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Abstract Since humans are fundamentally social be-

ings and interact frequently with others in their daily

life, understanding social context is of primary impor-

tance in building context-aware applications. In this pa-

per, using smartphone Bluetooth as a proximity sensor

to create social networks, we present a probabilistic ap-

proach to mine human interaction types in real life. Our

analysis is conducted on Bluetooth data continuously

sensed with smartphones for over one year from 40 in-

dividuals who are professionally or personally related.

The results show that the model can automatically dis-

cover a variety of social contexts. We objectively vali-

dated our model by studying its predictive and retrieval

performance.

1 Introduction

Social interaction plays an important role in our daily

lives as a part of most of our activities (e.g., working, at

home, doing sports, etc.). In sociology, social network

analysis has become a key tool to analyze interaction

between people at a large scale [35,39]. This type of

analysis calls for efficient data collection methodologies,
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which are challenging task themselves. Each data type

reflects some specific aspect of social behavior and con-

tributes to the global understanding of human interac-

tion. The amount of data can vary from small amounts

collected manually via questionnaires in the early days

of social science [34] to global networks of people col-

lected via phones and the internet [26,28].

Recently, smartphones have emerged as a feasible

device to sense daily life activities and events, including

social interactions. These ubiquitous, programmable de-

vices provide access to behavioral and contextual infor-

mation through various built-in sensors [11,33] (e.g.,

GPS, accelerometer, Bluetooth, etc.). The main advan-

tage of smartphones over dedicated devices for data

collection and analysis also lies in the fact that most

people do not have to carry an additional device (and

the associated burden) and hence usually do not change

their normal behavior. Further, these devices create an

opportunity for continuous sensing of human behavior

for long periods of time.

In this work, we have used Bluetooth sensors in

smartphones to sense the proximity network between

people over a long period of time. Bluetooth proximity

is an acceptable approximation for social interactions,

since people in proximity are more likely to interact

with each other. Technically, Bluetooth-based proxim-

ity has advantages including low battery cost, the abil-

ity to work in both indoor and outdoor environments,

and its availability in most phones and other mobile

devices. Furthermore, it is perceived to be less privacy-

sensitive than other data types such as audio and lo-

cation, and people are happy to connect to others via

Bluetooth to share both their presence and data, by ac-
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tivating the “discoverable mode” in their devices. Blue-

tooth data is inherently relational, unlike other sensor

data types like GPS.

Bluetooth proximity networks have various limita-

tions when sensing social interactions. First, Bluetooth

proximity data is noisy, since devices might sometimes

fail to detect all nearby devices. This is more likely to

happen when many devices are active at the same time

and place. Second, proximity does not always mean

actual interaction (e.g., in public transport). Finally,

Bluetooth devices do not always have a one-to-one cor-

respondence to individuals: Although phones are usu-

ally carried by a single owner, people sometimes forget

them or put them aside [32], and some users might carry

multiple Bluetooth-equipped devices (phones, laptops,

etc).

We conduct our analysis on a large-scale Bluetooth

proximity data, with the hypothesis that the longitudi-

nal aspect of the collected data will overcome some of

the limitations mentioned above, and propose an appro-

priate mining algorithm to discover relevant recurrent

patterns of interaction between people in their social

network. As people usually form groups in real life, we

focus our analysis on group interaction rather than on

pairwise relations.

The main goal of this work is to determine the so-

cial context of a given user based on the state of the

proximity network around him and the current time.

We develop an unsupervised approach for automatic

interpretion of social contexts, which are not explicitly

available but that can be discovered from the data. To

this end, we introduce the concept of an interaction

type for the interaction links that might exist among

people, which defines the latent meaning of the link.

Basically, an interaction type is characterized by who

is present when; for example, an interaction type called

“group meeting” might consist of the same same group

of six people that from 10 to 11 every Tuesday morning,

while the “being at home” interaction type could refer

to the interaction of a person with his family during

non-working hours.

From the above examples, clearly, these interaction

types are user/group-specific (two groups of people might

have two different group meetings). The discovery and

the recognition of these interaction types could be use-

ful for personalizing applications. First, we could pre-

dict who a user meets and when directly from the set

of discovered interaction types. This recognized inter-

action type could then be used as an input to context-

aware applications, for which user interest or user be-

havior depends on the social context. The set of in-

teraction types of a person could also be used to infer

his personality. Finally, the discovered interaction types

can be viewed as a summary of how people interact

together, and facilitate the visualisation of interaction

data.

In this paper, we describe a probabilistic framework

to discover interaction types. The framework uses lon-

gitudinal, real-life Bluetooth data collected from a pop-

ulation of smartphone users as input. Our work makes

the following three contributions. First, we discuss our

model for interaction type discovery from proximity

data (referred to as GroupUs), which utilizes the infor-

mation from long-term observations of everyday prox-

imity within a model, that accounts for uncertainty

both in sensing and in the group interactions them-

selves. Second, our analysis is performed on a data

set collected with smartphones, which encompasses one

year in the life of 40 individuals. Finally, we analyze

GroupUs’ performance in detail. We show that the model

can indeed infer both a set of meaningful interaction

types and the individuals who are more prominent in

those interactions, and compare it against an existing

method using an objective evaluation procedure.

The structure of the paper is as follows. Section 2

reviews related work. We present the data collection

framework and some basic analysis in Section 3. We

present an overview of our method in Section 4 and the

technical details is provided in Section 5. Our findings

and validation results are presented in Sections 6, 7 and

8. Finally, Section 9 provides concluding remarks.

2 Related work

The idea of using Bluetooth as a way of detecting so-

cial interaction is not new in ubiquitous computing. As
two examples, Terry et al. [36] investigated the use of

pairwise proximity patterns over time to identify inter-

ests shared by individuals. In an urban context, O’Neill

et al. proposed to use the number of detected BT de-

vices in an environment as an indicator of the associated

human density [31]. More recently, other related work

has appeared, often under the umbrella term of reality

mining [11]. Most of this work has used mobile phones

to sense longitudinal human activity, as proposed by

Raento et al. [33] and Eagle and Pentland [11].

Sensor data reflecting real face-to-face interaction

has increasing value for social network research. Sen-

sors used in the literature include Bluetooth, RFID, in-

frared, microphones, and cameras; each sensor presents

advantages and limitations, especially regarding the ac-

curacy in capturing real interaction. In the case of Blue-

tooth, Clauset et al. [5] analyzed a BT proximity net-

work of a population recorded over nine months, and

demostrated that quantities like periodicity can be in-

ferred. Eagle et al. [10] analyed a network constructed
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from BT links and phone call logs to identify friend-

ship networks. Mardenfeld et al. [25] also studied a BT

network to discover groups. Other works have relied on

other mobile sensors, like infrared, and microphones,

to address the limitations of Bluetooth to detect real

face-to-face proximity, rather than just detecting peo-

ple sharing an office or a large space [15,40,30]. As a

tradeoff for the improved spatial resolution, many of

these studies imposed restrictions on how people wear

these devices. As a new possibility, it has been shown

that the distance between wireless devices can be esti-

mated by exploiting low level signals, and the spatial

resolution can potentially be improved [3].

