schemes [9-13] that rely on 

dividing the gait cycle into several periods, each with their own distinct controllers. State-of-

art wearable robot control techniques that rely on non-unified representations of walking gait 

result in dozens of control parameters and transition rules that must be tuned across users 

and activities [13]. Furthermore, desynchronizing perturbations increase a patient’s risk of 

falling if the controller switches to the wrong state and as a result uses the wrong control 

scheme.

Unified gait wearable robot controllers do not suffer the aforementioned shortcomings of the 

non-unified gait control schemes. In [1], the authors employed the center of pressure (COP) 
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in human walking to unify the stance phase of the gait. Assuming a rocker foot geometry, 

the COP-based gait in [1] only depends on the joint variable measurements, as opposed to 

the joint velocities. Therefore, the COP-based gait is a holonomic representation of human 

walking gait. A unified holonomic gait, which unifies the stance and swing phases of 

walking, was proposed in [14]. The unified gait in [14], however, uses the patient’s absolute 

coordinates in order to measure phase variables and thus requires using motion capture 

systems.

In order to unify the stance and swing phases of human walking, the authors in [4, 5] 

departed from the COP-based holonomic gaits to a thigh angle integral-based representation 

of human walking. However, the integral term in [4, 5] needs to be reset at the beginning of 

every gait cycle to prevent accumulation of drift due to variation in thigh kinematics. 

Furthermore, the integral-based gait in [4,5] cannot be used for patient’s non-rhythmic 

motion control. The authors in [8] and [15] have proposed a piecewise holonomic 

representation of human walking gait cycle and a unified velocity-based (nonholonomic) 

gait representation, respectively. The authors in [16] employed a symbolic algebraic tool, 

which is based on computing resultant of polynomials, for removing phase variables from 

autonomous bipedal robot parametric gaits. However, this approach cannot be practically 
used for generating closed algebraic curves from human walking data due to large degrees of 

generated implicit polynomials. A unified holonomic representation of human gait cycle, 

which unifies both the stance phase and the swing phase during walking, is still lacking in 

the literature.

In this article we propose employing closed algebraic curves to represent human walking 

data for wearable robot controller design. The closed curve representation of human walking 

data is holonomic and motivated by the fact that healthy hip-knee time profiles create closed 

and non-intersecting orbits during walking in the hip-knee plane (see Figure 1). Such closed-

curve representations of human walking data have numerous wearable robot applications 

such as synchronization control between the patient’s hip and powered knee prosthesis in 

above-knee amputees, as well as path-based approaches for patient gait training using lower 

limb exoskeletons [17,18].

In order to generate algebraic curves from human walking data, we provide bivariate implicit 

polynomials (IPs) whose zero sets represent the nominal coordination between the hip and 

knee angles during normal level walking. Furthermore, we employ the 3L fitting algorithm 

[19], a tool developed in the pattern recognition literature for fitting implicit polynomial 

curves to given datasets, for obtaining algebraic curves from human data. Moreover, we 

prove that there exists no holonomic relationship between the hip angle signal and the knee 

joint angle that possesses a well-defined relative degree throughout the entire gait cycle. This 

result is independent of the method by which the unified holonomic gait is generated from 

the human walking data. Finally, we provide conditions by which the generated algebraic 

curves satisfy a robust relative degree condition, as defined in [20], for an impedance model 

of the knee joint motion driven by the hip angle signal throughout the entire walking gait 

cycle. The robust relative degree property, despite the loss of relative degree at some singular 

points during the gait cycle, makes the algebraic curve representation of walking gaits 

amenable to nonlinear output tracking controller design [21].
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We remark that our proposed algebraic curve fitting is closely related to the recent work in 

[18], where the authors use an elliptical path in the hip-knee plane to prescribe a normal 

walking gait for a lower limb exoskeleton during the swing phase. Our algebraic curve 

representation, however, unifies the entire gait cycle, including both the stance phase and the 

swing phase. Furthermore, unlike the elliptical path in [18], which is an open curve 

converging to infinity, our proposed algebraic curves are closed and bounded, which 

correspond to periodic human gait cycles. The closed and bounded curve properties cannot 

be achieved with standard one dimensional polynomial fitting numerical methods, similar to 

the one used in [18].

The rest of this paper is organized as follows. First, we briefly review preliminaries from 

algebraic curves and present the 3L algorithm for fitting such curves to nominal hip-knee 

human walking data. Next, for an impedance model of the knee joint motion driven by the 

hip angle signal, we provide conditions by which the generated algebraic curves satisfy a 

robust relative degree condition throughout the entire gait cycle. Finally, we conclude the 

paper with final remarks and outline of possible future research directions.

