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Human-interpretable image features derived from
densely mapped cancer pathology slides predict
diverse molecular phenotypes
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Michael C. Montalto1, Aditya Khosla1, Ilan N. Wapinski1, Andrew H. Beck 1,5✉, Hunter L. Elliott1,5 &

Amaro Taylor-Weiner1,5✉

Computational methods have made substantial progress in improving the accuracy and

throughput of pathology workflows for diagnostic, prognostic, and genomic prediction. Still,

lack of interpretability remains a significant barrier to clinical integration. We present an

approach for predicting clinically-relevant molecular phenotypes from whole-slide histo-

pathology images using human-interpretable image features (HIFs). Our method leverages

>1.6 million annotations from board-certified pathologists across >5700 samples to train

deep learning models for cell and tissue classification that can exhaustively map whole-slide

images at two and four micron-resolution. Cell- and tissue-type model outputs are combined

into 607 HIFs that quantify specific and biologically-relevant characteristics across five

cancer types. We demonstrate that these HIFs correlate with well-known markers of the

tumor microenvironment and can predict diverse molecular signatures (AUROC

0.601–0.864), including expression of four immune checkpoint proteins and homologous

recombination deficiency, with performance comparable to ‘black-box’ methods. Our HIF-

based approach provides a comprehensive, quantitative, and interpretable window into the

composition and spatial architecture of the tumor microenvironment.
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W
hile manual microscopic inspection of histopathology
slides remains the gold standard for evaluating the
malignancy, subtype, and treatment options for

cancer1, pathologists and oncologists increasingly rely on mole-
cular assays to guide personalization of cancer therapy2. These
assays can be expensive and time-consuming3 and, unlike his-
topathology images, are not routinely collected, limiting their use
in retrospective and exploratory research. Manual histological
evaluation, on the other hand, presents several clinical challenges.
Careful inspection requires significant time investment by board-
certified anatomic pathologists and is often insufficient for
prognostic prediction. Several evaluative tasks, including diag-
nostic classification, have also reported low inter-rater agreement
across experts and low intra-rater agreement across multiple
reads by the same expert4,5. Furthermore, manual assessment of
the expression of specific genes from histopathology has not to
our knowledge been demonstrated.

Modern computer vision methods present the potential for
rapid, reproducible, and cost-effective clinical and molecular
predictions. Over the past decade, the quantity and resolution of
digitized histology slides has dramatically improved6. At the same
time, the field of computer vision has made significant strides in
pathology image analysis7,8, including automated prediction of
tumor grade9, mutational subtypes10, and gene expression sig-
natures across cancer types11–13. In addition to achieving diag-
nostic sensitivity and specificity metrics that match or exceed
those of human pathologists14–16, automated computational
pathology can also scale to service resource-constrained settings
where few pathologists are available. As a result, there may be
opportunities to integrate these technologies into the clinical
workflows of developing countries17.

However, end-to-end deep learning models that infer outputs
directly from raw images present significant risks for clinical
settings, including fragility of machine learning models to
population shift between training and real-world application,
technical variability in sample preparation and analysis, and other
unpredictable failure modes18–20. Many of these risks stem from
lack of interpretability of “black-box” models21,22. “Black-box”
model predictions are difficult for users to interrogate and
understand, leading to user distrust and inability to diagnose
failure modes or identify reliance on confounding correlates.
Without reliable means for understanding when and how vul-
nerabilities may become failures, computational methods may
face difficulty achieving widespread adoption in clinical
settings23,24.

One emerging solution has been the automated computation of
human-interpretable image features (HIFs) to predict clinical
outcomes. HIF-based prediction models often mirror the
pathology workflow of searching for distinctive, stage-defining
features under a microscope and offer opportunities for pathol-
ogists to validate intermediate steps and identify failure points. In
addition, HIF-based solutions enable incorporation of histological
knowledge and expert pixel-level annotations, which increases
predictive power. Studied HIFs span a wide range of visual fea-
tures, including stromal morphological structures25, cell and
nucleus morphologies26, shapes and sizes of tumor regions27,
tissue textures28, and the spatial distributions of tumor-
infiltrating lymphocytes (TILs)29,30.

In recent years, the relationship between the tumor micro-
environment (TME) and patient response to targeted therapies
has been made increasingly clear31,32. For instance, immuno-
supportive phenotypes, which exhibit greater baseline antitumor
immunity and improved immunotherapy response, have been
linked to the presence of TILs and elevated expression of pro-
grammed death-ligand 1 (PD-L1) on tumor-associated immune
cells. In contrast, immuno-suppressive phenotypes have been

linked to the presence of tumor-associated macrophages and
fibroblasts, as well as reduced PD-L1 expression32–34. HIF-based
approaches have the potential to provide an interpretable window
into the composition and spatial architecture of the TME in a
manner complementary to conventional genomic approaches.
While prior HIF-based studies have identified many useful fea-
ture classes, most have been limited in scope. Studies to date often
involve a single cell or tissue type; none have explored features
that combine both cell and tissue properties. In addition, the
majority of reported HIFs have only been vetted on a single
cancer type, often non-small cell lung cancer (NSCLC).

In this research study, we present a computational pathology
pipeline that can integrate high-resolution cell- and tissue-level
information from whole-slide images (WSIs) to predict treat-
ment-relevant, molecularly derived phenotypes across five dif-
ferent cancer types. Our approach combines the predictive power
of deep learning with the interpretability of HIFs, which enables
explicit incorporation of prior knowledge and achieves perfor-
mance comparable to end-to-end models. We introduce a diverse
collection of 607 HIFs ranging from simple cell (e.g., density of
lymphocytes in cancer tissue) and tissue quantities (e.g., area of
necrotic tissue) to complex spatial features capturing tissue
architecture, tissue morphology, and cell–cell proximity. In this
study, we demonstrate that such features can generalize across
cancer types and provide a quantitative and interpretable link to
specific and biologically relevant characteristics of each TME.

Results
Dataset characteristics and fully automated pipeline design. In
order to test our approach on a diverse array of histopathology
images, we obtained 2917 hematoxylin and eosin (H&E)-stained,
formalin-fixed, and paraffin-embedded (FFPE) WSIs from The
Cancer Genome Atlas (TCGA), corresponding to 2634 distinct
patients. These images, each scanned at either ×20 or ×40 mag-
nification, represented patients with skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), breast cancer
(BRCA), lung adenocarcinoma (LUAD), and lung squamous cell
carcinoma (LUSC) from 95 distinct clinical sites. These five
cancer types were selected given their relevance to immuno-
oncology therapies and their image availability in TCGA. We
summarize the characteristics of TCGA patients in Supplemen-
tary Table 1. To supplement the TCGA analysis cohort, we
obtained 4158 additional WSIs for the five cancer types to
improve model robustness.

To maximize capture of this information, we excluded images
(n= 91, 3.1%) if they failed basic quality control checks as
determined by expert pathologists. Criteria for quality control
were limited to mislabeling of cancer type, excessive blur,
or insufficient staining. For both TCGA and additional
WSIs, we collected cell- and tissue-level annotations from a
network of pathologists, amounting to >1.4 million cell-type
point annotations and >200,000 tissue-type region annotations
(Supplementary Table 2).