Also connected to our work is the problem of discov-

ering places, which has been widely studied in mobile

and ubiquitous computing using several types of loca-

tion data [2,17,24,29]. The relation between places and

interaction is evident in everyday life: specific interac-

tions happen at specific places. This knowledge could

clearly be used for place and event prediction purposes

[23]. In our case, while we only rely on Bluetooth, the

model presented here could, in an extension, integrate

location data to relate places to interaction types as

part of the discovery process.

Social network analysis for relational data is also

an active topic in data mining and machine learning

[39,21]. Some methods have been proposed to extract

groups, which are mainly based on discovering block

structure from interaction, but these methods have not

been used for social network modeling from smartphone

data. Using probabilistic framework, stochastic block

structure models [21,1] aim at finding groups for each

individual in a given network. To analyze dynamical
networks, Fu et al. [13] extended these models by allow-

ing model parameters to change over the global state

of the network. Another approach for modeling dynam-

ical network has been proposed in [38] for relational

and text data, in which the group assignment are dy-

namical, depending on the actual topic of discussion. In

the context of group interaction discovery, these mod-

els have two common limitations: first, there is a scal-

ability issue, and second these models focus on global

structure of the network rather than finding local inter-

actions of groups. Importantly, the latter point makes

block structure models inefficient for extracting local

parts of the network that corresponds to specific group

interactions. In a recent work, Dubois et al. [9] simplify

the framework by considering individual pairwise inter-

actions rather than the whole network at the same time.

This simple model allows to extract local blocks of the

network and overcome the drawback of block structure

models. However this advantage comes at a price as

pairwise interactions were assumed to be independent

and identically distributed. This assumption, however,

is not realistic for social network analysis applications

in which people interact in group.

The GroupUs model is inspired from topic models

like the Latent Dirichlet Allocation, proposed by Blei et

al. [4]. LDA is a highly popular tool in text analysis to

extract semantic topics from text corpora, and recently

used in human activity modeling from mobile sensors

by Farrahi et al. [12] and Huynh et al. [19]. We have

extended these ideas for interaction data, where the set

of links between people in a network, within a relatively

short period of time, are assumed to correspond to a

hidden interaction type (taken from a small number of

possible types). Our work differs from standard LDA,

as the observation space and the nature of the latent

class to be recovered from data are both relational. As

mentioned earlier, block structures are relevant in social

network analysis for detecting communities. Our model

captures these block structures by using a conditional

independence assumption between observed variables,

which also reduces the algorithmic complexity.

Our model was originally proposed in Do and Gatica-

Perez [8] and validated on a dataset with 40 users. In

this paper, we discuss it in more details, evaluate it

thoroughly, and also include additional nearby Blue-

tooth devices in the analysis. In an earlier work, we also

proposed a model which focuses on discovering emer-

gent group structure of proximity networks [7]. The

main ideas are that dynamical networks have a limited

number of emergent structures, and that each struc-

ture corresponds to a mapping from the set of people in

the network to the set of latent groups, in which group

members have high probability to interact with each

other. While this approach is a direct way to group peo-

ple, the global network has potentially an exponential

number of grouping modes (with respect to the number

of nodes), and thus the model scalability is limited. To

circumvent this problem, GroupUs does not model ex-

plicitly the global structure of the network, but focuses

on extracting specific group interactions separately.

3 Large-scale proximity data and basic analysis

The dataset in this analysis stems from the Lausanne

data collection campaign, which uses a server-client ar-

chitecture built for the Nokia N95 8GB smartphone to

collect data [22]. The software client was designed to

detect and record Bluetooth scans approximately ev-

ery 1-3 minutes, and store the logs (MAC addresses of

nearby Bluetooth devices together with the timestamp)

in the phone memory. This client which could run in the

background in a non-intrusive manner was installed in

the phone. The client started automatically at startup,
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and recorded data continuously as long as the phone

was powered on. The logged data was then uploaded

daily to a server, typically at night, by connecting to a

wifi network.

In order to optimize battery consumption, the client

was designed using a state machine architecture [22],

which adapted the sensor sampling rate based on the

inferred phone state (e.g., static, moving, etc). Due to

this the data was recorded continuously with the only

restriction of having to recharge the phone once a day

(which was typically done during nights).

We use Bluetooth data recorded continuously over

12 months on a set of 40 volunteer users (also called ob-

servers in the following discussions). 25 of these users

were colleagues who worked for a mid-size organiza-

tion and occupied a dozen office spaces in a building,

spanning from single-person rooms to a lecture room.

The remaining 15 users were family members of the 25

users. All volunteers were compensated for any costs

associated to the data collection. Information about

the users was anonymized, and only basic information

about group membership was kept for experiments. Users

carried their device as their actual (and only) phone

and therefore used them in real conditions. The data

was recorded from October 2009 to the end of Septem-

ber 2010. This corresponds to more than 2 million non-

empty Bluetooth scans.

Unlike previous works on Bluetooth proximity data,

which mainly focused on pairwise interactions, we ad-

dress the problem of mining group interaction behavior

among people in daily life. In the next subsections, we

address three specific aspects of our Bluetooth proxim-

ity data.

3.1 Block structure.

We expect BT proximity data to exhibit features simi-

lar to other types of data used to sense social network.

One of the key concepts in social network analysis is

the block structure, which is used to explain how peo-

ple form groups. A matrix has a block structure if we

can group its rows and columns into groups of similar

vectors. For example, if there are N groups of rows and

M groups of columns and the rows and columns are

ordered by group, then the matrix has a structure of

N ×M blocks and the values in each block are simi-

lar. The problem of grouping people in social network

can be expressed as finding the block structure of the

interaction matrix, where we expect that people in the

same group have similar vectors of interaction. For ex-

ample, Airoldi et al. showed that block structure can be

used to model the like-dislike matrix between monks

in a monastery [1]. As a basic analysis, we show the
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Fig. 1 Top: Accumulated proximity time between users ac-
cording to BT sensor. Users 1-25 are co-workers, users 26-40
are some of their family members. Bottom: Working place
relation between workers in the organization.

pairwise proximity time matrix between smartphone

users in Figure 1 (top). The 25 workers in the orga-

nization are numbered from 1 to 25 and ordered by the

office they nominally occupy. Figure 1(bottom) shows

the working place relation between workers according

to four cases: i) office co-workers (same office), whose

phones should detect each other quite often; ii) workers

in adjacent offices (next office) are likely to detect each

other depending on their relative position; iii) workers

in nearby offices (nearby), not as close as the two first

cases, might detect each other sometimes; and (iv) none

of the above. These plots reflect the fact that in reality

co-workers have high chance of seeing each other if their

offices are close, and that people spend more time with

their relatives than with co-workers.

