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Abstract

We have chosen to test the safety of human intracerebroventricular (ICV) brain injections of autologous non-genetically-

modified adipose-derived stromal vascular fraction (ADSVF). In this IRB-approved trial, 24 patients received ICV ADSVF 

via an implanted reservoir between 5/22/14 and 5/22/17. Seven others were injected via their ventriculo-peritoneal shunts. 

Ten patients had Alzheimer’s disease (AD), 6 had amyotrophic lateral sclerosis (ALS), 6 had progressive multiple sclerosis 

(MS-P), 6 had Parkinson’s “Plus” (PD+), 1 had spinal cord injury, 1 had traumatic brain injury, and 1 had stroke. Median age 

was 74 (range 41–83). Injections were planned every 2–3 months. Thirty-one patients had 113 injections. Patients received 

SVF injection volumes of 3.5–20 cc (median:4 cc) containing 4.05 × 105 to 6.2 × 107 cells/cc, which contained an average 

of 8% hematopoietic and 7.5% adipose stem cells. Follow-up ranged from 0 to 36 months (median: 9.2 months). MRIs post 

injection(s) were unchanged, except for one AD patient whose hippocampal volume increased from < 5th percentile to 48th 

percentile  (NeuroQuant® volumetric MRI). Of the 10 AD patients, 8 were stable or improved in tests of cognition. Two 

showed improvement in P-tau and ß-amyloid levels. Of the 6 MS-P patients all are stable or improved. Four of 6 ALS patients 

died of disease progression. Twelve of 111 injections (11%) led to 1-4 days of transient meningismus, and mild temperature 

elevation, which resolved with acetaminophen and/or dexamethasone. Two (1.8% of injections) required hospitalization for 

these symptoms. One patient (0.9% of injections) had his reservoir removed and later replaced for presumed infection. In this 

Phase 1 safety trial, ADSVF was safely injected into the human brain ventricular system in patients with no other treatment 

options. Secondary endpoints of clinical improvement or stability were particularly promising in the AD and MS-P groups. 

These results will be submitted for a Phase 2 FDA-approved trial.

Keywords Intracerebroventricular · Stem cells · Autologous stem cells · ADSC · Neurodegenerative disease · Alzheimer’s 

disease · ALS · Multiple sclerosis · Stromal vascular fraction

Introduction

The ability to isolate human stem cells from numerous 

sources has grown over the past decade. These sources 

include fetal, adult, umbilical and embryonic. Mesenchy-

mal stem cells are readily acquired from bone marrow and/

or abdominal fat, and there is evidence that they may assist 

in repair of damaged tissue and actual regeneration of new 

cells. Unlike embryonic stem cells, which are known to be 

teratogenic, adult MSCs, especially adipose derived stem 

cells (ADSC), are simple to acquire, and lack the cultural 

controversy. There is also evidence that MSCs carry a degree 

of immunoprivilege [1–4].

ADSCs have proven to be a popular stem cell source with 

demonstrated therapeutic application in many areas of regen-

erative medicine. Terminology used for MSCs derived from 
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fat varies in different publications and can be confusing. The 

cells in freshly isolated stromal vascular fraction (SVF) are 

a mixture of ADSCs, hematopoietic stem cells, endothelial 

cells, macrophages, T cells, pericytes, fibroblasts, mast cells, 

preadipocytes and others [5]. These cells can be cultured 

and after a few passages, a relatively homogeneous line of 

mesenchymal cells can be obtained, known as ADSCs [6].

ADSCs share similar characteristics with bone marrow 

MSCs [7–10], but research has shown that ADSCs carry 

significant advantages. They can be obtained in large quanti-

ties with significantly less invasive and safer methods from 

lipoaspirates [3, 11] and, more importantly for this report, 

they can differentiate toward neurogenic lineage [5, 12, 

13] propelling their use in a variety of animal trials to treat 

neurodegenerative conditions [8, 9, 14]. Transplantation of 

ADSCs has even been used in animal models of peripheral 

nerve damage, with evidence of their induction of trophic 

factors for a paracrine effect [15].

A growing number of clinical and experimental trials 

have shown the neuroprotective and neuroregenerative 

capabilities of employing ADSCs and/or their exosomes, 

for variable neurodegenerative disorders [16–32]. Very little 

has been written on the neuroprotective or neuroregenera-

tive effects of SVF [33]. However, protective and regenera-

tive effects on other organ tissues has [34–37]. This raises 

a very important practical question about the safest, most 

efficient, and simplest type of stem cell source. Can SVF 

alone, which is much quicker and simpler to obtain, without 

expansion, offer similar effects as ADSCs? Finally, neither 

SVF or ADSCs have been substantially studied as a direct 

injection into the human cerebroventricular system.