We used the resulting slides and annotations to design a fully
automated pipeline to extract HIFs from these slides (summar-
ized in Fig. 1a). First, we trained deep learning models for cell
detection (cell-type models) and tissue region segmentation
(tissue-type models). Training and validation of models was
conducted on a development set of 1561 TCGA WSIs,
supplemented by the 4158 additional WSIs (n= 5719) (Fig. 1b).
Next, we exhaustively generated cell- and tissue-type model
predictions for 2826 TCGA WSIs, which were then used to
compute a diverse array of HIFs for each WSI. Finally, we trained
classical linear machine learning models to predict treatment-
relevant molecular expression phenotypes using these HIFs.
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Fig. 1 Dataset and pipeline overview. a Methodology for extracting human-interpretable image features (HIFs) from high-resolution, digitized images

stained with hematoxylin and eosin (H&E). b Summary statistics on the number of whole-slide images (WSIs), distinct patients, and annotations curated

from The Cancer Genome Atlas (TCGA) and additional datasets. c Unprocessed portions of stomach adenocarcinoma (STAD) H&E-stained slides

alongside corresponding heatmap visualizations of cell- and tissue-type predictions. Slide regions are classified into tissue types: cancer tissue (red),

cancer-associated stroma (orange), necrosis (black), or normal (transparent). Pixels in cancer tissue or cancer-associated stroma areas are classified into

cell types: lymphocyte (green), plasma cell (lime), fibroblast (orange), macrophage (aqua), cancer cell (red), or background (transparent).
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Cell- and tissue-type model development and evaluation. In the
first step of our pipeline, we trained two convolutional neural
networks (CNNs) per cancer type: (1) tissue-type models trained
to segment cancer tissue, cancer-associated stroma (CAS), and
necrotic tissue regions and (2) cell-type models trained to detect
lymphocytes, plasma cells, fibroblasts, macrophages, and cancer
cells. These models were improved iteratively through a series of
quality control steps, including significant input from board-
certified pathologists (“Methods”). These CNNs were then used
to exhaustively generate cell-type labels and tissue-type segmen-
tations for each WSI. We visualized these predictions as colored
heatmaps projected onto the original WSIs (Fig. 1c and Supple-
mentary Fig. 1). Throughout model development, we tracked
accuracy metrics on a comprehensively annotated validation
dataset (Supplementary Fig. 2).

To directly compare the quality of our cell-type model
predictions against pathologist annotation, we generated 250
75 × 75 μm frames of cell-type overlays evenly sampled across the
5 cancer types and 5 cell types, each from a distinct WSI. These
frames were then annotated for each of the five cell types by
multiple external board-certified pathologists, enabling us to
compare cell-type counts as predicted by our CNN cell-type
model against pathologist annotation counts. We observed that
Pearson correlations between cell-type model predictions and
pathologist consensus were comparable to inter-pathologist
correlation (differences in correlation ranged from −0.019 to
0.024, with a median absolute difference of 0.069) across the five
cell types (Supplementary Fig. 3). Model versus pathologist
consensus and inter-pathologist correlations were both strong
(>0.8) for cancer cells and lymphocytes and moderate (approxi-
mately 0.4–0.7) for plasma cells, macrophages, and fibroblasts. To
assess model generalizability, we redeployed our BRCA cell-type
model to predict cell types on H&E, FFPE WSIs from an external
BRCA dataset uploaded by Peikari et al. to The Cancer Imaging
Archive (TCIA)35. We then repeated the same frame analysis
framework using 250 frames evenly sampled across the five cell
types, which revealed robust concordance between our cell-type
model and pathologist consensus in these external WSIs
(Supplementary Fig. 4). Correlation coefficients ranged from
0.607 in macrophages to 0.926 in lymphocytes and differed from
inter-pathologist correlation by a median absolute difference of
0.076. As a benchmark, inter-pathologist correlation represents
the optimal performance that can be expected from models
trained and evaluated using pathologist annotations as the
ground truth. External data were not publicly available for the
remaining cancer types. While the BRCA cell-type model
generalized without additional tuning, other models may require
retraining when applied to new datasets.

Cell- and tissue-type predictions yield a wide spectrum of HIFs.
When quantified, our cell- and tissue-type predictions capture
broad multivariate information about the spatial distribution of
cells and tissues in each slide. Specifically, we used model pre-
dictions to extract 607 HIFs (Fig. 2), which can be understood in
terms of 6 categories (Fig. 3). The first category includes cell-type
counts and densities across different tissue regions (e.g., density of
plasma cells in cancer tissue; Fig. 3i, ii). The next category
includes cell-level cluster features that capture inter-cellular
spatial relationships, such as cluster dispersion, size, and extent
(e.g., mean cluster size of fibroblasts in CAS; Fig. 3iii, iv). The
third category captures cell-level proportion and proximity fea-
tures, such as the proportional count of lymphocytes versus
fibroblasts within 80 microns (μm) of the cancer–stroma interface
(CSI; Fig. 3v, vi). The fourth category includes tissue area (e.g.,
mm2 of necrotic tissue) and multiplicity counts (e.g., number of

significant regions of cancer tissue) (Fig. 3vii, viii). The fifth
category includes tissue architecture features, such as the average
solidity (solidness) of cancer tissue regions or the fractal
dimension (geometrical complexity) of CAS (Fig. 3ix, x). The
final category captures tissue-level morphology using metrics
such as perimeter2 over area (shape roughness), lacunarity
(gappiness), and eccentricity (Fig. 3xi, xii). This broad enu-
meration of biologically relevant HIFs explores a wide range of
mechanisms underlying histopathology across diverse cancer
types.

HIFs capture sufficient information to stratify cancer types. To
visualize the global structure of the HIF feature matrix, we used
Uniform Manifold Approximation and Projection (UMAP)36,37

to reduce the 607-dimensional HIF space into two dimensions
(Fig. 4a). The two-dimensional (2-D) manifold projection of HIFs
was able to separate BRCA, SKCM, and STAD into distinct
clusters, while merging NSCLC subtypes LUAD and LUSC into
one overlapping cluster (V-measure score= 0.47 using k-means
with k= 4).

Cancer-type differences could be traced to specific and
interpretable cell- and tissue-level features within the TME
(Fig. 4b). SKCM samples exhibited higher densities of cancer cells
in CAS (pan-cancer median Z-score= 0.55, P < 10−30) and
greater cancer tissue area per slide (Z-score= 0.72, P < 10−30)
relative to other cancer types. These findings reflect biopsy
protocols for SKCM, in which the excised region involves
predominantly cancer tissue and minimal normal tissue. NSCLC
subtypes LUAD and LUSC exhibited higher densities of
macrophages in CAS (Z-score= 0.54 and 0.91, respectively;
P < 10−30), reflecting the large population of macrophages
infiltrating alveolar and interstitial compartments during lung
inflammation38. NSCLC subtypes also exhibited higher densities
of plasma cells (Z-score= 0.61 and 0.49; P < 10−30) in CAS, in
agreement with prior findings in which proliferating B cells were
observed in ~35% of lung cancers39,40. STAD exhibited the
highest density of lymphocytes in CAS (Z-score= 0.11, P=
2.16 × 10−19), corroborating prior work that identified STAD as
having the largest fraction of TIL-positive patches per WSI
among 13 TCGA cancer types, including the 5 examined here30.
Notably, HIFs are able to stratify cancer types by known
histological differences without explicit tuning for cancer-type
detection, as is required by “black box” approaches. In a stratified
analysis, SKCM metastatic and primary tumor samples also
exhibited notable differences, including a greater average solidity
and area of cancer tissue among metastatic tumors (Supplemen-
tary Fig. 5). Considering spatial heterogeneity, we observed an
enrichment of lymphocytes and plasma cells in SKCM as well as
an enrichment of cancer cells in LUSC and LUAD at the CSI
relative to in cancer tissue plus CAS (CT+ CAS) (Supplementary
Fig. 6).

HIFs are concordant with sequencing-based cell and immune
signature quantifications. To further validate our deep learning-
based cell quantifications, we compared the abundance of the
same cell type predicted by our cell-type models with those based
on RNA sequencing (RNA-Seq)41. Image-based cell quantifica-
tions were correlated with sequencing-based quantifications
across all patient samples and cancer types (pan-cancer) in three
cell types (Supplementary Fig. 7): leukocyte fraction (Spearman
correlation coefficient (ρ)= 0.55, P < 2.2 × 10−16), lymphocyte
fraction (ρ= 0.42, P < 2.2 × 10−16), and plasma cell fraction (ρ=
0.40, P < 2.2 × 10−16). Notably, imperfect correlation is expected
as tissue samples used for RNA-Seq and histology imaging are
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extracted from different portions of the patient’s tumor and thus
vary in TME due to spatial heterogeneity.