3L ALGORITHM FOR FITTING HUMAN DATA TO ALGEBRAIC CURVES

In this section we briefly review some preliminaries on algebraic curves and use the 3L 

algorithm for fitting closed algebraic curves to human data. A comprehensive treatment of 

algebraic curves and their properties may be found in [23-25].

Algebraic Curves

Algebraic curves are defined by means of bivariate implicit polynomials (IPs). Given a finite 

integer n, an IP h(qH,qK) is a function

h(qH, qK) = ∑
i j

ai jqH
i qK

j , 0 ≤ i + j ≤ n (1)

of the two variables qH, qK, where aij are real numbers.

The degree of the polynomial h(qH, qK) in (1) is the maximal value of i + j for which aij ≠ 0. 

Here, we assume that the IP h is of degree n. Every IP of degree n has a total of (n + 1)(n 
+ 2)/2 coefficients.

Given an IP h(qH,qK) and a point (qH0,qK0), the value h(qH0,qK0) is called the algebraic 
distance of the point (qH0,qK0) to the zero set of h(qH,qK). Moreover, the zero set of the IP 

h(qH,qK) given by (1) is defined to be

𝒵 h ≔ qH, qK ∈ ℝ2 ∣ h qH, qK = 0 . (2)

A real algebraic curve is the zero set of a non-zero real bivariate polynomial h. The degree of 
an algebraic curve is defined to be the degree of its associated bivariate implicit polynomial. 
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Algebraic curves of degree 1, 2, 3, 4, ⋯, are called lines, conics, cubics, quartics, ⋯, 

respectively. Ellipses, hyperbolas and parabolas examples of well-known conics.

Since we are interested in studying periodic human walking gait profiles, it is desirable to 

have closed and bounded algebraic curves. The following well-known lemma from the 

algebraic curve literature provides the necessary condition for a given algebraic curve to be 

closed and bounded.

Lemma 1.([25]) An algebraic curve is a closed and bounded plane curve only if it is of even 

degree.

3L Algorithm for Fitting Algebraic Curves to Human Walking Data

In this section we fit algebraic curves to the data points obtained from a healthy gait 

according to Winter’s normal cadence walking data [22]. Our fitting algorithm is taken from 

the pattern recognition literature and is known as the 3L algorithm [19]. We first describe 

how fitting algebraic curves to human walking datasets can be formulated as a quadratic 

optimization problem.

Fitting algebraic curves to human datasets as a quadratic optimization 
problem.—Consider an ordered, closed set, ℋ0, of N0 planar data points (qHi,qKi). Here, 

the set ℋ0 represents the path in the hip-knee plane, which is taken from the Winter’s 

normal cadence walking data [22] (see Figure 1). The set of ordered data points (qHi,qKi), 1 

≤ i ≤ N0, are the samples of the hip and knee normal cadence walking trajectories 

corresponding to increasing time instants during a given gait cycle. In other words, if 

(qHi,qKi) corresponds to time instant ti and (qHi+1,qKi+1) corresponds to time instant ti+1, 

then ti < ti+1. Since the walking gait profile is periodic, we have (qH1,qK1) = (qHN0
,qKN0

). 

The geometric center or centroid of the dataset ℋ0 is defined to be the point (see also Figure 

1)

C =
qHC

qKC
≔

Σ
i = 1

N0 − 1
qHi

N0 − 1

Σ
i = 1

N0 − 1
qKi

N0 − 1

. (3)

We would like to find an implicit bivariate polynomial h(qH,qK) of even degree, i.e., n = 2p 
for some positive integer p, such that its zero set 𝒵 h  approximates the set of human hip-

knee data points ℋ0. This approximation problem is equivalent to minimization of the error 

functional [19]
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E = ∑
qH, qK ∈ ℋ0

h2 qH, qK . (4)