The potential routes of administration of these stem 

cell sources that have been tried can be divided into two 

major categories: systemic (intravenous/intra-arterial) and 

direct (intra-tissue) injections. Compared to intra-venous 

injections, the intra-arterial route of administration may be 

more direct but does not address yet another obstacle: the 

blood brain barrier (BBB). Haddad-Mashadrizeh, et al. [38] 

reported human ADSCs traversing the blood–brain barrier of 

the adult rat brain by 6 months post transplant. However, in 

the experiment, intra-parenchymal injection was used, which 

resulted in BBB damage at the site of injection, potentially 

skewing these results. Intranasal [39–42] and intrathecal [36, 

43] routes have been used for intracerebral delivery of dif-

ferent stem cell types with variable outcomes. At the very 

least, with intrathecal administration, the cells layering by 

gravity to the bottom of the thecal sac, as well as the normal 

CSF circulatory route inhibiting cells from entering the deep 

brain parenchyma, are problematic.

The fact that a majority of the neurodegenerative disor-

ders have multifactorial pathogenesis, require BBB pen-

etration, and result in diffuse pathology of the brain, it is 

clear that a stem cell delivery method that combines safety, 

efficacy, and technical feasibility is necessary. Either the 

Ommaya reservoir, an implanted intraventricular catheter 

(historically used to obtain cerebrospinal fluid (CSF) or to 

deliver chemotherapy intrathecally), or a VP shunt, can serve 

as a perfect conduit for repeated stem cell injections into the 

human ventricular system [44].

In our pre-clinical animal trial we used autologous SVF 

obtained from processed human lipoaspirate (unpublished). 

The cells obtained with this approach were stereotactically 

injected into the lateral ventricle of 8 immunodefficient, 

Rowett Nude (RNU) rats. Histological and immunohisto-

chemical investigation of the brains 3 weeks after injection 

did not detect any immune response and did not change nor-

mal cytoarchitectonics in the brains of the RNU rats. The 

SVF cells penetrated the ventricle wall and migrated into the 

brain parenchyma detected with anti-human mitochondria 

stain. Additional human stains may be required in future 

study to differentiate actual cell transfer versus exosome or 

other vesicular form of transfer. No obstruction to the spinal 

fluid circulation was found in the ventricles and no excessive 

growth of injected cells was detected (unpublished in-house 

data).

Here we report our 3-year results of a Phase I study in 31 

patients who received intraventricular injections of autolo-

gous fresh ADSVF for treatment of various terminal or static 

neurodegenerative disorders recalcitrant to conventional 

therapeutic methods. To this end, we endeavored to deter-

mine the safety of single or multiple ICV injections of fresh 

SVF into the human brain for patients suffering with these 

illnesses with the hope that this route of injection would 

allow safe injection of autologous non-engineered progeni-

tor stem cells, and serve as preliminary work to move into 

injection of purified, expanded cells. We felt this to be the 

safest, initial approach: using autologous, non-genetically-

modified, non-engineered, minimally-manipulated, non-

expanded cells. We acknowledge that precise dosing of these 

cells is impossible given innate patient variability, but look 

forward to addressing this in a future FDA-approved Phase 

2 trial using SVF-derived expanded pure MSC stem cells.

This Phase 1 trial in 31 patients was designed to test 

safety of the procedure, but secondary endpoints of clinical 

improvement or stabilization and improvement in a number 

of objective parameters were also examined.

Materials and methods

Patients

Institutional Review Board (IRB)-directed (International 

Cell Surgical Society) animal studies were concluded 

and it was deemed safe by same IRB to proceed with a 

Phase I human safety trial. Patients with a variety of lethal 
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neurodegenerative conditions who met criteria for selection 

(www.clini caltr ials.gov CSN111, an earlier trial using intra-

venous or intraarticular injections only) were included in this 

study. All patients had exhausted conventional therapies and 

Food and Drug Administration (FDA)-approved treatments 

for their conditions, had no other options for their lethal dis-

eases, and were deteriorating clinically—most preparing for 

death. Patients met with a variety of consultants, to ascertain 

appropriateness for the procedure. Patients, their legal rep-

resentatives, and/or nexst of kin were educated.