There is significant correlation structure among individual
HIFs due to the modular process by which feature sets are
generated, as well as inherent correlations in underlying biological
phenomena. For example, proportion, density, and spatial
features of a given cell or tissue type all rely on the same
underlying model predictions. In order to identify mechanistically
relevant and inter-correlated groups of HIFs, hierarchical
agglomerative clustering was conducted (“Methods”; Supplemen-
tary Data 1). This clustering also increases the power of multiple-
hypothesis-testing corrections by accounting for feature
correlation42. Pan-cancer HIF clusters strongly correlated with
immune signatures of leukocyte infiltration, immunoglobulin G
(IgG) expression, transforming growth factor (TGF)-β expres-
sion, and wound healing (Fig. 5a), as well as angiogenesis and
hypoxia (Supplementary Fig. 8), all quantified by scoring bulk
RNA-Seq reads for known immune and gene expression
signatures43–45. We conducted the same correlational analysis
for each cancer type individually and observed high concordance
among the top correlated HIF clusters per immune signature
(Supplementary Table 3).

Molecular quantification of leukocyte infiltration was con-
cordant with the density of leukocyte-lineage cells in CT+ CAS
quantified by our deep learning pipeline, including lymphocytes
(median absolute Spearman correlation ρ for associated HIF
cluster= 0.48, P < 10−30; Fig. 5bi), plasma cells (cluster ρ= 0.46,
P < 10−30), and macrophages (cluster ρ= 0.40, P < 10−30).
Similarly, we observed associations between IgG expression
and the density of leukocyte-lineage cells in CT+ CAS, with

plasma cells being the most strongly correlated (cluster ρ= 0.58,
P < 10−30), as expected given their role in producing Igs
(Fig. 5bii). TGF-β expression was associated with the density of
fibroblasts in CT+ CAS (cluster ρ= 0.28, P < 10−30; Fig. 5biii),
building upon prior studies which found that TGF-β1 can
promote fibroblast proliferation46–48. Interestingly, recent studies
in breast and ovarian cancer have highlighted the role of several
subsets of cancer-associated fibroblasts in promoting an immu-
nosuppressive environment resistant to anti-programmed cell
death protein 1 (anti-PD-1) therapy, including one subset
associated with the TGF-β signaling pathway49. TGF-β expression
was also correlated with the area of CAS relative to CT+ CAS
(cluster ρ= 0.31, P < 10−30), shedding further light on the role of
stromal proteins in modulating TGF-β levels50. The wound
healing signature was positively associated with the density
of fibroblasts in CAS versus in cancer tissue (cluster ρ= 0.29,
P < 10−30; Fig. 5biv), which corroborates findings that both
tumors and healing wounds alike modulate fibroblast recruitment
and proliferation to facilitate extracellular matrix deposition51.
H&E snapshots corresponding to high expression of each of the
four immune signatures are shown in Fig. 5c with corresponding
cell-type heatmaps overlaid.

The angiogenesis signature was positively associated with the
density of fibroblasts (cluster ρ= 0.32, P < 10−30) and macrophages
(cluster ρ= 0.31, P < 10−30) in CAS, corroborating the critical role
that fibroblasts and macrophages play in modulating extracellular
matrix components to promote neovascularization52,53. Interest-
ingly, angiogenesis signature was also associated with the area of
CAS relative to CT+CAS (cluster ρ= 0.29, P < 10−30), reflecting
the importance of stromal cell populations (Supplementary Fig. 8).
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The hypoxia signature was most strongly associated with
area of necrotic tissue (cluster ρ= 0.45, P < 10−30), as expected
by their causal relationship (Supplementary Fig. 8). Hypoxia was
also associated with density of plasma cells in CAS (cluster ρ= 0.36,
P < 10−30), which confirms prior findings of increased plasma cell
generation under hypoxic conditions54.

While many associations noted above have been previously
identified using experimental methods, a HIF-based approach

enables validation and systematic quantification of the strength of
such associations.

HIFs are predictive of clinically relevant phenotypes. To eval-
uate the capability of HIFs to predict expression of clinically
relevant, immuno-modulatory genes, we conducted supervised
prediction of binarized classes for five clinically relevant pheno-
types: (1) PD-1 expression, (2) PD-L1 expression, (3) cytotoxic
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T-lymphocyte-associated protein 4 (CTLA-4) expression, (4)
homologous recombination deficiency (HRD) score, and (5) T
cell immunoreceptor with Ig and ITIM domains (TIGIT)
expression (Fig. 6 and Supplementary Fig. 9). Using the 607 HIFs
computed per WSI, predictions were conducted for cancer types
individually as well as pan-cancer. SKCM predictions were con-
ducted only for TIGIT expression due to insufficient sample sizes
for the remainder of outcomes (“Methods”). To demonstrate
model generalizability across varying patient demographics and
sample collection processes, area under the receiver operating
characteristic (AUROC) and area under the precision-recall
curve (AUPRC) performance metrics were computed on hold-out
sets composed exclusively of patient samples derived from
tissue source sites not seen in the training sets (Supplementary
Table 4).

HIF-based models were not predictive for every phenotype in
each cancer type (hold-out AUROC < 0.6; see Supplementary
Table 5 for all results including negatives). In the successful
prediction models (hold-out AUROC range= 0.601–0.864;

Fig. 6a), precision-recall curves revealed that models were robust
to class imbalance, achieving AUPRC performance surpassing
positive class prevalence by 0.104–0.306 (Supplementary Fig. 10).

On average across molecular phenotype prediction tasks,
AUROC hold-out performance of our HIF-based linear models
was comparable to that achieved by end-to-end deep learning
models trained using the same architecture and hyper-parameters
from Kather et al. (Supplementary Table 6)11. Differences in
AUROC ranged from −0.16 to 0.25, with a median absolute
difference of 0.065. Given the small sample sizes, HIF-based
models are potentially better statistically powered. Indeed, HIF-
based models outperformed end-to-end models in several
prediction tasks, including most notably SKCM prediction of
TIGIT expression, which boasted the smallest sample size.
AUROC performance of our HIF-based linear model for PD-L1
expression in LUAD trained on roughly 300 WSIs was also
comparable to that achieved by previously published “black-box”
deep learning models trained on hundreds of thousands of paired
H&E and PD-L1 example patches in NSCLC55.

Fig. 3 Overview of HIFs. Graphical overview of the 607 human-interpretable image features (HIFs) grouped into six categories: cell-level count and density

(n= 56 HIFs), cell-level cluster (n= 180), cell-level proportion and proximity (n= 208), tissue-level area and multiplicity (n= 13), tissue-level architecture

(n= 25), and tissue-level morphology (n= 125). For each HIF, a histogram of the HIF quantified in all patient samples across the five cancer types and

histological snapshots corresponding to high and low values with the corresponding heatmap are shown. Both snapshots are taken from patient samples of

the same cancer type. Cell- and tissue-type heatmaps adhere to the same color scheme described in Fig. 1c. In (iii), fibroblast clusters are annotated,

contrasting one large cluster against multiple smaller clusters. In (iv), macrophage clusters and extents are annotated. Cluster extent is defined as the

maximum distance between a cluster exemplar (defined via Birch clustering) and a cell within that cluster. Significant regions (viii) are defined as

connected components (identified at the pixel level) of a given tissue type with at least 10% the size of the largest connected component in the slide.