Some emergent block structures can be observed in

Figure 1(top), which reflects the fact that people usu-

ally interact in groups. As the set of users was ordered

by office, for the interactions between co-workers the
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Fig. 2 The proximity network of co-workers and others. Links represents proximity between people during the one-hour
period, and the intensity of the link represents the amount of time people were in proximity.

block structure is relatively easy to detect visually, re-

flecting cases of people working in the same office who

spent much time together. Interactions between people

and their family members are also strongly highlighted,

and would also form blocks if ordered appropriately. Be-

sides, there are also other interaction patterns which do

not dominate in terms of total amount of time but are

key to understand the social behavior of the organiza-

tion(e.g., project meetings, having lunch together, etc.).

These patterns are relatively subtle in the statistics in
Figure 1, and require a more sophisticated approach for

discovery.

3.2 Dynamical network.

As human and social behaviors are strongly conditioned

by time, it is important to consider the temporal infor-

mation in the analysis. The Bluetooth proximity data

can thus be viewed as a dynamical network that changes

over time, where each link (i.e., each pairwise interac-

tion) has a start-time and an end-time. This temporal

dimension plays an important role for understanding

the actual semantic meaning of the link, which is not

observed in the automatic sensing framework.

The introduction of temporal information for each

pairwise interaction, however, also makes group inter-

action analysis more challenging. For a given group

meeting, proximity links between people usually have

different start/end times, and so it is unclear how to

determine the start/end time of the group interaction,

specially in the case of noisy data. To avoid the cost of

automatic segmentation, one can choose a slice-based

representation, in which the dynamical network is di-

vided into slices of short duration. With an appropri-

ate setting of the duration of a slice, relevant inter-

action patterns could potentially emerge from various

snapshot of the dynamical network. Figure 2 shows two

snapshots at two consecutive hours on a given day. As

can be seen, the network topology changes quickly ac-

cording to the real life event. And in both snapshots,

one can observe interactions between workers, with dif-

ferent intensity.

3.3 Sensing quality with Bluetooth

As discussed in the introduction, using Bluetooth as

proximity sensor has many advantages, but the Blue-

tooth data source is unfortunately quite noisy. In prac-

tice, often, a Bluetooth device does not detect all nearby

devices in a scan. We present in this section a basic anal-

ysis of robustness of Bluetooth proximity sensor data in

real conditions, and use the results of the quality anal-

ysis as the input to set the slice duration parameter.

We start by considering a subset of the data con-

sisting of the weekly meetings of a group of 10 mem-

bers for whom we know the exact meeting schedule over
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Fig. 3 Proximity detection rate of Bluetooth sensor for
group meeting data for directed and undirected link cases
and varying time slice duration.

the 12-month recording period. Based on this grouth

truth data, we would like to estimate the rate at which

the phone of each person successfully detects the other

group members. To this end, we divide each group meet-

ing into time slices of short duration, and draw links be-

tween people within each time slice. The ground truth

for each “group meeting” is simply a fully connected

graph using the people present at the meeting. We con-

sider both directed and undirected graphs for the eval-

uation:

– A directed link from user u to user v corresponds to

the fact that u observed v during the time slice.

– An OR-link between u and v corresponds to the fact

that (u observed v) OR (v observed u) during the

time slice.

– An AND-link between u and v corresponds to the

fact that (u observed v) AND (v observed u) during

the time slice.

Figure 3 reports the rate of link detection as a func-

tion of time slice duration. As can be seen, the duration

of the slice is crucial as increasing the observation pe-

riod also increases the rate of link detection. The plot

also suggests to consider a slice duration of at least

five minutes in order to obtain near optimal link de-

tection rate with the Bluetooth sensor. Looking at the

result for the directed link case, we found that the Blue-

tooth sensor has a proximity detection rate of 0.5 at

10-minute time slice. The rate can be improved by con-

sidering Bluetooth data from pairs of users in the case

of OR-link, for which the proximity detection rates are

roughly 25% better than the case of directed link. Fi-

nally, we also report the two-way-detection rates (AND-

link case) which are obviously lower than the two other

cases because of the strict condition of detection.

4 Overview of our method

Our approach to discover group interaction patterns is

described in Figure 4. At the low level, we collected raw

BT proximity links over months of real life to capture

Raw BT proximity links 
(observer,observed device,timestamp)

preprocessing

GroupUs model

Discovering interaction types:
1) who are prominent participants
2) temporal context of the interaction

Predict the interaction type for 
each link

Slice representation 

pattern discovery

inference on unseen 
observations

reveal the structure 

time

u

v

c

t

S
Ls

θs

ϕ1t

ϕ2t

ϕ3t T

time

type 1 A,B            Mon-Fri, 9am-6pm

Interaction  Who?          When?

type 2 C,D,E         Monday, 9-10am
type 3 A,C,E          Every evening

Fig. 4 Overview of our method.

actual events in the life of a community. The raw data

was transformed into a time-slice based representation,

where each slice is described by an interaction graph

between users and its temporal context. The slice rep-

resentation was then analyzed by the GroupUs model,

which is designed to identify different interaction types

like group meetings, lunches with family members, etc.

in an unsupervised manner. The GroupUs model in

turn gave the set of discovered interaction types and

the assignments of interaction type for the set of links.

The GroupUs algorithm is presented in detail in the

next section. Its application application on real-life BT

data is then described in Sections 6 and 7.

5 GroupUs : A probabilistic model for sensing

group interaction.

In this section, we present a probabilistic model for an-

alyzing dyadic interaction data, which is usually repre-

sented by a set of links between pairs of users together

with the interaction timestamp. In our framework, a

user may have multiple links to others for a given times-

tamp, depending on the number of nearby devices that

the Bluetooth scan detected. Although the undirected

OR-link has the best detection rate, it require a con-

straint that the set of observers and the set of observed

devices are identic. In this study, we consider directed

links to allow the fact that we could have two separate

sets of observers and observed devices.

Data representation. The main insight in this work is

that to infer the interaction type between two users at
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a given time, one could exploit not the only links in-

volving the two considered users but also the links be-

tween other nearby users. We conduct our analysis with

a slice-based approach, where all links within a short

period (e.g., 10 minutes) are grouped together, forming

a slice of the dynamical network. Duplicate links are re-

moved, which means that there are at most 2 directed

links between any two users in a slice. Furthermore, the

time of the interaction is also key to deduce the inter-

action type, hence we include the temporal information

in the description of the link. A link i is thus charac-

terized by:

ui : the head of the link (observer device).

vi : the tail of the link (observed device).

ci : the temporal context of the link, a discrete

value that describes the corresponding time of the day

and day of the week. It always corresponds to one of

24∗7 = 168 cases of the 24×7 grid of a weekly calendar.

si : the identifier of the time slice that the link

belongs to. si ∈ {1..S} where S is the total number of

time slices.

5.1 The probabilistic model

In many cases, the observed Bluetooth data is noisy.

It may be due to technical problems of the sensor or

due to the presence of real noise. Considering a group

meeting as an example, even if all members attended

the meeting, it could happen that some links between

members could be lost due to sensor failures. On the

other hand, sometimes, a member of the group could be

absent from the group meeting. We call this the “reality

noise” of the group meeting.