It is possible to describe the error functional E in (4) as a quadratic function of the 

coefficients of the IP h(qH,qK). In order to do so, we rewrite the IP h qH, qK = Σ
i j

ai jqH
i qK

j , 

where 0 ≤ i + j ≤ n, using the inner-product

h qH, qK = m⊺ qH, qK a, (5)

where

m⊺ qH, qK ≔ 1, qH, qK, qH
2 , qHqK, qK

2 , ⋯, qH
n , qH

n − 1 qK, qH
n − 2 qK

2 , ⋯, qHqK
n − 1 , qK

n , (6)

is a function of the two variables qH and qK. Moreover,

a ≔ a00, a10, a01, a20, a11, a02, ⋯, an0, a n − 1 1, a n − 2 2, ⋯, a1 n − 1 , a0n , (7)

is the vector of IP coefficients with

n0 ≔ n + 1 n + 2 2, (8)

components. Next, using the data points qHi
, qKi

∈ ℋ0, 1 ≤ i ≤ N0, we define the following 

matrix

Mℋ0
≔

m1
⊺

⋯
mN0

⊺
, (9)

where the row vectors mi
⊺ are defined as mi

⊺ ≔ m⊺ qHi
, qKi

. It is shown in [19] that the 

functional E given by (4) is equal to

E = a⊺Mℋ0
⊺ Mℋ0

a . (10)
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Therefore, we would like to find the coefficient vector a such that the error functional E 
given by (10) is minimized. The direct minimization of the quadratic error function E, which 

is known as the 1L approach, often fails to generate an acceptable IP fit to a set of data 

points due to numerical instability problems and/or lack of physically meaningful solutions 

(see [19, 26] for a detailed discussion on numerical issues associated with this fitting 

approach).

Human data 3L fitting algorithm.—Using the 3L fitting algorithm developed in [19], 

we address the aforementioned numerical shortcomings of the 1L minimization by 

introducing two additional datasets, which can be generated from the original human 

walking dataset ℋ0. Being able to vary the two fictitious datasets on either side of the 

original normal cadence walking dataset ℋ0, optimal fitting accuracies of algebraic curves 

to human walking data can be achieved. Furthermore, it can be shown that, under suitable 

conditions, the algebraic curves generated by the 3L fitting algorithm are non-degenerate 

[19,27,28].

Following the experimental results for pose estimation in computer graphics literature [19, 

25], we chose quartic algebraic curves, i.e., n = 4, to be fitted to the hip-knee normal 

walking data. However, there is no limitation on the degree of the algebraic curve that can be 

fitted to human walking datasets. The 3L algorithm for fitting algebraic curves to human 

hip-knee walking data can be described in the following three steps.

Step 1) Generation of two fictitious datasets:  Given the dataset ℋ0, representing the 

nominal human walking gait in the hip-knee plane [22], introduce two fictitious datasets 

close to ℋ0. The first set, which is denoted by ℋ+ and is located outside the dataset ℋ0, has 

N+ points and corresponds to the algebraic distance c (see the previous section for the 

definition of algebraic distance), where c is a design parameter to be chosen. The second 

fictitious dataset, which is denoted by ℋ− and is located inside the dataset ℋ0, has N− points 

and corresponds to the algebraic distance −c. In this article, we have chosen the algebraic 

distance design parameter to be c = 1.

In order to generate the two fictitious datasets ℋ+ and ℋ− in this article, we translated the 

centroid or the geometric center of the dataset ℋ0 given by (3) to the origin of the qH − qK 

plane. In particular, we translated the original dataset to obtain

ℋ0
t =

qH

qK
−

qHC

qKC
:

qH

qK
∈ ℋ0 , (11)

where [qHC, qKC]⊺ is the centroid of the human dataset ℋ0.

Then, we scaled the translated dataset ℋ0
t  by scaling factors α+ and α−, where α+ is a real 

number greater than 1 and α− is a real number less than 1, to generate ℋ+ and ℋ−, 
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respectively. The multiplication of the translated dataset ℋ0
t  by α+ and α− corresponds to 

geometric contraction and geometric dilation, respectively. Therefore,

ℋ± = α±(
qH

qK
−

qHC

qKC
):

qH

qK
∈ ℋ0 . (12)

For the presented results, we chose α+ = 1.02 and α− = 0.98.

Remark 1. In Steps 2 and 3, we consider ℋ0
t  and ℋ± in (11) and (12), respectively, whose 

geometric centers are located at the origin of the qH − qK plane. In the final step, the 
generated algebraic curve needs to be translated back to the geometric center of human 
dataset ℋ0.