Conditions approved by the IRB and included in the study 

were ALS, Dementias (AD), Parkinson’s Disease (PD) and 

Parkinson’s “Plus” (PD+) (including multiple system atro-

phy (MSA) and progressive supranuclear palsy (PSP)), trau-

matic brain injury (TBI), multiple sclerosis—progressive 

form (MS-P), stroke, and spinal cord injury (SCI). Exclu-

sion criteria included age less than 18, pregnancy, severe 

coagulopathy, significant active infections, and metastatic or 

uncontrolled cancer. Anti-coagulation therapies were tempo-

rarily discontinued for the surgical procedures. Patients, or 

if deemed incompetent, a legally authorized representative 

(LAR)/next of kin, signed IRB-approved informed consents 

after a full transparent discussion of the potential risks and 

benefits of the procedures emphasizing the investigational 

nature of their SVF deployment. All patients underwent 

complete history and physical exams and appropriate imag-

ing prior to their procedures. Baseline subjective and objec-

tive tests were administered.

The current study was conducted between 5/22/14 and 

5/22/17. Twenty-four patients underwent SVF injection into 

the frontal horn of the lateral ventricle via an Ommaya reser-

voir. Seven others were injected via their existing VP shunts. 

Ten patients had AD, 6 had ALS, 6 had MS-P, 6 had PD+, 

1 had TBI, 1 had SCI, and 1 had a stroke (Table 1). The 

median age was 74 (range: 41–83). Injections were planned 

every 2–3 months via the Ommaya reservoir or existing VP 

shunt. The SVF was procured using the FDA investigational 

device exemption (IDE)-pending liposuction and cell-sep-

aration technique described below. Thirty-one patients had 

at least one injection, 26 had at least 2, 14 had at least 4, and 

one patient had 15 injections, for a total of 113 injections. 

Patients received intraventricular SVF injection volumes of 

3.5–20 cc (median: 4 cc) containing 4.05 ×  105 to 6.2 × 

 107 cells/cc and contained on average 8% hematopoietic and 

7.5% ADSCs by fluorescence-activated cell sorting (FACS) 

cytometry [11, 45].

Ommaya reservoir implantation technique

Preoperative computed tomography (CT) or magnetic reso-

nance imaging (MRI) was performed on all patients. At a 

Certified Ambulatory Surgical Center (CASC), the patient 

was prepared and appropriate consents were signed. After 

a suitable plane of general endotracheal anesthesia was 

achieved and antibiotics were administered, the patient’s 

head was placed on a donut cushion. General landmarks 

were identified. The  Stealthstation® AxiEM™ system 

(Medtronic plc, Minnneapolis, MN, USA) received the 

downloaded MRI images, which were 3-dimensionally 

reconstructed by the surgeon. The electromagnetic reference 

was applied to the side of the patient’s head and secured. The 

patient’s scalp landmarks were traced obtaining an accuracy 

better than 2 mm for computer navigation. The area of the 

right frontal region was shaved, prepped and draped in the 

usual fashion. The planned incision, 3 cm lateral to midline 

and 2 cm anterior to the coronal suture, was infiltrated with 

1:200,000 epinephrine solution of 1% lidocaine. The inci-

sion was made using a 10-blade scalpel. A burr hole was 

made at the frontal incision using an acorn drill bit. The 

dura was coagulated with a bipolar cautery and opened using 

an 11-blade scalpel. The leaves of dura were coagulated to 

the edges of the burr hole and bleeding was managed with 

bipolar electrocautery. The ventricular catheter was passed 

to a 4–6 cm depth using the computer guidance system. Cer-

ebrospinal fluid (CSF) flow from the catheter was confirmed. 

The catheter was then cut to the correct length and con-

nected to the Ommaya reservoir. It was tied using a 2–0 silk 

tie and passed subgalealy behind the burr hole (Fig. 1). The 

cranial incision was closed using 2–0  Vicryl® (polyglactin 

910) sutures on the galea and staples on the skin (Fig 1a)

Patients with an existing functioning VP shunt were 

exempt from the above procedure.

Liposuction and SVF preparation technique

One to 21 days (median: 4 days) passed between placement 

of the reservoir and SVF deployment. On day of deploy-

ment, in a Cell Surgical  Network® (CSN, Rancho Mirage, 

California, USA)-affiliated certified ambulatory surgical 

center (CASC), patients underwent a proprietary liposuction 

technique followed by a cell centrifugation and incubation 

technique as previously described by our co-authors [11] 

(Fig. 1b).