In order to handle such stochasticity of the data,

we use a probabilistic approach where observations are

represented by random variables. A latent variable is

introduced for capturing emergent patterns from the

observations. This idea is inspired from topic models

which was originally proposed for text [4,18] and had

applications to other domains such as image retrieval

and bioinformatics [20,41].

Our graphical model is illustrated in Figure 5, where

observed random variables u, v and c are represented

by shaded nodes. The latent variable t corresponds to

the interaction type (a cluster of related links) of the

link. The latent interaction types are not explicit but

are characterized by model parameters φ defining which

users are likely to be observer and observed person for

each interaction type (φ1t and φ2t), and which tempo-

ral contexts that interactions of a given types are likely

u

v

c

t

S
Ls

θs

ϕ1t

ϕ2t

ϕ3t T

Fig. 5 Graphical model.

Initialization:
Draw distribution θs ∼ Dirichlet(α) for each slice s.
Draw distribution φt ∼ Dirichlet(β) for each
interaction type t.

For each link of the slice s:
Draw an interaction type t|s ∼Multinomial(θs).
Draw a first person u|t ∼Multinomial(φ1t).
Draw a second person v|t ∼Multinomial(φ2t).
Draw a temporal context c|t ∼Multinomial(φ3t).

Table 1 Generative process.

to happen (φ3t). Finally, θs corresponds to the condi-

tional distribution of interaction types given the slice s.

Once learned, these hidden variables can be used as a

summary of the observation or to generalize the obser-

vation. Note that we use a plate representation where

each node corresponds to a number of random variables,

and the capital letters in the corners stand for the num-

ber of variables that the node represents. More specifi-

cally, S stands for the number of slices in the data, Ls
is the number of links in slice s, and T is the number of

interaction types that we want to discover. The genera-

tive process for a set of links is shown in Table 1 where

we use a Dirichlet prior distribution (with parameters

α and β) for model parameters θ and φ = {φ1, φ2, φ3}.
The Dirichlet distribution is the conjugate prior of the

Multinomial, which is chosen for algebraic convenience.

Let L be the total number of links, (u,v, c, s) =

(ui, vi, ci, si)i=1..L be the set of observed links, and t =

(ti)i=1..L be the interaction type assignment for each

link. The joint probability of u,v, c, s and t can be ob-

tained by integrating over hidden parameters:

P (u,v, c, s, t;α,β) =
∫
θ,φ

P (u,v, c, s, t, θ, φ;α,β)∂θ∂φ

=
∫
θ
P (t|θ)P (θ;α)∂θ

∫
φ
P (u,v, c|t, φ)P (φ;β)∂φ

=
∏S
s=1

B(α+ns)
B(α)

∏T
t=1

B(β+mt)
B(β)

B(β+pt)
B(β)

B(β+qt)
B(β) .

(1)

where B(.) is the multinomial Beta function, ns is a

T -dimensional interaction type count vector for slice s,

and {mt,pt,qt} are the observation count vectors of in-

teraction type t. Mathematically, the counts are defined
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by:

nst =
∑L
i=1 1(si = s ∧ ti = t), mtu =

∑L
i=1 1(ti = t ∧ ui = u),

ptv =
∑L
i=1 1(ti = t ∧ vi = v), qtc =

∑L
i=1 1(ti = t ∧ ci = c).

(2)

where 1(.) denotes the indicator function. Note that

the integration over hidden parameters θ and φ in Eq.

1 can be computed efficiently since we use conjugate

priors in each elementary distribution. To simplify the

presentation, the mathematical derivations have been

omitted here but are available in the appendix.

5.2 Inference and parameter estimation

The proposed probabilistic model defines relations be-

tween observed variables and latent variables. These re-

lations are parameterized by φ and θ; for instance φ1t

tells which users are likely to appear as observer in the

interaction of type t, φ2t tells which users are likely to

be observed in the interaction of type t, and φ3t tells

which time slots in the weekly calendar interactions of

type t are likely to occur. Discovering the interaction

type is the process of fitting model parameters to ob-

served data, and then visualizing the learned patterns

based on the model parameters.

The problem of finding optimum model parameters

is intractable in general. However, a wide variety of ap-

proximation techniques can be used, including Laplace

approximation, variational approximation, and Markov

chain Monte Carlo (MCMC) [14]. In this work, we learn

the model using collapsed Gibbs sampling [16], which

samples the posterior distribution P (t|u,v, c;α,β) from

the conditional distribution P (ti = t|u,v, c, t¬i;α,β)

where t¬i denotes the type assignment for all links but

the ith link. Although our method works for general

Dirichlet priors, we assume symmetric Dirichlet priors

to simplify the presentation, and we denote the scalar

value of elements of the two vectors α,β by α, β. Omit-

ting derivation details for space reasons, the Gibbs sam-

pling equation can be written by :

P (ti = t|u,v, c, t¬i;α,β) ∝
(α+ n¬isit)

β+m¬itui∑
u(β+m¬itu)

β+p¬itvi∑
v(β+p¬itv )

β+q¬itci∑
c(β+q¬itc )

,
(3)

where n¬ist ,m
¬i
tui , p

¬i
tvi and q¬itci are the counts for nst,mtui , ptvi

and qtci without considering the link i. For instance,

n¬ist =
∑
j 6=i 1(sj = s and tj = t). Given the interac-

tion type assignments for all links, we can estimate the

model parameters as follows:

θst = β+nst∑
t′ (β+nst′ )

, φ2tv = β+ptv∑
v′ (β+ptv′ )

,

φ1tu = β+mtu∑
u′ (β+mtu′ )

, φ3tc = β+qtc∑
c′ (β+qtc′ )

.
(4)

Algorithm 1 GroupUs learning algorithm
1: input: interaction links u,v, c, s
2: output: model parameters, θ, φ, and interaction type for each

link,t.
3: initialization: Randomly assign interaction type ti for each link

i
4: Compute the count nst,mtu, ptv, qtc according to Eq. 2
5: while not converged do
6: for each link i do
7: s := si. Decrement the counts:

nsti --;mtiui --; ptivi --; qtici --;

8: Sample the interaction type assigment ti according to

P (ti = t|t¬i,u,v, c;α, β)

∝ (α+ nst)
β+mtui∑
u(β+mtu)

β+ptvi∑
v(β+ptv)

β+qtci∑
c(β+qtc)

9: Updating the counts: nsti++;mtiui++; ptivi++; qtici++;

10: end for
11: end while
12: Compute θ, φ according to Eq. 4

The full learning algorithm is summarized in Algo-

rithm 1.The algorithm starts with random interaction

type assignments t for the set of links. Then, the inter-

action type for each link is resampled iteratively until

convergence. We maintain the counts nst,mtu, ptv, qtc
over iterations, which are updated after each sampling

step so that each iteration requires only a few compu-

tations. Note that in the equation at line 8 - Algorithm

1 is equivalent to sampling equation in Eq. 3, since the

counts were decreased just before the sampling step and

correspond to the counts without considering the link

i. After the sampling process, the algorithm outputs

the interaction type for each link as well as estimates

of the parameters θ, φ. The overall complexity of Algo-

rithm 1 is O(KLT ) where K is the number of sampling

iterations (we set K = 100 in our experiments). Com-

pared to previous works [38,25] for which the complex-

ity grows superlinearly (quadratically or sometimes ex-

ponentially) with the problem size, GroupUs scales well

with the number of links and the number of interaction

types, and hence it can learn from large-scale data in

linear time.