Step 2) Defining the three level-set matrix:  Define the three level-set (3L) matrix

M3L ≔

Mℋ−
M

ℋ0
t

Mℋ+

∈ ℝ
N+ + N0 + N− × n0 , (13)

where n0 is the number of coefficients of the IP h given by (8). In (13), the matrices M
ℋ0

t , 

Mℋ+
, and Mℋ−

 are defined as

M
ℋ0

t ≔

m⊺ qH1
t , qK1

t

⋯

m⊺ qHN0

t , qKN0

t

, Mℋ±
≔

m⊺ qH1
± , qK1

±

⋯

m⊺ qHN±

± , qKN±

±

, (14)

where the points (qHi
t , qKi

t ), 1 ≤ i ≤ N0, belong to the dataset ℋ0
t  given by (11). Similarly, the 

points (qHi±

± , qKi±

± ), 1 ≤ i ≤ N±, belong to the two fictitious datasets ℋ+ and ℋ− given by 

(12), respectively.

Step 3) Solving for the unknown IP coefficients:  Define the (N+ +N0 +N−) component 

column vector of algebraic distances
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b ≔

−c 𝟙N−
0 𝟙N0
c 𝟙N+

, (15)

where 𝟙k, for a given integer k, is a column vector of ones belonging to ℝk. Consider the 

equation M3L a = b, with M3L given by (13) and b given by (15). Computing the pseudo-

inverse solution for the coefficient vector a, we have

a⋆ = M3L
⊺ M3L

−1
M3L

⊺ b .

The algebraic curve fitted to the human data is the zero set of

h⋆ qH, qK = m⊺ qH − qHC, qK − qKC a⋆, (16)

where m⊺(·,·) is the function defined by (6), and [qHC, qKC]⊺ is the centroid of the human 

dataset ℋ0. The translation in (16) corresponds to translation of the geometric center of the 

obtained algebraic curve from the origin to the human dataset centroid, as explained in 

Remark 1.

Discussion of the obtained algebraic curve fit.—Using the 3L algorithm, we 

obtained a quartic IP with vector of coefficients

a⋆ = − 4.6, 37.8, 30.5, − 183.3, − 38, 18.4, − 492.2, − 624.5, − 380.6, − 26.0, 3725.5, 1307.3, 1344.1, 11.3,
55.6 .

Figure 2 depicts the level sets of the IP h⋆(qH, qK) which has been generated using the 

aforementioned 3L fitting algorithm. The largest deviation of the quartic algebraic curve fit 

from Winter’s normal cadence walking data happens during the stance extension at the 

configuration [0.2677 rad, −0.081 rad]⊺ where the knee angle deviates from the nominal 

value by around 0.04 rad ≈ 2.3°.

The green band around the zero set of the IP h⋆(qH,qK) corresponds to the hip and knee 

configurations that belong to the sublevel set {(qH,qK): |h⋆(qH,qK)| ≤ c0 associated with the 

algebraic distance c0 = 0.3. As it can be seen from Figure 2, the level sets of the fitted IP 

h⋆(qH,qK) do not intersect with each other, corresponding to the fact that the generated 

algebraic curve is non-degenerate. Furthermore, as the algebraic distances from the zero set 

𝒵 h⋆  change in a small manner, the joint angles do not deviate drastically from the nominal 

values. This continuity feature is desirable for controller design, since for small values of |

h⋆(qH,qK)| the hip-knee configurations are still close to the fitted algebraic curve.
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RELATIVE DEGREE ANALYSIS OF UNIFIED HOLONOMIC REPRESENATION 

OF HUMAN GAIT CYCLE

In this section we consider an impedance model of the knee joint motion driven by the hip 

angle signal and analyze the relative degree of the human-inspired algebraic curves for this 

dynamical system. The human-inspired IP h⋆(qH,qK) represents a desired implicit 

relationship between the human’s hip angle and the wearable robot knee angle. As the 

human’s hip angle qH(t) evolves with time, driving h⋆(qH(t),qK) to zero via feedback 

corresponds to coordinating the motion of the knee with the hip during level walking 

according to the human walking closed curve in Figure 1. We remark that the algebraic 

curve given by the IP h⋆(qH,qK) represents a holonomic relationship as it only depends on 

the joint angles qH and qK, as opposed to the joint angle velocities.

We assume that the knee joint motion is governed by an impedance model with a nonlinear 

output function y = h⋆(qH(t),qK) given by the IPs fitted to human normal walking data. 

Moreover, we assume that the signals associated with human hip joint position qH(t), hip 

joint velocity q.H t , and hip joint acceleration q̈H t  are smooth and bounded. Under this 

assumption, we have the dynamics

Mq̈K
+Bq.K

+ KqK
= u,

y = h⋆ qH t , qK ,
(17)

where u is the torque applied to the knee. Whenever the output h⋆(qH(t),qK) is zero or 

sufficiently close to zero, the motion of the knee joint gets coordinated with the driving hip 

angle signal according to the human walking closed curve in Figure 1.