Table 1  IRB-approved disease types for this study

Alzheimer’s disease (AD) 10

Amyotrophic lateral sclerosis (ALS) 6

Multiple sclerosis-progressive form (MS-P) 6

Parkinson’s-like syndromes (PD+, including PSP and MSA) 6

Traumatic brain injury (TBI) 1

Stroke 1

Spinal cord injury (SCI) 1

Total 31

http://www.clinicaltrials.gov
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In our prior safety study [11], 25 different patient SVF 

samples were sent for flow cytometry to a reference labora-

tory at the University of California, San Diego (San Diego, 

California, USA). Photomicrography was used to document 

aggregation, basic cell count, and cell viability (Countess™ 

Invitrogen™; Thermo Fisher Scientific, Inc.; Waltham, Mas-

sachusetts, USA). Cell viability ranged from 65 to 95%. 

Average SVF ADSC percentages were 8% (based on high 

CD34+, and relatively low CD45−. Average SVF hemat-

opoietic stem cell percentages were 7% (based on low CD34 

and relatively high CD45+ (Fig. 2). Exact determination of 

the specificity of CD34 for ADCs versus hematopoietic SCs 

has previously been scrutinized [46–48], and is subject for 

further investigation.

No patient data from that work were in our current 

series. We only extrapolated the approximate number of 

cells administered to each patient in the current study from 

this previous work. The current study was a phase 1 safety 

trial, and we wanted to administer as many cells as possible 

within a safe volume of CSF. Therefore, exact counts were 

not tantamount in the current study. Going forward, a differ-

ent study, with purified, expanded ADSCs will become more 

accurate vis-à-vis exact cell counts. Even with that, however, 

cell viability will vary between the time of cell acquisition 

and the time of ICV deployment. We understand that SVF 

samples vary per number of ADSCs, per patient per volume. 

For this reason the current study made no effort to “standard-

ize” an exact number of cells per injection.

There was essentially no interval of time between cell 

preparation and deployment. After the last centrifugation, 

and acquisition of the fresh SVF aliquot, the cells were 

deployed intracerebroventricularly within minutes. The total 

time from liposuction to ICV deployment was approximately 

2.5 h for all patients.

SVF injection technique

The area of the subgaleal Ommaya reservoir, or the res-

ervoir portion of an existing VP shunt, was prepped and 

draped. A 21-gauge butterfly needle attached to a 10-cc 

syringe was inserted, CSF withdrawn to a volume 2 cc 

greater than the SVF sample. The syringe was exchanged 

for the SVF syringe and the SVF was fully injected into 

the Ommaya reservoir (Fig. 1c). This was then flushed 

Fig. 1  a Artist’s depiction of subgaleal placement of Ommaya reser-

voir with right-angle connection to right frontal intraventricular cath-

eter. b Setup prior to injection (SVF is pink-colored solution in 10 cc 

syringe). c Injection technique, using a 23-G butterfly needle, via res-

ervoir puncture

Fig. 2  Flow cytometry of SVF samples distinguishing ADSCs from 

hematopoietic stem cells
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with 2 cc of the reserved CSF, such that total volume of 

CSF removed equaled the total volume of SVF suspen-

sion injected (a volume neutral exchange). The needle was 

removed and a sterile bandage was placed over the injec-

tion site (Fig. 1c).

In patients with existing VP shunts, the valve was pro-

grammed to the slowest flow setting. During injection, the 

distal peritoneal catheter was manually occluded using 

digital pressure on the peritoneal side of the valve to avoid 

spillage of SVF via the abdominal catheter. The valve was 

left in this slow drainage position for 1–3 days. Then, the 

patient returned to clinic to have the valve reset to their pre-

injection setting.

Follow‑up and secondary endpoint testing

The online Health Insurance Portability and Accountability 

Act of 1996 (or HIPAA) database was used to track patients 

for safety and outcome data. In most cases, patients reported 

any adverse outcomes directly to the treating physician or 

to the database. Severe adverse events were reported to the 

IRB. Th offices of California Stem Cell Treatment Center 

oversaw this data. Secondary endpoints were evaluated 

although not the primary focus of this Phase 1 trial.

Secondary endpoint test for multiple sclerosis

Kurtzke expanded disability status Scale (EDSS)

The Functional System Score (FSS) and EDSS are two of 

the most widely used clinical assessment scales for MS [49]. 

Seven functional systems are rated. These ratings plus gait 

analysis are used to score the EDSS. The EDSS is a rating 

scale ranging from 0 (normal neurologic examination) to 10 

(death due to MS) in half-point increments. It has been used 

in virtually every major clinical trial that has been conducted 

in MS.