A solidity (ix) of one corresponds to a completely filled object, while values less than one correspond to objects containing holes or with irregular

boundaries. Fractal dimension (x) can efficiently estimate the geometrical complexity and irregularity of shapes and patterns, thus capturing tissue

architecture. A fractal dimension of one corresponds to a perfectly smooth tissue border, while higher fractal dimension corresponds to increasing

roughness and irregularity, indicating more extensive physical contact between adjacent tissue types. The fractal dimension of the cancer–stroma interface

(CSI) has been previously associated with dysfunction in antigen presentation29. Perimeter2/area (xi) is a unitless measure of shape roughness

(e.g., square= 16, circle= 4π). Across all HIFs, tumor regions include cancer tissue (CT), cancer-associated stroma (CAS), and a combined CT+ CAS.

Cell- and tissue-type color coding is the same as Fig. 1c.
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Fig. 4 HIF differences across cancer types. a Uniform Manifold Approximation and Projection (UMAP) visualization of five cancer types reduced from the

607-dimension space defined by human-interpretable image feature (HIF) values into two dimensions. Each point represents a patient sample colored by

cancer type. b Clustered heatmap of median Z-scores (computed pan-cancer) across cancer types for 20 HIFs, each representing one HIF cluster (defined

pan-cancer). Hierarchical clustering was performed using average linkage and Euclidean distance. Clusters are annotated with a representative HIF chosen

based on interpretability and high variance across cancer types.
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While our HIF generation process explicitly encodes
for interactions between biological entities (e.g., count of
lymphocytes within 80 μm of fibroblasts), we also compared
and achieved comparable hold-out AUROC and AUPRC
performance between our HIF-based linear models against HIF-
based random forest models, which directly account for
interaction effects between HIFs (Supplementary Table 7).

Predictive HIFs provide interpretable link to clinically relevant
phenotypes. Interpretable features enable interrogation and fur-
ther validation of model parameters as well as generation of
biological hypotheses. Toward this end, for each prediction task
we identified the five most important HIF clusters as determined
by magnitude of model coefficients (Fig. 6b and Supplementary

Fig. 11) and computed cluster-level P values to evaluate sig-
nificance (Supplementary Table 8; “Methods”).

As expected, prediction of PD-1 and PD-L1 involved similar
HIF clusters (Pearson correlation between PD-1 and PD-L1
expression= 0.53; Supplementary Fig. 12). For example, the
extent of tumor inflammation, as measured by the count of
cancer cells within 80 μm of lymphocytes, as well as the density of
lymphocytes in CT+CAS, was significantly selected during
model fitting for both of PD-1 and PD-L1 expression in pan-
cancer and BRCA models (Fig. 6bi, ii and Supplementary Fig. 11i,
ii). Furthermore, in both LUAD and LUSC, the count of
lymphocytes in CT+CAS was similarly predictive of PD-1 and
PD-L1 expression. The importance of these HIFs that capture
lymphocyte infiltration between and surrounding cancer cells
corroborates prior literature, which demonstrated that TILs
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Fig. 5 Validation of HIFs against immune signatures. a Clustered heatmap of median absolute Spearman correlation coefficients (ρ) computed across all

patient samples between eight clusters of human-interpretable image features (HIFs) (defined pan-cancer) and four canonical immune signatures. P values

were computed using a two-sided test for whether the correlation coefficient was significantly different from 0. Hierarchical clustering was done using

average linkage and Euclidean distance. Median absolute Spearman correlation coefficients with a combined (via the Empirical Brown’s method) and

corrected (via the Benjamini–Hochberg procedure) P value lower than the machine precision level (10−30) are annotated with an asterisk. Negative

control analyses are included in Supplementary Table 3. Tumor regions include cancer tissue (CT), cancer-associated stroma (CAS), and a combined CT+

CAS. b Correlation and kernel density estimation plots between representative HIFs and immune signatures. Points are colored by cancer type (same

schema as Fig. 4a). X-axes are log-transformed (base ten). Trendlines are plotted on the log-transformed data. Cell densities are reported in count/mm2

and tissue areas are reported in mm2. c Histogram of immune signature expression (Z-score) across all patients, alongside a histological snapshot

with its cell-type heatmap overlaid corresponding to high expression of the given immune signature. Cell-type heatmaps adhere to the same color

scheme described in Fig. 1c. Histological snapshots have dimensions (from left to right, width by height) of 12,479 × 7109, 4230 × 2408, 4230 × 2408,

and 5286 × 3016 μm.
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correlated strongly with higher expression levels of PD-1 and PD-
L1 in early BRCA56 and NSCLC57,58.

The area, morphology, or multiplicity of necrotic tissue proved
predictive of PD-1 expression in LUAD, LUSC, and STAD
models and of PD-L1 expression in pan-cancer, BRCA, and
LUAD models, expanding upon prior findings that tumor
necrosis correlated positively with PD-1 and PD-L1 expression

in LUAD59. The density, proximity, or clustering properties of
plasma cells was predictive of PD-1 expression in all models
excluding LUAD, suggesting a role for plasma cells in modulating
PD-1 expression. Recent studies in SKCM, renal cell carcinoma,
and soft-tissue sarcoma have demonstrated that an enrichment of
B cells in tertiary lymphoid structures was positively predictive of
response to immune checkpoint blockade therapy60–62. The

Fig. 6 HIF-based prediction of molecular phenotypes. a Receiver operator characteristic (ROC) curves for (i) PD-1, (ii) PD-L1, (iii) CTLA-4, (iv) HRD, and

(v) TIGIT hold-out predictions across cancer types and pan-cancer. Skin cutaneous melanoma (SKCM) predictions were conducted only for TIGIT due to

low sample sizes. Pan-cancer predictions use binary labels thresholded independently by cancer type. For TIGIT predictions, pan-cancer includes all five

cancer types. For the remainder of predictions, pan-cancer includes all cancer types excluding SKCM. Random classifiers correspond to area under the ROC

curve (AUROC)= 0.50. b Visualization of predictive human-interpretable image features (HIFs) for each molecular phenotype. Boxplots show the top five

most predictive HIF clusters for each phenotype in pan-cancer models. For TIGIT predictions, pan-cancer models only included three non-zero HIF clusters.

Clusters are ranked by the maximum absolute ensemble beta across HIFs in a given cluster. Ensemble betas are computed per HIF as the average across

the three models incorporated into the final ensemble evaluated on the hold-out set. The center and bounds of each boxplot represent the median and

interquartile range (IQR; 25th, 75th percentiles) for HIF betas in each cluster, respectively. Upper and lower boxplot whiskers represent the smaller of the

maximum beta value or the 75th percentile+ 1.5 × IQR and the larger of the minimum beta value or the 25th percentile− 1.5 × IQR, respectively. Each

cluster is labeled with a representative HIF corresponding to the maximum absolute ensemble beta value. The number of ensemble betas (HIFs) used to

derive each boxplot is: 32, 49, 32, 9, and 11 (from top to bottom) for PD-1 clusters; 8, 30, 49, 20, and 70 for PD-L1 clusters; 38, 4, 14, 77, and 20 for CTLA-4

clusters; 7, 15, 11, 8, and 19 for HRD clusters; and 26, 22, and 2 for TIGIT clusters (see Supplementary Data 1 for the number of HIFs per cluster). In cases

where that HIF is difficult to interpret, a more interpretable HIF within a fivefold difference of the maximum ensemble beta is presented (indicated by a

black asterisk). As absolute values were used for ranking, HIFs with negative ensemble betas are denoted by a red asterisk. Boxplots of predictive HIF

clusters for cancer type-specific models are included in Supplementary Fig. 11. Radar charts show the normalized magnitude of ensemble betas in pan-

cancer models stratified across nine HIF axes, corresponding to the five cell types, three tissue types, and cancer–stroma interface (CSI). Normalized

magnitudes were computed as the sum of absolute ensemble betas for HIFs associated with each axis divided by the total number of HIFs associated with

the said axis (e.g., all HIFs involving fibroblasts). Multiple predictive HIFs are visualized with overlaid cell- or tissue-type heatmaps in Fig. 3. Tumor regions

include cancer tissue (CT), cancer-associated stroma (CAS), and a combined CT+CAS.
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density of fibroblasts in CAS or within 80 μm of the CSI was
predictive of PD-L1 expression in LUAD and STAD, respectively,
corroborating earlier discoveries that cancer-associated fibroblasts
promote PD-L1 expression63.