For the impedance model given by (17), we first prove that there exists no holonomic 

relationship between the hip angle signal and the knee joint angle that possesses a well-

defined relative degree throughout the entire gait cycle. This result implies that using an 

exact input-output feedback linearizing controller, and for that matter a PD control lawi, is 

impossible for synchronizing the hip–knee motion with a unified holonomic output. We 

remark that the loss of relative degree is independent of the method by which the output y = 

h⋆(qH(t),qK) is generated from the human walking data.

Proposition 1. Consider the impedance model of the knee joint motion driven by the hip 
angle signal given by (17). For any smooth output function h⋆(·) whose zero set is a bounded 
and closed curve, there exists a singular point on the zero set of h⋆(·) such that the output y = 

h⋆(qH,qK) loses its relative degree for the dynamical system in (17).

Proof. Consider the output y = h⋆(qH,qK) for the dynamical system in (17). Taking two 

derivatives of the output, the control input appears in the following way

iSee, e.g., [1] for further details on using PD control schemes in place of input-output feedback linearizing controllers.
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ÿ = 1
M

∂h⋆

∂qK
(qH, qK)u + ⋆ , (18)

where (⋆) represents the sum of all the remaining terms. We prove that there exists at least 

one point (qH
∗ , qK

∗ ) on the zero set of h⋆(·), i.e., 𝒵 h⋆ , such that

∂h⋆
∂qK

(qH
∗ , qK

∗ ) = 0 .

Since the zero set 𝒵 h⋆  is a smooth, closed, and bounded curve, by a direct result of the 

Theorem of Turning Tangents [29, Section 1.7, p. 39], there exists at least one point (qH
∗ , qK

∗ ) 

on the curve 𝒵 h⋆  such that the perpendicular vector to it is parallel to the qK axis. Since 

the perpendicular vector to 𝒵 h⋆  is given by [∂h⋆/∂qH, ∂h⋆∂qK]⊺, we have 

∂h⋆ ∂qK
qH

∗ , qK
∗ = 0. Thus, the relative degree of the output h⋆(·) is lost at (qH

∗ , qK
∗ ).

Despite the loss of relative degree at some singular points during the walking gait cycle, it is 

still possible to design output tracking nonlinear controllers provided that the human-

inspired outputs satisfy a robust relative degree condition at the points of singularity [20]. 

Following the dynamic extension procedure in [30, Section 5.4, p. 249], we add one 

integrator at the torque input u. That is, we let

u = ζ, ζ
.

= ν . (19)

In order to study the robust relative degree of the human-inspired IP h⋆ at the points of 

singularity, we define x ≔ qK, q.K, ζ ⊺ and rewrite the augmented dynamical system given by 

(17) and (19) in the following standard control affine form

x. = f x + g x u,
y = h qH t , qK , (20)

where

f (x) ≔

0 1 0

− K
M − B

M 1

0 0 0

x, g(x) ≔
0
0
1

.

Mohammadi and Gregg Page 10

Proc ASME Dyn Syst Control Conf. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the dynamical system in (20), we first present the definition of robust relative degree, 

according to [20]. Next, we present the condition by which the human-inspired algebraic 

curve has robust relative degree at the points of singularity during a walking gait cycle.

Definition 1 ([20]). Consider the dynamical system in (20). The human-inspired algebraic 

curve 𝒵 h⋆  is said to have robust relative degree γ at x = x0 if there exist smooth functions 

ϕi(x), i = 1, ⋯ γ, such that

h⋆ x = ϕ1 x ,

L f + guϕi x = ϕi + 1 x + Ψi x, u , i = 1, ⋯, γ − 1

L f + guϕγ x = b x + a x u + Ψγ x, u

where Lf +guϕi(x):= (∂ϕi/∂x)(f (x) + g(x)u), and the functions Ψi(x), i = 0, ⋯ γ, are sums of 
terms of order O(x)2, O(x,u), or O(u)2 at x0 (denoted O(x,u)2)ii. Furthermore, the functions 
a(x) and b(x) are smooth, and a(x0) ≠ 0.

The following proposition provides the condition by which the human-inspired algebraic 

curve satisfies a robust relative degree condition at singularities during the walking gait 

cycle.

Proposition 2. Consider the impedance model of the knee joint motion driven by the hip 
angle signal, which is augmented with the integrator (19), given by (20). Suppose that the 

zero set of the smooth output function h⋆(·), i.e., 𝒵 h⋆ , is a bounded and closed curve. 