Secondary endpoint tests for Alzheimer’s disease 
and dementia

Mild cognitive impairment (MCI) screen™ [50]

The high accuracy of MCI Screen™ is achieved by applying 

scoring methods to the protocols of the Consortium to Estab-

lish a Registry for Alzheimer’s Disease (CERAD) 10-word 

recall test and the Alzheimer’s Disease Assessment Scale-

Cognitive subscale (ADAS-Cog) 10-word recall test. The 

MCI Screen™ uses recall trials compared to the normal 

range for the patient’s peer group.

Memory Performance Index [50] (MPI), repeatable battery 

for the assessment of neuropsychological status [51] 

(RBANS), and mini mental state examination (MMSE)

The Memory Performance Index (MPI) quantifies a patient’s 

pattern of recall on a scale ranged from 0 to 100 and clas-

sifies the score based the patient’s peer group. The RBANS 

is a brief, test measuring attention, language, visuospatial/

constructional abilities, and immediate and delayed memory. 

The MMSE is not specific for AD but is one of the most-

used tests of cognitive function [52].

NeuroQuant® volumetric magnetic resonance imaging

MRI brain images were processed by the  NeuroQuant® soft-

ware package (CorTechs Labs, Inc.; La Jolla, California, 

USA), a tool is used to measure volumes of brain structures 

in MRI images compared to aged-matched normals. The 

software calculates volumes of hippocampal images with 

graphic color overlays, the volume of which is constructed 

with artificial intelligence.

ADmark® phospho‑tau/total‑tau/A beta 42 cerebrospinal 

fluid analysis and interpretation (symptomatic) (Athena 

 Diagnostics®, Marlborough, MA, USA)

This CSF evaluation for AD looks at levels of phosphoryl-

ated tau protein (P-tau), total tau protein, and Aß42 pep-

tide—which determine the likelihood that individuals with 

early onset dementia have AD. This assay detects ApoE2, 

E3, E4 alleles and levels of Phosphorylated-Tau protein, 

Total-Tau protein, and Ab42. The methodology is ELISA, 

Restriction Fragment Length Polymorphism (RFLP). The 

reference range is correlation of levels of markers of Phos-

phorylated-Tau, Total-Tau, and Ab42, Presence of ApoE2, 

E3, E4 alleles [53].

Secondary endpoint tests for SCI, stroke, TBI, ALS, 
and MSA/PD+

Clinical improvement only, based on neurological 

examination.

Results

Safety

Follow-up ranged from 2 to 36 months (median: 9.2 months, 

mean: 13.2 months). Twenty-four Ommaya reservoir and 7 

VP shunt implantations led to no infections or complications 

other than mild headache, or pain at the surgical sites, for 

less than 24 h.
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Twelve of 113 injections (11%) led to 1–2 days of 

transient meningismus, headache, and mild temperature 

elevation (up to 2° Fahrenheit) managed solely with ibu-

profen or acetaminophen. One patient (0.8%) required 

removal of the reservoir for presumed infection (strep-

tococcus sanguinis, thought later to have been an oral 

contaminant which seeded the reservoir via bacteremia), 

was treated with antibiotics, and later electively had the 

reservoir replaced.

Four other patients (3.6% of total injections) required 

hospitalization within 30 days after one of their injec-

tions. Only 2 of which (1.8% of total injections) were felt 

to be possibly related to the SVF injection. One patient 

had a high fever accompanied by diarrhea and vomit-

ing 2 days after injection and was admitted to the hos-

pital. CSF cultures from the Ommaya reservoir showed 

no growth. The patient was sent home on a short course 

of antibiotics for pneumonia and prophylactically for his 

meningismus; the reservoir did not require removal. A 

second patient required conversion of his reservoir to a 

VP shunt for progressive symptoms of hydrocephalus felt 

unrelated to SVF injection, but rather failure of his exist-

ing lumboperitoneal shunt previously placed for symp-

toms of normal pressure hydrocephalus. A third patient 

with a long history of myocardial infarctions (MIs) pre-

sented with an ST elevation MI and was admitted for a 

fifth cardiac stenting procedure. The fourth patient, diag-

nosed with ALS, had a local infection of his gastrostomy 

feeding tube which necessitated elective prophylactic 

removal of the Ommaya reservoir and treatment of his 

local infection. No patient experienced seizure activity.

MRIs performed a median of 1 year post injection(s) 

in 16 of 31 patients were unchanged.