5.3 Interpreting interaction types

Our method represents interaction types in a proba-

bilistic fashion. In most applications, one may want

to know what a discovered interaction type represents

in real life. This section shows how we interpret the

learned model by considering two fundamental ques-

tions for each discovered interaction type: (1) Who are

involved?, (2) Is the interaction happening at work?.

These questions are discussed in the following.

Inferring the participants of a given type of interaction.

The learned parameter φ1t tells us the probability of
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Algorithm 2 Finding prominent users.
1: Input: P (u|t)
2: Output: most prominent users.
3: Sort users by P (u|t)
4: for n = 1 to #users do
5: Compute Kullback Leibler divergence KL(n) between:

Pnproto : the prototype distribution with n-top participants

P (u|z) : the input distribution
6: end for
7: n∗ = argmax KL(n)
8: Return the list of top n∗ users.

observing user u given the type of interaction t, and

thus we can answer the first question based on φ1t. Due

to the variability of group size, we need a method to

extract the top users who are likely to participate in a

given interaction type. A simple method is to take the

minimal set of top users that cover at least X% (e.g.,

90%) of the probability mass. However, this method is

quite sensitive to the threshold and might fail to find

the relevant members of a group.

Our solution is described in Algorithm 2. The algo-

rithm takes as input the conditional distribution over

users given an interaction type P (u|t) to determine the

list of prominent users in the interaction as follows.

First, the list of users is sorted by their probabilities.

Then the algorithm finds the best segmentation of the

list of users into participants and non-participants. As

scoring function for a given segmentation with n promi-

nent users, we use Kullback Leibler divergence between

a prototype distribution with n users and the input dis-

tribution. The prototype distributions are defined based

on the ideal case where the top n users have equal prob-

abilities, and the probabilities of all others are zero.

Formally:

Pnproto(u) =

{
1/n if u belong to the top n users

0 otherwise.
(5)

Figure 6 shows an input distribution and three pro-

totype distributions Pnproto. Among these prototype dis-

tributions, P 4
proto has lowest the Kullback Leibler di-

vergence to the input distribution, and so the list of

dominant users is the top 4 users.

Office interaction vs personal interaction. A person may

have many social interaction types in their daily life.

Based on the temporal context, we can infer the mean-

ing of the discovered interaction types. For instance, a

work interaction should mainly occur on working hours

and not on weekend days. Implementing this idea in

our model is particularly easy given the learned param-

eters. Let H be the set of office-hour time slots, i.e.

from 9am-6pm Monday to Friday. The probability that

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

input distribution

users

p
ro

b
a

b
ili

ty

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

Prototype distribution (n=3 KL=0.361157)

users

p
ro

b
a
b
ili

ty

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

Prototype distribution (n=4 KL=0.108513)

users
p
ro

b
a
b
ili

ty

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

Prototype distribution (n=5 KL=0.280076)

users

p
ro

b
a
b
ili

ty

Fig. 6 The input distribution and three prototype distribu-
tions P 3

proto, P
4
proto and P 5

proto. Optimal segmentation can
be found by comparing the input distribution with prototype
distributions. Kullback Leibler divergence is low for the pro-
totype distribution that is close to the input distribution.

an interaction of type t occurs during working time can

be computed as:

P (H|t) =
∑
c∈H

P (c|t) =
∑
c∈H

φ3tc. (6)

We define an office interaction as an interaction

type t for which P (H|t) > T0 where T0 expresses the

certainty of t being an office interaction. As we will see

in Section 6.2, this information is helpful to visualize

data or for further analysis. Clearly, if P (H|t) is high

then it is likely that the interaction type t corresponds

to an office interaction.

6 Discovering interaction types between

participants in the data collection campaign.

We first apply the GroupUs algorithm to the Bluetooth

proximity data in order to discover emergent group in-

teraction patterns. For our experiments, we set the slice
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duration to 10 minutes which is a good tradeoff between

link detection rate and temporal resolution. With this

setting, we expected that the model can capture impor-

tant events for context-aware applications. Note, how-

ever, that the time scale parameter is tunable, and it

depends on the data and the goal of the analysis, for

which we might be interested in extended time scales

such as months or longer periods. Clearly, the choice of

the number of interaction types, T , also influences the

results. A small value of T leads to coarse interaction

patterns and a large value of T produces fine-grained re-

sults. After manually studying the results with different

settings of T (varying from 10 to 100), we chose T = 40

for reporting typical discovered interaction types, which

produces a few interaction types per users (note that

an interaction type involves generally many users). Fi-

nally, for other hyperparameter, we set α = 0.1, β = 0.1

and T0 = 0.5.

Starting from random initialization, our algorithm

refines model parameters in each Gibbs sampling itera-

tion. We observed that the convergence is reached after

about 30 iterations. Using the classification method in

Section 5.3, we found 15 office interaction types and 25

family interaction types. First we highlight some typical

examples of discovered interaction types by visualizing

the learned model parameters. We then study the evo-

lution of interactions over time in real events.

6.1 Discovered interaction types

We start with some examples of discovered interaction

types, visualized with the pairwise matrix of interaction

(φ1t
ᵀφ2t) and the distribution of temporal context over

the weekly calendar (φ3t) in Figure 7, left and right

columns, respectively. The first two interaction types

Fig. 7(a-b) correspond to working place interactions,

where these groupings (the first one involving users 1-3,

and the second one involving users 7-11) clearly corre-

spond to the working place ground truth (compare with

Fig. 1 (bottom)). Note that these interactions spread

over working times but have low probability at lunch

time, which indicate that these co-workers do not eat

together often. The low probabilities for some days of

the week reflect the fact that some workers telecommute

and so do not come to the organization every day. In the

two next interaction types Fig. 1(c-d), more people are

involved and the temporal context reveals that these

are not daily interactions. Figure 7(c) corresponds to

a weekly group meeting on Fridays followed by lunch

that is correctly discovered by the algorithm. Note that

this group is spread over 4 different offices, and some of

its members also appear as the most prominent users

of other discovered interaction types (e.g., Figure 7(b))
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Fig. 7 Typical discovered interactions visualized with pair-
wise interaction matrix (φ1t

ᵀφ2t) between users, shown in
left column, and the distribution of temporal context (φ3t),
shown in right column.
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Fig. 8 The evolution of the model parameters associated with two interaction types (28 and 37) with respect to the number
of iterations of Gibbs sampling.

which highlights the probabilistic advantage of Grou-

pUs -people belong to multiple groups. The interaction

type in Figure 7(d) reflects a weekly meeting of the

whole organization on Tuesday afternoons, where all

members are expected to attend. This is an example of

a highly localized type of event that is correctly inferred

by GroupUs. Note that some occasional interactions be-

tween workers are also assigned to this type of global

interaction, explaining why there is some “noise” in the

weekly calendar. Finally, we show two examples of fam-

ily interaction in Figure 7(e-f). Note that, while many

family interaction types were discovered, they have sim-

ilar temporal context and differ mainly in the set of

involved users.