Consider the singular point(s) on the zero set 𝒵 h⋆  where the output y = h⋆(qH,qK) loses its 

relative degree. The output function h⋆(·) has robust relative degree γ = 3, with input u = ζ 
and output y = h⋆(qH,qK), if

∂2h
∂qK

2 q.K + ∂2h
∂qK ∂qH

q.H ≠ 0 (21)

at the points of singularity.

Proof. For the sake of brevity, we provide a sketch of the proof. Taking two derivatives of the 

output y = h⋆(qH,qK), we have

ÿ = 1
M

∂h⋆
∂qK

(qH, qK)u + { ∂2h

∂qK
2 q.K + 2 ∂2h

∂qK ∂qH
q.H − B

M
∂h

∂qK
}q.K + ( ⋆ ⋆ ),

where (⋆⋆) represents the sum of all the remaining terms. Taking another derivative of the 

output, it can be seen that

iiWe say that a function f (x) is of order O(x)2 at x=x0 if limx→x0 ∥f (x)∥/∥x−x0∥2 exists and is not equal to zero.
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…
y

= 1
M {2 ∂2h

∂qK
2 q.K + 2 ∂2h

∂qK ∂qH
q.H − B

M
∂h

∂qK
}u + ( ⋆ ⋆ ⋆ ) .

where (⋆ ⋆ ⋆) represents the sum of all the remaining terms, which is also independent of the 

control input u. Therefore, the output y = h⋆(qH,qK) has robust relative degree γ = 3, with 

respect to the output of the integrator u = ζ, if

2 ∂2h

∂qK
2 q.K + 2 ∂2h

∂qK ∂qH
q.H − B

M
∂h

∂qK
≠ 0 .

Noting that at the points of singularity we have ∂h
∂qK

= 0 (see the proof of Proposition 1), we 

conclude that the robust relative degree holds if the inequality in (21) is satisfied at these 

singular points.

Proposition 2 provides a sufficient condition for the the human-inspired holonomic algebraic 

curves to have robust relative degree at the singular points during a walking gait cycle. 

Under such robust relative degree property at singular points, it is possible to design tracking 

control laws for the entire gait cycle using various methodologies, such as the one proposed 

in [21]. For instance, the output nonlinear tracking controllers in [21] switch between 

approximate tracking laws close to the singularities, and exact tracking laws away from the 

singularities. In the final step of the design, a backstepping procedure needs to be employed 

in order to compute the input v to the integrator given by (19) for generating the proper 

torque input u that is required to be applied to the knee joint. Finally, we remark that as long 

as the human hip joint acceleration is bounded, there is no need for measuring it. Because 

the output tracking control laws, if properly designed, will guarantee boundedness of the 

tracking errors in the presence of uncertainties and disturbances [31]. Designing output 

nonlinear tracking controllers for human-inspired algebraic outputs for wearable robots 

remains the subject of a future work.

CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS

In this article we employed algebraic curves to represent human walking gait data. Using the 

numerically stable 3L fitting algorithm from the pattern recognition literature, we fitted 

algebraic curves to human walking gait profiles. We presented conditions by which the 

generated curves satisfy a robust relative degree condition throughout the human walking 

gait cycle. The presented material opens up three potential research directions. First, the 

human-inspired algebraic curves can be employed for designing nonlinear output tracking 

control schemes for the entire gait cycle of powered prostheses/orthoses. Second, algebraic 

invariants associated with the human-inspired algebraic curves might provide means for gait 

pathology assessment and classification. Third, the 3L fitting algorithm or its extensions 

might be employed for fitting trivariate (of three variables) implicit polynomials to hip-knee-

ankle human walking data.
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Figure 1: 
(a) Nominal human hip-knee path taken from Winter’s normal cadence walking data [22]. 

(b) The body diagram of the walking sagittal plane: qH and qK represent the hip and knee 

angles, respectively.
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Figure 2: 
The quartic algebraic curve fitted to Winter’s normal cadence walking data [22]. The dashed 

curve represents the Winter’s normal cadence walking. The level sets of the IP h⋆(qH,qK) are 

labeled with their corresponding algebraic distance in the figure. The green band around the 

zero set of the IP h⋆(qH,qK) corresponds to the hip and knee configurations that belong to the 

sublevel set {(qH,qK): |h⋆(qH,qK)| ≤ c0} associated with the algebraic distance c0 = 0.3.
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