Less is known about the relationship between the TME and
CTLA-4 expression. By investigating predictive HIFs, we can
begin to enumerate features of the TME that correlate with
CTLA-4 expression. The proximity of lymphocytes to cancer cells
(pan-cancer and BRCA), morphology of necrotic regions (LUAD
and LUSC), and density of cancer cells in CT+ CAS versus
exclusively in CAS (BRCA and STAD) were predictive of CTLA-4
expression across multiple models (Fig. 6biii and Supplementary
Fig. 11iii).

Area of necrotic tissue (pan-cancer and BRCA) as well as
various morphological properties of necrotic regions including
perimeter and lacunarity (BRCA and STAD) was predictive of
HRD (Fig. 6biv and Supplementary Fig. 11iv). In HRD, ineffective
DNA damage repair can result in the accumulation of severe
DNA damage and subsequent cell death through apoptosis as well
as necrosis64,65. The density and count of fibroblasts near or in
CAS was also predictive of HRD in the pan-cancer and BRCA
models, corroborating prior findings that persistent DNA damage
and subsequent accumulation of unrepaired DNA strand breaks
can induce reprogramming of normal fibroblasts into cancer-
associated fibroblasts66.

Like the three other immune checkpoint proteins (PD-1, PD-
L1, and CTLA-4), TIGIT expression was also associated with
markers of tumor inflammation, including the count of cancer
cells within 80 μm of lymphocytes (pan-cancer and BRCA), the
total number of lymphocytes in CT+CAS (pan-cancer and
BRCA), and the proportional count of lymphocytes to cancer cells
within 80 μm of the CSI (LUAD) (Fig. 6bv and Supplementary
Fig. 11v). These findings corroborate prior findings that TIGIT
expression, alongside PD-1 and PD-L1 expression (Pearson
correlation between TIGIT and PD-1= 0.84; TIGIT and PD-L1
= 0.56; Supplementary Fig. 12), is correlated with TILs67. HIF
clusters capturing morphology and architecture of necrotic tissue
(e.g., fractal dimension, lacunarity, extent, perimeter2/area) were
associated with TIGIT expression in LUAD, LUSC, SKCM, and
STAD models, although these relationships have yet to be
investigated.

Discussion
In recent years, fusion approaches that combine deep
learning with feature engineering have gained traction68–71.
Our study combines exhaustive deep learning-based cell- and
tissue-type classifications to compute image features that are both
biologically relevant and human interpretable. We demonstrate
that computed HIFs can recapitulate sequencing-based cell
quantifications, capture canonical immune signatures such as
leukocyte infiltration and TGF-β expression, and robustly predict
five molecular phenotypes relevant to the efficacy of targeted
cancer therapies. We also demonstrate the generalizability of our
associations, as evidenced by similarly predictive HIF clusters
across biopsy images derived from five different cancer types.
Notably, we show that our HIF-based approach, which integrates
the predictive power of deep learning with the interpretability of
feature engineering, achieves comparable performance to that of
black-box models.

While prior studies have applied deep learning methodologies
to capture cell-level information, such as the spatial configuration
of immune and stromal cells29,71, or tissue-level information72

alone, our combined cell and tissue approach enables quantifi-
cation of increasingly complex and expressive features of the
TME, ranging from the mean cluster size of fibroblasts in CAS to

the proximity of TILs or cancer-associated fibroblasts to the CSI.
For instance, while TILs are emerging as a promising biomarker
in solid tumors such as triple-negative and HER2-positive breast
cancer71, TILs differ from stromal lymphocytes, and substantial
signal can be obtained by considering multiple cell–tissue
combinations25. By training models to make six-class cell-type
and four-class tissue-type classifications from >1.6 million
pathologist annotations, our approach is also able to capture
more interactions between cell types and tissue regions than prior
HIF-based studies25–30.

Our approach exhaustively generates cell- and tissue-type
predictions across entire WSIs at subcellular resolution (2 and 4
μm, respectively) and improves upon previous tiling approaches
that downsample the image. The tissue visible in a WSI is already
only a fraction of the tumor; using the entire slide reduces the
probability of fixating on local effects and enables quantification
of complex characteristics that span multiple tissue regions (e.g.,
multiplicity, solidity, and fractal dimension of necrotic regions).

In addition, our approach of systematically quantifying specific
and interpretable features of the tumor and its surroundings can
enable hypothesis generation and a deeper understanding of the
TME’s influence on drug response. Recent studies provide evi-
dence that the tumor immune architecture may influence the
clinical efficacy of immune checkpoint inhibitor73 and poly
(ADP-ribose) polymerase inhibitor therapies74.

Lastly, during both model development and evaluation, we
sought to emphasize robustness to real-world variability75. In
particular, we supplemented TCGA WSIs with additional diverse
datasets during CNN training, integrated pathologist feedback
into model iterations, and evaluated HIF-based model perfor-
mance on hold-out sets composed exclusively of samples from
unseen tissue source sites, improving upon prior approaches to
predicting molecular outcomes from TCGA H&E images26,76.

Our study data from TCGA carries several limitations. First,
biopsy images submitted to the TCGA dataset are biased toward
primary tumors and tumors with more definitive diagnoses that
may not generalize well to ordinary clinical settings. Indeed,
associations identified in primary tumors may not necessarily
generalize to metastatic settings (Supplementary Fig. 5). Second,
TCGA is limited to images of H&E staining, which limits the
breadth of information available to models. Integrating multi-
modal data containing stains against Ki-67 or immunohistologi-
cal targets may increase confidence in cell classifications77. Third,
batch effects in TCGA can originate from differing tissue col-
lection, sectioning, and processing procedures. Our validation
procedure of partitioning by tissue source site does not account
for all possible data artifacts, but it does control for confounding
by sample collection, extraction, and other site-specific variables.
Our HIF-based approach also limits the impact of spurious
associations introduced by batch effects by pre-defining features
based on biological phenomena. Fourth, TCGA has limited
treatment data and clinical endpoint data are less reliable than
molecular data. As TCGA samples were made available in 201378,
treatment regimens for these cases also predate the widespread
adoption of immune checkpoint inhibitors. As such, our models
were restricted to prediction of molecular phenotypes with rele-
vance to drug response, in lieu of more direct clinical endpoints,
such as RECIST79 and overall survival. While molecular pheno-
types such as PD-L1 expression are informative for clinical
endpoints such as sensitivity to immune checkpoint blockade80,
the ability to robustly predict biomarkers does not necessarily
translate into robust prediction of relevant endpoints. Ultimately,
direct prediction of patient outcomes is needed for clinical inte-
gration. Our study provides an interpretable framework to gen-
erate hypotheses for clinically relevant biomarkers that can be
validated in future prospective studies81. The curation of public
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datasets with matched pathology images and high-fidelity treat-
ment information could help bridge the remaining gap.