Finally, to illustrate the convergence rate of Gibbs

sampling, Fig. 8 shows the parameters of the model

(φ1t
ᵀφ2t and φ3t) for 2 interaction types over various

iterations (one iteration corresponds to one pass over

the data). In the first iteration, the interaction type t

is randomly assigned, therefore, the model parameters

are similar for different interaction types. The param-

eters are then updated after each Gibbs sampling iter-
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ation and converges to a stable state. As can be seen

in Fig. 8, there was only a small change in model pa-

rameters between iteration 20 and 30, indicating that

the algorithm converged after about 30 Gibbs sampling

iterations.

6.2 Interaction over time

Although our method does not take into account abso-

lute calendar temporal information (beyond the weekly

schedule), we can nonetheless study the evolution of

proximity interactions over time. Figure 9 plots the
number of work interactions for each day of the data

collection period. Office interactions were inferred ac-

cording to the method described in Section 5.3. As can

be seen, we can observe some emergent events from the

plot such as Christmas vacation (Dec 23 - Jan 4), Easter

weekend (April 2 - 5), and other holidays. All of these

are characterized by lower values in the 1-D sequence

in Figure 9. The plot also shows big events of the orga-

nization. For instance, the highest peak occurring on

December 1, 2009, was actually the annual party of

the organization where people spend an afternoon and

evening together.

We also compare the periodicity of office interac-

tions with personal interactions. Figure 10 shows the

autocorrelation of these two kinds of interactions for the

population of 25 workers. As can be seen, the weekly

periodicity of work interaction is very clear, while the

weekly periodicity of family interaction is quite weak.

Note that this analysis offers an automatic way to dis-

tinguish between periodic group interaction (such as
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1
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Fig. 10 Autocorrelation of family interaction (blue) and of-
fice interaction (red). The x-axis corresponds to days, y-axis
corresponds to autocorrelation value

weekly meetings) and occasional group interactions. These

results confirm early findings by Eagle and Pentland

[11] but on a different organization and with a robust

probabilistic approach that significantly reduces the pres-

ence of noise in Bluetooth data.

Interestingly, we also observed that the evolution

of each interaction type over time also offers additional

features besides the basic weekly temporal context. Fig-

ure 11 shows the evolution of some specific interaction

types over time by plotting the number of links assigned

to each interaction types for each day. For instance, the

plot in Figure 11-(b) corresponds to some weekly events

that occurred on Thursdays for only a few months in

reality (mainly in spring and early summer). The time

dimension of the interaction type number 20 (Figure 11-

(c)) clearly indicates that these are truly unique events

(e.g., party). The GroupUs model can infer not only

the emergent interaction types of the network, but also

when these interactions occurred (or not) in the past.

7 Including unknown Bluetooth devices in the

data

Bluetooth sensors have the ability to detect other Blue-

tooth devices in proximity, as long as these devices are

in discoverable mode. This is a usual situation in prac-

tice, where many unknown devices may be observable in

public spaces, public transport, etc. In this section, we

include these unknown devices in the analysis, thus con-

sidering an extended population of both volunteer data

providers and others. While more data provides the op-

portunity to infer more accurately social context, one

key challenge is to work with many unknown devices.

Device filtering. On the collected data, we found

that each of our users observed a huge number of Blue-

tooth devices during the data collection campaign (in

the order of thousands). These huge numbers come mainly

from strangers’ devices which were observed only once



Human Interaction Discovery in Smartphone Proximity Networks 13

0

10

20

30

40

50

60

70

80

90

Oct 
09

Nov
 0

9

Dec
 0

9

Ja
n 

10

Feb
 1

0

M
ar

 1
0

Apr
 1

0

M
ay

 1
0

Ju
n 

10

Ju
l 1

0

Aug
 1

0

Sep
 1

0

Oct 
10

lin
ks

users

us
er

s

interaction N. 32 

 

 

10 20 30 40

5

10

15

20

25

30

35

40

0.05

0.1

0.15

0.2

Temporal context

 

 

Mon Tue Wed Thu Fri Sat Sun

1

4

8

12

16

20

24
1

2

3

4

5

6

7

8

9

x 10−3

(a) Daily interaction between two people outside work.

0

200

400

600

800

1000

Oct 
09

Nov
 0

9

Dec
 0

9

Ja
n 

10

Feb
 1

0

M
ar

 1
0

Apr
 1

0

M
ay

 1
0

Ju
n 

10

Ju
l 1

0

Aug
 1

0

Sep
 1

0

Oct 
10

lin
ks

users

us
er

s

interaction N. 5 

 

 

10 20 30 40

5

10

15

20

25

30

35

40

0.005

0.01

0.015

0.02

Temporal context

 

 

Mon TueWed Thu Fri Sat Sun

1

4

8

12

16

20

24

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) Weekly events that occurred for a few months.

0

1000

2000

3000

4000

5000

Oct 
09

Nov
 0

9

Dec
 0

9

Ja
n 

10

Feb
 1

0

M
ar

 1
0

Apr
 1

0

M
ay

 1
0

Ju
n 

10

Ju
l 1

0

Aug
 1

0

Sep
 1

0

Oct 
10

lin
ks

users

us
er

s

interaction N. 20 

 

 

10 20 30 40

5

10

15

20

25

30

35

40

2

4

6

8

10

12

x 10−3 Temporal context

 

 

Mon TueWed Thu Fri Sat Sun

1

4

8

12

16

20

24

0.05

0.1

0.15

0.2

(c) Special event.

0

50

100

150

200

250

300

Oct 
09

Nov
 0

9

Dec
 0

9

Ja
n 

10

Feb
 1

0

M
ar

 1
0

Apr
 1

0

M
ay

 1
0

Ju
n 

10

Ju
l 1

0

Aug
 1

0

Sep
 1

0

Oct 
10

lin
ks

users

us
er

s

interaction N. 2 

 

 

10 20 30 40

5

10

15

20

25

30

35

40

0.02

0.04

0.06

0.08

0.1

0.12

Temporal context

 

 

Mon TueWed Thu Fri Sat Sun

1

4

8

12

16

20

24

0.005

0.01

0.015

0.02

0.025

(d) Normal interaction at work.

Fig. 11 Evolution of some interaction types over time. The left column shows the number of links observed per day for each
interaction type. The center and right columns show the model parameters of the interaction type.

or a few times. As our goal is to discover regular pat-

terns, we selected for this analysis only unknown de-

vices which were observed frequently. For each device,

we computed the weekly observing frequency as the

fraction of the number of days that we observed the

BT device and the total number of sensing weeks. By

filtering out devices that were observed least than once

a week, we get a set of 120 additional devices. Figure 12

shows the weekly observing frequency for the set of BT

devices in the extended data set. For each device, we

also report the average observing time computed on the

set of days that the device was observed. In order to de-

termine the type of these unknown Bluetooth devices,

we also utilized the location information derived from

GPS data. Since the GPS and BT data collection were

not synchronized, we aggregated GPS traces that were

closest in time (within a 1-minute time window), to the

time-instances when a given Bluetooth device was de-
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Fig. 12 Observing frequency of observed BT devices and
participants’ devices.

tected. This gave us a list of GPS location data points

at which the BT device was likely to be detected. Inter-

estingly, most of these frequently observed devices are

found in multiple places, meaning that they are mobile

devices (e.g., phone, laptop) while a few devices were

found at only one place.

We used the same GroupUs setting as in the pre-

vious section for the extended data set with 160 ob-

served devices (40 volunteer users and 120 extra un-

known Bluetooth devices). It is not surprising that the

algorithm found similar interaction types as the pre-

vious sections. For instance, the interactions in Figure

13-(a,b) are an extended version (with some extra un-

known Bluetooth devices in the background) of some

of the interaction types discovered previously. Interest-

ingly, the model was able to discover some new types

of interactions, which involve only one observer and

his/her frequently observed Bluetooth devices. Figure

13-(c) corresponds to an interaction pattern at home

(since it occurred every night), whose temporal context

is very special compared to the interaction types we dis-

covered from the original 40-person population. Finally,

Figure 13-(d) shows an interaction type discovered for a

user (number 4) whose office is not close to the offices of

other users in the original population, but who consis-

tently appears in proximity to several unknown devices

(labeled 71, 118, 119) in office hours. Note that the two

last interaction types cannot be discovered without ex-

tending the initial population with the list of nearby

unknown Bluetooth devices. Therefore, the key role of

including nearby Bluetooth devices for practical uses of

GroupUs is to complete the list of possible interaction

types discovered for each user.

8 Objective evaluation

In this section, we evaluate numerically our model by

studying the predictive performance on unseen data

and the retrieval performance. First, we consider the

likelihood of the model on unseen data as a measure-

ment, and compare GroupUs with a recently proposed

model. Subsequently, we show how to use the ground

truth group meeting schedule for understanding the

performance of GroupUs on retrieval task.

8.1 Predictive performance

Prediction is a very important task in context-aware

mobile applications [6,37,42]. Our main goal is to val-

idate the learning capability of the proposed model by

computing the likelihood on unseen data. For this rea-

son, we do not consider a real-time prediction task nei-

ther compare GroupUs with predictive models such as

ARIMA [27]. For the evaluation of predictive perfor-

mance, the last two months of data for the 40-person

population are used for testing, and we learn the model

with different training sets, varying from 2 to 10 months

of data from all users, starting from the most recent

data and adding data backwards in time.

As a baseline, we adapted the Marginal Product

Mixture Model (MPMM) which was proposed recently

for analyzing phone call record data [9]. As discussed in

Section 2, this model also aims at finding latent classes

of interaction, but it can only infer the latent class from

a single links between pairs of nodes in a graph. On the

contrary, our model infers the interaction type of a user

based on his interactions with others and also based on

the interactions among other people in the group.

Note that GroupUs model has two sets of parame-

ters: (φ1t, φ3t, φ3t) for the discovered interaction types,

and θs for each slice s in the training data. To compute

the likelihood of unseen data, we first need to estimate

the parameter θs for each unseen slice. This can be done

using a process similar to Gibbs sampling in Algorithm

1, except that we do not need to resample interaction

type t for links that were in the training data. The

likelihood of test data ū, v̄, c̄, s̄ given the GroupUs pa-

rameters φ,θ is computed as:

P (ū, v̄, c̄, s̄|φ,θ) =
∑
t̄

P (ū, v̄, c̄, s̄, t̄|φ,θ) (7)

=
∏
i=|t̄|

∑
t=1..T

φ1tūiφ2tv̄iφ3tc̄iθs̄it (8)

where t̄ denote the interaction type assignment for the

set of test links. Since t is unknown, we take the sum

over all possible assignments t̄. This sum can be factor-
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Fig. 13 Examples of discovered interaction types when unknown Bluetooth devices are included in the analysis.

ized, so that it can be computed efficiently as given in

Eq. (8).

Figure 14 plots the test log-likelihood for different

training sizes. As can be seen, GroupUs clearly out-

performs the MPMM model in term of predictive per-

formance due the more accurate modeling assumptions

of our model. In general, the more training data, the

more accurate the inferences of GroupUs can be, but

note that using “too old” data (see e.g., the case of

10 months of training data in Fig. 14) might not help

improving predictive performance.

8.2 Retrieval performance on real events

In this section, we use the limited grouth truth of group

meeting data (which was used in Section 3.3 for evalu-

ating the robustness of Bluetooth data) for validating

how well GroupUs recognize these meetings. The ex-

periment is conducted as follows. First, we select an
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Fig. 14 Log-likelihood on the test data for varying size of
training data.

interaction type which most resembles the real group

meeting based on the set of participants. Then we re-

trieve the set of “significant occurences” of the selected

interaction type. Finally, we evaluate the retrieval per-

formance by comparing the list of dates of actual (re-

ported) meetings and the list of dates retrieved. First,

we describe how to retrieve significant occurences of a

given interaction type. Then we analysis the results on

retrieval performances of GroupUs.

Retrieving significant occurences of an inter-

action type. Thus far, we have seen how GroupUs

model assigns an interaction type to each link. We have

found that if many links in a group of users are as-

signed the same interaction type, this interaction type

is more likely to have occurred in real life. If there are

n users who are in proximity, in a given time slice, then

there should be n×(n−1) links connecting them. How-

ever, since Bluetooth scans do not discover all devices in

proximity (in Section 3.3, we found that in our dataset,

the detection rate was found to be about 0.5), some of

the links might be absent from the group. Further, even

though the current slice belongs to a certain interaction

type pertaining to a group event, some of the partici-

pants might be missing from the group event, causing

these links to go missing. Hence, in order to determine

the presence of interaction type t for each slice of time

s, we define the link rate τlink as the ratio of the num-

ber of observed links to the expected number of links

for that interaction type, and the user rate τuser as the

ratio of the number of people actually detected by the

Bluetooth scan to the number of participants, who are

expected to be a part of the interaction as:

τlink = l
m×(m−1)

τuser = m
n

where l is the number of links assigned to the considered

interaction type, m is the number of people involved in

the set of l links, and n is the number of prominent

participants of the interaction type t defined in Section

5.3. For example, considering the interaction type #5

in Fig. 7(a), there are n = 3 prominent participants.

Assume that in a slice s, there were 5 directed links of

type #5 between these 3 people, then the link rate of

interaction type #5 in slice s is τlink = 5/6 = 0.83 and

the participant rate is τuser = 3/3 = 1.

Finally, we determine whether the group event of

interaction type t actually happened in slice s using

the two thresholds λlink and λuser, and the following

conditions:
τlink ≥ λlink
τuser ≥ λuser

Among the 40 discovered interaction types, for the

evaluation we selected the one who most resembles the

real group meeting in the organization for which we

known the exact calendar (which was used in Section

3.3 for evaluating the robustness of Bluetooth data),

based on the set of participants. Then, we use the above

method to retrieve the list of prominent slices where

the event is likely to have occurred, and then map the

list of slices to the corresponding list of calendar days

to compare it with the actual list of days when the

meetings occurred.