The HIF-based approach also has limitations. First, annota-
tions vary in reliability. Macrophages are particularly difficult for
pathologists to identify solely under H&E staining. While the
accuracy of an individual pathologist identifying macrophages
may be poor, our models represent an aggregate estimate based
on training from hundreds of pathologist annotators, which may
carry a more reliable signal82,83. Future development of our
approach could extend to multiplex immunofluorescence tech-
nologies that measure spatial protein expression. These methods
face challenges of increased cost, lower resolution, and lower
scalability across WSIs but may improve upon traditional
immunohistochemistry staining in predicting drug response to
immune checkpoint inhibitors84 and reduce the need for expert
annotation of cell types. Second, curation of high-fidelity, large-
scale pathologist annotations can be time-consuming and
expensive. Improvement of open-source segmentation models
could accelerate the adoption of HIF-based models. Third, mor-
phologically similar cells (e.g., macrophages, dendritic cells,
endothelial cells, pericytes, myeloid-derived suppressor cells, and
atypical lymphocytes) may all be captured under a single cell-type
prediction. Thus HIFs may, in reality, capture information about
a mixture of cell types. For example, in diffuse forms of STAD in
which cancer cells invade smooth muscle tissue, our models
misclassified certain smooth muscle cells as fibroblasts. Collecting
targeted annotations of morphologically similar cell types may
decrease noise in HIF estimates and improve performance. Lastly,
HIFs are computed as summary statistics within each tissue type
across WSIs. Applying “attention-based” HIF computation to
focus on regions of interest and further account for spatial het-
erogeneity is a potential avenue for further research.

Recent work18–20 has revealed the weaknesses of low-
interpretability models, including brittleness to population dif-
ferences, vulnerabilities to technical artifacts, and susceptibility to
unforeseen real-world failure modes. Although HIF-based
approaches are not immune to such risks, they provide easier
debugging and identification of failure modes than end-to-end
models. Beyond suggesting interpretable hypotheses for causal
mechanisms (e.g., the anti-tumor effect of high lymphocyte
density), our HIF-based approach can be continually validated at
several points: pathologists can judge the quality of cell- and
tissue-type predictions, estimate the values of each relevant fea-
ture using traditional manual scoring, and note when variability
in sample preparation or quality may significantly affect relevant
features.

Interpretable sets of HIFs, computed from tens of thousands of
deep learning-based cell- and tissue-type predictions per patient,
improve upon conventional “black-box” approaches that apply
deep learning directly to WSIs, yielding models with millions of
parameters and limited interpretability. While gradient-based
saliency and class activation maps can identify relevant image
regions in end-to-end CNN models11–13, they only enable sub-
jective generation of hypotheses based on slide-by-slide qualita-
tive assessment and are susceptible to human biases85. Other
model-agnostic interpretability methods, such as partial depen-
dence plots and feature importance measures, are also unable to
objectively and scalably connect pixel intensity features to bio-
logical phenomena. By contrast, predictive HIFs are directly
mapped onto biological concepts and can be interpreted quanti-
tatively across thousands of images. This allows investigators to
directly identify concrete hypotheses and correlations that can be
investigated further in causal analyses.

Unlike “black-box” models that may opaquely rely on features
that are predictive but disconnected from the outcome of interest,
such as tissue excision or preparation artifacts (e.g., surgical or

pathologist markings)20,23, HIF-based predictions can be traced
to observable features, allowing model failures to be observed,
explained, and addressed. Furthermore, HIF-based models enable
users to explicitly define the set of features or hypotheses under
examination, reducing the risk of spurious correlations and
potentially increasing performance for low sample size prediction
tasks. While additional comparative studies are needed, improved
trust and reliability against unexpected failures would make HIF-
based models a valuable alternative to end-to-end models.

The ability to predict molecular phenotypes directly from WSIs
in an interpretable fashion offers numerous potential benefits for
clinical oncology. Hospitals, healthcare institutions, and bio-
technology companies have decades of archival histopathology
data captured from routine care and clinical trials86. With
improved accuracy, HIF-based models could leverage this infor-
mation to enable the discovery of patient subpopulations with
specific treatment susceptibilities, biomarkers predictive of drug
response, and hypotheses for subsequent research.

Methods
Dense, high-resolution prediction of cell and tissue types using CNNs. In
order to compute histopathological image features for each slide, it was necessary
to first generate cell and tissue predictions per WSI. To this end, we asked a
network of board-certified pathologists to label WSIs with both polygonal region
annotations based on tissue type (cancer tissue, CAS, necrotic tissue, and normal
tissue or background) and point annotations based on cell type (cancer cells,
lymphocytes, macrophages, plasma cells, fibroblasts, and other cells or back-
ground). This collection of expert annotations was then used to train six-class cell-
type and four-class tissue-type classifiers.

Several steps were taken to ensure the accuracy and generalizability of our
models. First, it was important to recognize that common cell and tissue types, such
as CAS or cancer cells, show morphological differences between BRCA, LUAD,
LUSC, SKCM, and STAD. As a result, we trained separate cell- and tissue-type
detection models for each of these five cancer types, for a total of ten models.
Second, it was important to ensure that our models did not overfit to the
histological patterns found in the training set. To avoid this, we followed the
conventional protocol of splitting our data into training, validation, and test sets
and incorporated additional annotations of the same five cancer types from
PathAI’s databases into the model development process. Together, these datasets
represented a wide diversity of examples for each class in each cancer type, thus
improving the generalizability of these models beyond the TCGA dataset.

Using the combined dataset of annotated TCGA and additional WSIs, we
trained deep CNNs to output dense pixelwise cell- and tissue-type predictions at a
subcellular spatial resolution of 2 and 4 μm, respectively (spatial resolution dictated
by stride). To ensure that our models achieved sufficient accuracy for feature
extraction, models were trained in an iterative process, with each updated model’s
predictions visualized as heatmaps to be reviewed by board-certified pathologists.
In heatmap visualizations, tissue categories were segmented into colored regions,
while cell types were identified as colored squares. This process continued until
there were minimal systematic errors and the pathologists deemed the model
sufficiently trustworthy for feature extraction.

All WSIs used in this study were FFPE slides. This means that tissue samples
used for RNA-Seq and histology imaging were extracted from different portions of
the patient’s tumor and may thus vary in their TME.

Pathologist-in-the-loop CNN model training. During the CNN training process,
we worked iteratively with three board-certified pathologists to conduct subjective
evaluation of model predictions to inform multiple rounds of training. CNN
models were initially trained on a set of primary annotations collected from the
pathologist network. Following the conclusion of each training round (defined by
model convergence), predicted cell and tissue heatmaps were reviewed for sys-
tematic errors (e.g., overprediction of fibroblasts, macrophages, and plasma cells,
underprediction of necrotic tissue). New (secondary) annotations would then be
collected from the pathologist network focusing on areas of improvement (e.g.,
mislabeled macrophages) to initiate a subsequent training round. The final cell-
and tissue-type models were selected based on a consensus across the three
pathologists. To reduce the risk of overfitting, CNN models were frozen after
selection and unperturbed during molecular phenotype prediction using classical
machine learning models. We computed validation metrics for cell- and tissue-type
models on pooled primary and secondary annotations and visualized these metrics
as confusion matrices.

Pathologist validation of cell-type models. To directly compare our cell-type
predictions on TCGAWSIs against pathologist annotations, we generated 250 75 ×
75 μm frames of cell-type overlays evenly sampled across the five cancer types and
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five cell types, each from a distinct WSI. The generation process sought to sample
frames with both high and low densities of a given cell-type according to our cell-
type model predictions. Each frame was annotated for each of the five cell types by
five board-certified pathologists. This allows us to compare the count of lympho-
cytes, plasma cells, fibroblasts, macrophages, and cancer cells in each 75 × 75 μm
frame predicted by our CNN cell-type models against a consensus of pathologist
annotation counts. We computed the Pearson correlation between our cell-type
model counts and pathologist consensus counts across the 250 frames for all five
cell types. Pathologist consensus counts were computed as the median of the five
individual pathologist counts for a given frame and cell type. To capture inter-
pathologist variability, we also computed the leave-one-out Pearson correlation
between each individual pathologist’s annotation counts and the consensus
(median) among the remaining four pathologists. We then obtained a point esti-
mate and 95% confidence interval for the average performance of an annotator
with respect to the leave-one-out consensus.