Evaluation. The retrieval performance is evaluated

in terms of precision, recall, and F1 measure for varying

threshold values. Let d be the list of calendar dates re-

trieved with the selected interaction type and d∗ be the

actual list of dates when the meetings occurred (there

were 18 meeting dates). The three measures were com-

puted as follows:

precision = |d∩d∗|
|d|

recall = |d∩d∗|
|d∗|

F1 = 2 · recall · precisionrecall + precision

Intuitively, precision is the fraction of retrieved dates

that belong to the list of 18 meetings, and recall is

the fraction of actual meeting dates that are retrieved.

Note that the model might reach a high precision by

retrieving only a few most likely dates, but some meet-

ing dates will probably missed. Also, it is trivial (but

useless) to achieve recall of 100% by returning all calen-

dar dates. Hence, F1-score is usually used for evaluat-

ing retrieval task in practice, which can be viewed as a

tradeoff between precision and recall. Figure 15 shows

the results for various threshold combinations. It is in-

teresting to note that the best threshold λlink (in terms

of F1 score) coincides with the Bluetooth detection rate

(0.5). Given that the number of participant in real data

varied widely from 5 to 10, the best value for λuser is

also quite low (0.6).

Using the best threshold combination (λlink = 0.5,

λuser = 0.6), the method retrieved a list of 22 calen-

dar dates, of which 12 belonged to the list of 18 ground
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truth meetings. Looking at the 6 meetings that were not

retrieved, we found that the τuser for the corresponding

dates are actually low, suggesting that some people did

not carry their phone to the meeting or they were ab-

sent from the meetings in reality. Despite the presence

of these reality noises, the GroupUs model could learn

and retrieve the set of 12 other meeting dates correctly

the selected interaction type alone. Note that besides

the regular group meetings, there were also some oc-

casional meetings or activities that were not reported

in the list of 18 meetings. This would explain also why

GroupUs retrieved 10 additional dates on which there

were group interactions similar to the group meetings

(with τlink ≥ 0.5 and τuser ≥ 0.6). Note, however, that

we did not have ground truth data for these events and

it is not possible to verify them automatically.

9 Conclusion

In this paper, we have presented and analyzed a prob-

abilistic model, called GroupUs, designed to discover

interaction types from large-scale dyadic data such as

proximity, phone call network, or email network. Us-

ing a Bayesian framework, GroupUs infers the latent

meaning of each interaction based on the set of ob-

served interactions over slices of time. Importantly, the

model exhibits some desirable properties such as scal-

ability to the volume of data, and the ability to deal

with noisy data. Our analysis was conducted on Blue-

tooth proximity data involving 40 users over 12 months

of real-life, and we also show how the inclusion of ob-

served but unknown Bluetooth devices can enrich the

automatic inference of social context. We objectively

evaluated our method by studying predictive perfor-

mance, showing a significant advantage over a recently

proposed model. Using only Bluetooth data, we showed

that GroupUs can infer relevant interactions such as

office interactions and family interactions in an unsu-

pervised manner. One could incorporate other types of

data (e.g., GPS or other location data) into GroupUs in

order to enrich the description of the context of specific

interactions, therefore providing more details about the

discovered interaction types. We will pursue this as part

of future work. While our model is generic, it has some

hyperparameters (i.e. the number of interaction types

T and the slice duration) which depend on the appli-

cation. Finding these hyperparameters automatically

from the data (by for example, using Chinese restau-

rant process) is also an interesting direction to explore.
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Appendix : mathematical derivation of GroupUs

learning algorithm.

Begin with the joint distribution:

P (u,v, c, s, t;α,β)

=
∫
θ
P (t|θ)P (θ;α)∂θ

×
∫
φ
P (u|t, φ1)P (v|t, φ2)P (c|t, φ3)P (φ;β)∂φ

=
∫
θ

(∏
s

∏
t θ
nst
st

∏
s

∏
t θ
α−1
st

B(α)

)
∂θ

×
∫
φ1

(∏
t

∏
u φ

mtu
1tu

∏
t

∏
u φ

β−1
1tu

B(β)

)
∂φ1

×
∫
φ2

(∏
t

∏
v φ

mtv
2tv

∏
t

∏
v φ

β−1
2tv

B(β)

)
∂φ2

×
∫
φ3

(∏
t

∏
c φ

mtc
3tc

∏
t

∏
c φ

β−1
3tc

B(β)

)
∂φ3

=
∏
s

∫
θs

∏
t θ
α+nst−1
st

B(α) ∂θs ×
∏
t

∫
φ1t

∏
u φ

β+mtu−1
1tu

B(β) ∂φ1t

×
∏
t

∫
φ2t

∏
v φ

β+ptv−1
2tv

B(β) ∂φ2t ×
∏
t

∫
φ3t

∏
c(φ3tc)

β+qtc−1

B(β) ∂φ3t

where the term inside integration has similar form as

Dirichlet distribution. Note that
∫
x

∏
i x
α−1
i

B(α) ∂x = 1, we

have:

P (u,v, c, s, t;α,β)

=
∏
s
B(α+ns)
B(α) ×

∏
t
B(β+mt)
B(β) ×

∏
t
B(β+pt)
B(β) ×

∏
t
B(β+qt)
B(β)

=
∏
s
B(α+ns)
B(α) ×

∏
t
B(β+mt)
B(β)

B(β+pt)
B(β)

B(β+qt)
B(β)

The conditional probability can be computed effi-

ciently based on the fact that they are proportional to

the joint probability:

P (ti|u,v, c, t¬i;α, β)

= P (u,v,c,t;α,β)
P (u,v,c,t¬i;α,β)

∝ P (u,v,c,t;α,β)
P (u¬i,v¬i,c¬i,t¬i;α,β)

∝
∏
s
B(α+ns)
B(α)

×
∏
t
B(β+mt)
B(β)

B(β+pt)
B(β)

B(β+qt)
B(β)∏

s

B(α+n¬is )

B(α)
×
∏
t

B(β+m¬it )

B(β)

B(β+p¬it )

B(β)

B(β+q¬it )

B(β)

∝ B(α+nsi )

B(α+n¬isi
) ×

B(β+mti
)

B(β+m¬iti
)
× B(β+pti )

B(β+p¬iti
)
× B(β+qti )

B(β+q¬iti
)

∝ α+n¬isiti∑
t(α+n¬isit

)
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u(β+m¬itiu

)

β+p¬itivi∑
v(β+p¬itiv

)

β+q¬itici∑
c(β+q¬itic

)

Since the denominator
∑
t(α+ n¬isit) is invariant for

any value of ti, we obtain the final sampling equation :

P (ti|u,v, c, t¬i;α, β) ∝ (α+ n¬isiti)
β+m¬itiui∑
u(β+m¬itiu

)

× β+p¬itivi∑
v(β+p¬itiv

)
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)
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