To assess model generalizability, we redeployed our BRCA cell-type model
trained primarily on TCGA to exhaustively predict cell types on 72 H&E, FFPE
WSIs from an external BRCA dataset uploaded by Peikari et al. to TCIA35. We
then used the same analysis framework and metrics as above to assess concordance
between our cell-type model and pathologist consensus across 250 75 × 75 μm
frames (evenly sampled across the five cell types) generated from these external
WSIs (Supplementary Fig. 4).

Tissue-based feature extraction. Using the tissue-type predictions, we extracted
163 different region-based features from each WSI in the TCGA dataset. Each of
these features belonged to one of three general categories.

The first category consisted of areas (n= 13 HIFs). By simple pixel summation,
we computed the total areas (in mm2) of cancer tissue, CAS, cancer tissue plus
CAS, regions at the CSI, and necrosis in each slide. These features are interpretable
and technically attainable by human pathologists but would be prohibitively time-
consuming and inconsistent across pathologists to calculate in practice.

The second category, which contributed the bulk of the features, made use of
the publicly available scikit-image.measure.regionprops module to find the
connected components of each of these tissue types at the pixel-level using eight-
connectivity. Once these connected components were found, we used both library-
provided and self-implemented methods to extract a series of morphological
features (n= 125 HIFs), similar to the approach suggested by Wang et al. in
201827. These HIFs measured a wide variety of tissue characteristics, ranging from
quantitative, size-based measures like the number of connected components, major
and minor axis lengths, convex areas, and filled areas, to more qualitative, shape-
based measures like Euler numbers, lacunarity, and eccentricity. Recognizing the
log-distribution of connected component size, we computed these features not just
across all connected components but also for both the largest connected
component only and across the most “significant” connected components, defined
as components >10% the size of the largest connected component. In aggregating
metrics across considered components, we incorporated both averages and
standard deviations of HIFs (e.g., standard deviation of eccentricities of significant
regions of necrosis) to capture both summary metrics and metrics of intratumor
heterogeneity.

The third category of features captures tissue architecture (n= 25 HIFs).
Inspired by Lennon et al.28, we calculated the fractal dimensions and solidity
measures of different tissue types, capturing both the roundness and filled-ness of
the tissue, under the hypothesis that the ability for these measures to separate
different subtypes of lung cancer might translate to a similar ability to predict
clinically relevant phenotypes. These features allowed us to capture information
about how tissue filled up space, rather than just the summative sizes and shapes
captured by the first and second categories.

Cell- and tissue-based feature extraction. After obtaining six-class cell-type
predictions for each pixel of a WSI, we generated five binary masks corresponding
to each of the five specified cell types. We then combined cell- and tissue-level
masks to compute properties of each cell type in each tissue type (e.g., fibroblasts in
CAS), extracting 444 HIFs.

An initial group of features that were readily calculable from our model
predictions included simple counts and densities of cell types in different tissue
types. For example, an overlay of a particular slide’s lymphocyte detection mask on
top of the same slide’s CAS mask could be used to calculate the number of TILs on
a given slide. We could then divide this number by the area of CAS to find the
associated density of TILs on the slide. By taking the “outer product” of cell and
tissue types, we derived a wide array of composite features. In particular, we
calculated counts, proportions, and densities of cells across different tissue types
(e.g., density of macrophages in CAS versus in cancer tissue), under the hypothesis
that these measures capture information that raw counts could not. To capture
information regarding cell–cell proximity and interactions, we also calculated
counts and proportions of each cell type within an 80-μm radius of each other cell
type (e.g., count of lymphocytes within an 80-μm radius of fibroblasts). Cell-level
counts, densities, and proportions comprised 264 HIFs.

For each cell–tissue combination, we next applied the Birch clustering method
(as implemented in the sklearn.cluster Python module) to partition cells into
clusters87. To fit clustering structures as closely as possible to the spatial

relationships found between cell types on the slide, we set a threshold of 100, a
branching factor of 10, and allowed the algorithm to optimize the number of
clusters returned. We used the returned clusters to calculate a series of features
designed to capture spatial relationships between individual cells types within a
given tissue type, including number of clusters, cluster size mean and standard
deviation (SD), within-cluster dispersion mean and SD, cluster extent mean and
SD, the Ball–Hall Index, and Calinski–Harabasz Index (n= 180 HIFs). For metrics
where cluster exemplars were needed, the subcluster centers returned by the Birch
algorithm were used.

Patient-level aggregation. Patients with multiple tissue samples were represented
by the single sample with the largest area of cancer tissue plus CAS, computed
during tissue-based feature extraction. All subsequent analyses were conducted at
the patient level.

HIF clustering. Due to underlying biological relationships as well as the HIF
generation process, there is significant correlation structure between many of the
features. This presents a challenge of feature selection as much of the information
contained in one feature will also be present in another. It also makes it difficult to
control for multiple hypothesis testing, because the underlying number of tested
hypotheses is significantly fewer than the number of features computed.

To identify groups of correlated HIFs, we clustered features via hierarchical
agglomerative clustering using complete linkage, a cluster cutoff of 0.95, and
pairwise correlation distance (1− absolute Spearman correlation) as the distance
metric. We defined a set of HIF clusters for each cancer type independently, as well
as another set for pan-cancer analyses (Supplementary Data 1). Clustering
correlated features allows us to summarize the true underlying number of tested
hypotheses.

Visualization of cancer types in HIF space. UMAP was applied for dimen-
sionality reduction and visualization of patient samples from the 607-dimension
HIF space into two dimensions (using parameters: number of neighbors= 15,
training epochs= 500, distance metric= Euclidean). The V-Measure was com-
puted to compare BRCA, STAD, SKCM, and NSCLC (LUAD and LUSC com-
bined) classes against clusters generated by k-means (k= 4) applied to the 2-D
UMAP projection36,37. To quantify differences between cancer types, HIF values
were normalized pan-cancer into Z-scores. Median Z-scores were then computed
per cancer type across 20 HIFs, each representing 1 of the 20 HIF clusters defined
pan-cancer. Representative HIFs were selected based on subjective interpretability
and high variance across cancer types. To determine the statistical significance of
median Z-scores that were greater in one cancer type relative to others, P values
were estimated with the one-sided Mann–Whitney U test, considering NSCLC
subtypes LUAD and LUSC as one type.

Validation of HIFs against molecular signatures. To validate the ability of HIFs
to capture meaningful cell- and tissue-level information, we computed Spearman
correlations between HIFs and four canonical immune signatures from the
PanImmune dataset45: (1) leukocyte infiltration, (2) IgG expression, (3) TGF-β
expression, and (4) wound healing. We also assessed HIF correlation to (5)
angiogenesis signature, also derived from PanImmune, and (6) hypoxia score,
derived from Buffa et al.43,44. All six molecular signatures were quantified by
mapping mRNA sequencing reads against gene sets associated with the afore-
mentioned known immune and gene expression signatures. To estimate the cor-
relation between HIF clusters and immune signatures, we computed the median
absolute Spearman correlation per cluster and combined dependent P values
associated with individual correlations via the Empirical Brown’s method42. To
control the false discovery rate, combined P values per cluster were then corrected
using the Benjamini–Hochberg procedure88. Correlation analyses were conducted
for cancer types collectively and individually, using HIF clusters defined across all
cancer types for assessment of concordance.

In addition, image-based cell quantifications for leukocyte fraction, lymphocyte
fraction, and plasma cell fraction were validated by Spearman correlation to their
sequencing-based equivalents from matched TCGA tumor samples, computed
using CIBERSORT (cell-type identification by estimating relative subsets of RNA
transcripts)45. CIBERSORT uses an immune signature matrix for deconvolution of
observed RNA-Seq read counts into estimates of relative contributions between 22
immune cell profiles41.

Molecular phenotype label curation. To reduce bias and protect against over-
fitting, the molecular phenotypes assessed in this study were selected after the cell-
and tissue-type models were frozen. PD-1, PD-L1, and CTLA-4 expression data for
each cancer type were collected from the PanImmune dataset45, while TIGIT
expression data were collected from the National Cancer Institute Genomic Data
Commons78. PD-1, PD-L1, CTLA-4, and TIGIT expression levels were quantified
from mapped mRNA reads against genes PDCD1, CD274, CTLA-4, and TIGIT,
respectively, and normalized as Z-scores across all cancer types in TCGA. HRD
scores were collected from Knijnenburg et al.89. The HRD score was calculated as
the sum of three components: (1) number of subchromosomal regions with allelic
imbalance extending to the telomere, (2) number of chromosomal breaks between

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21896-9

12 NATURE COMMUNICATIONS |         (2021) 12:1613 | https://doi.org/10.1038/s41467-021-21896-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


adjacent regions of least 10 Mb (mega base pairs), and (3) number of loss of
heterozygosity regions of intermediate size (at least 15 Mb but less than whole
chromosome length). Continuous immune checkpoint protein expression and
HRD scores were binarized to high versus low classes using Gaussian mixture
model (GMM) clustering with unequal variance (Supplementary Fig. 9). The
binary threshold was defined as the intersection of the empirical densities between
the two GMM-defined clusters. To evaluate the extent to which prediction tasks
were correlated, Pearson correlation and percentage agreement metrics were
computed pan-cancer (n= 1893 patients) between the five molecular phenotypes
in continuous and binarized form, respectively (Supplementary Fig. 12).

Hold-out set definition by TCGA tissue source site. TCGA provides tissue
source site information, which denotes the medical institution or company that
provided the patient sample. For each prediction task (described below), a hold-out
set was defined as approximately 20–30% of patient samples obtained from sites
not seen in the training set (Supplementary Table 4). This validation methodology
enables us to demonstrate model generalizability across varying patient demo-
graphics and tissue collection processes intrinsic to different tissue source sites.
Patient barcodes corresponding to hold-out and training sets are provided in
Supplementary Data 2.

Supervised prediction of molecular phenotypes. We conducted supervised
prediction of binarized high versus low expression of five clinically relevant phe-
notypes: (1) PD-1 expression, (2) PD-L1 expression, (3) CTLA-4 expression, (4)
HRD score, and (5) TIGIT expression. Predictions were conducted pan-cancer as
well as for cancer types individually. SKCM was excluded from prediction tasks 1
to 4 due to insufficient outcome labels (number of observations <100 for tasks 1–3;
number of positive labels <10 for task 4). For each of the 26 prediction tasks, we
trained a logistic sparse group lasso (SGL) model90 tuned by nested cross-
validation (CV) with three outer folds and five inner folds using the corresponding
training set. SGL provides regularization at both an individual covariate (as in
traditional lasso) and user-defined group level, thus encouraging group-wise and
within-group sparsity. The HIF clusters defined per cancer type and pan-cancer
(previously described) were inputted as groups. HIFs were normalized to mean= 0
and SD= 1. In accordance with nested CV, hyper-parameter tuning was conducted
using the inner loops and mean generalization error and variance were estimated
from the outer loops. The three tuned models, each trained on two of the three
outer folds and evaluated on the third outer fold, were ensembled by averaging
predicted probabilities for final evaluation (reported in Fig. 6a and Supplementary
Table 5) on the hold-out set. Hold-out performance was evaluated by AUROC and
AUPRC. To identify predictive features, beta values from the three outer fold
models were averaged to obtain ensemble beta values per HIF (see Fig. 6b caption
for more details).

End-to-end model benchmarking. To compare our HIF-based approach against
conventional end-to-end models, we trained 26 distinct CNNs for each of the 26
molecular phenotype prediction tasks described above using single-instance
learning. We used the computationally efficient ShuffleNet architecture and the
same hyper-parameters described in Kather et al.11 (batch size of 512, patch size of
512 × 512 pixels at 2 μm per pixel, 30 unfrozen layers, learning rate of 5 × 10−5)
without additional tuning. The same training and hold-out sets from HIF-based
model development were used to ensure that AUROC metrics were comparable.

Random forest model comparison. Additionally, we compared the performance
(AUROC and AUPRC) of HIF-based linear models against HIF-based random
forest models. Hyperparameters were all set to defaults for all 26 molecular phe-
notype prediction tasks: number of trees= 500, number of variables randomly
sampled as candidates at each split= 25 (square root of the number of features—
607), minimum size of terminal nodes= 1. Random forest models account for
interaction effects and can thus test the hypothesis that capturing interactions
between the 607 HIFs can improve model performance91. Once again, we main-
tained the same training and hold-out sets used during HIF-based linear model
development.

Statistical analysis. To compute 95% confidence intervals for each prediction
task, we generated empirical distributions of AUROC and AUPRC metrics each
consisting of 1000 bootstrapped metrics, as recommended by multiple sources92.
Bootstrapped metrics were obtained by sampling with replacement from matched
model predictions (probabilities) and true labels for the corresponding hold-out set
and re-computing AUROC and AUPRC on these two bootstrapped vectors. P
values for AUROC and AUPRC hold-out metrics were denoted as the probability
either metric was <0.5 under the aforementioned empirical distributions and
multiple-hypothesis-corrected across the 26 prediction tasks using the
Benjamini–Hochberg procedure88. P values for ensemble beta values of predictive
HIFs were computed using a permutation test with 1000 iterations. During each
iteration, labels in the training set were permuted and the previously described
training process of nested CV and ensembling was re-applied to generate a new set
of ensemble beta values per HIF. P values for individual HIFs were then obtained
by comparing beta values in the original ensemble model against the corresponding

null distribution of ensemble beta values. Individual HIF P values were combined
into cluster-level P values via the Empirical Brown’s method42 and corrected using
the Benjamini–Hochberg procedure88. Data analyses in this study used the pro-
gramming languages Python version 3.7.4 and R version 3.6.2. Analysis code has
been uploaded to public repositories93.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Histopathology images from the Cancer Genome Atlas dataset are available at https://

www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga. The

Cancer Imaging Archive histopathology images used for external validation can be

downloaded from https://doi.org/10.7937/TCIA.2019.4YIBTJNO. RNA-Seq

quantifications for PD-1, PD-L1, and CTLA-4, estimates of relative contributions

between 22 immune cell profiles from CIBERSORT, and quantifications for leukocyte

infiltration, TGF-β, IgG, and wound healing signature were obtained from the

PanImmune dataset: https://gdc.cancer.gov/about-data/publications/panimmune. RNA-

Seq quantifications for TIGIT were obtained from the PanCanAtlas dataset: https://gdc.

cancer.gov/about-data/publications/pancanatlas. HRD scores were obtained from the

dataset shared by Knijnenburg et al.: https://gdc.cancer.gov/about-data/publications/

PanCan-DDR-2018. All feature tables, as well as source code for reproducing

correlational analyses and molecular predictions, are available at https://github.com/

Path-AI/hif2gene/tree/master/data/hifs. Access to cell- and tissue-type heatmaps as well

as usage of cell- and tissue-type classification models are available upon reasonable

request to academic investigators without relevant conflicts of interest for non-

commercial use who agree not to distribute the data. Access requests can be made to

amaro.taylor@pathai.com.

Code availability
Codes for cell- and tissue-type model training, inference, and feature extraction are not

disclosed. Access requests for such code will not be considered to safeguard PathAI’s

intellectual property. However, access to cell- and tissue-type heatmaps as well as usage

of cell- and tissue-type classification models are available upon reasonable request to

academic investigators without relevant conflicts of interest for non-commercial use who

agree not to distribute the data. The source code for all downstream data analyses and

figure generation in this work are publicly available and can be downloaded from https://

github.com/Path-AI/hif2gene (https://doi.org/10.5281/zenodo.4532238)93. Access

requests and queries about code can be made to amaro.taylor@pathai.com.
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