Secondary endpoints

Disease stability or improvement was seen in 87.5% of the 

combined AD and MS-P population. Of the 6 ALS patients, 

4 are deceased and 2 are stable; of the 6 MS-P patients, all 

are stable or have improved. Of the 6 MSA/PD+ patients, 3 

are deceased and 2 are stable and one withdrew as they were 

getting worse (after one dose). All deaths were felt related to 

natural disease progression. The TBI patient is subjectively 

improved and the stroke patient is stable.

Four AD patients underwent pre-SVF and inter-SVF 

 NeuroQuant® volumetric analyses. In one AD patient, the 

hippocampal volume increased from < 5th percentile to 

48th percentile after 2 years of follow-up and 8 SVF injec-

tions (Fig. 3). Of the 10 AD patients, 8 are stable or have 

improved in tests of cognition (Fig. 4) and 3 showed a reduc-

tion in P-tau and improvement in the Amyloid-ß to Total 

Tau ratio (ATI) in CSF testing (Athena  Diagnostics®) over 

8 months, with a trend toward normalization (Fig. 5). One 

of 6 MS-P patients’ EDSS scores improved from 7.5 to 

6.5 (from wheelchair bound to ambulating 20 yards with 

a walker) after 12 SVF injections over 2 years. Another 

showed improvement in that score as well. The remainder 

have remained stable with an average of only 2 SVF injec-

tions over the same period (Table 2).

Discussion

SVF has documented anti-inflammatory and immune-mod-

ulatory effects [11]. There is a growing bulk of data that 

ADSCs may be used successfully for the treatment of human 

neurodegenerative disorders [54, 55]. Autologous SVF con-

tains not only both hematopoietic and fat-derived stem cells, 

Fig. 3  Hippocampal volume on  NeuroQuant© MRI analysis in the 

3 patients who had this done with at least 4 months follow-up. Note 

patient #10 whose hippocampal volume increased from < 5th percen-

tile for age prior to ICV SVF administration, to 49th percentile (nor-

mal for age) 2 years later, after 8 injections
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Fig. 4  MPI scores for 4 patients 

followed at least 4 months com-

pared to a “typical” AD patient, 

versus time, showing typical 

unrelenting decline in score in 

the “typical” AD patient, but 

stabilization or improvement 

after SVF injection in the 4 

patients tested

Fig. 5  Trend lines of the CSF 

analyses of the 3 patients tested 

in this series, showing improve-

ment in both P-Tau levels 

(decrease) and ATI (increase) in 

all 3 patients



5264 Molecular Biology Reports (2019) 46:5257–5272

1 3

Table 2  Demographics, follow-up and outcome for 31 patients

Dx Pt ID Age at start/sex Duration of illness 

prior to 1st injection 

(years)

No. of 

injec-

tions

FU 

interval 

(months)

Status Complication

AD 10 82/M 5 8 36 Better p-tau decrease 

from 160 to 140 pg/ml 

hippocampal volume 

increased from < 5th 

percentile to 49th pere-

centile, (volume); MPI 

improved at 13 month

None

13 74/F 5 4 20.7 Subjectively better None

18 66/M 5 4 15.6 Subjectively better None

20 78/M 4 7 13 Better p-tau decrease 

from 160 to 128 pg/ml 

hippocampal volume 

increased from 21st to 

22nd percentile MPI 

improved at 12 month

After 7th injection, acute 

hydrocephalus, required 

conversion of ommaya to 

vp shunt

24 82/M 4 3 7.3 Unchanged None

25 71/F 4.5 1 5.7 Unchanged None

27 79/F 20 2 3.8 Better p-tau decreased 

from 115 to 92 pg/

ml MPI improved at 

10 months

None

29 74/M 5 2 3.7 Unchanged None

30 77/F 3.5 1 0.5 Unchanged

31 72/M 5 1 0.4 Unchanged Hospitalized for severe 

meningismus after 1st 

injection. No infection. 

Returned to full capacity

ALS 1/F 59/F 2 4 9.2 Deceased None

2 71/M 7 2 3.9 Deceased Prophylactic removal of 

Ommaya reservoir for 

gastrostomy feeding tube 

infection

12 45/M 1 3 27.8 Stable None

14 64/M 1 5 5.7 Deceased None

19 72/M 1 4 3.8 Deceased None

22 41/M 5 4 12.3 Stable None

MS-P 7 56/F 2 4 27.9 Better: EDSS 7.5 to 6.5 None

11 58/F 30 2 25 Worse (stopped treatment 

electively)

None

16 56/F 12 3 19.1 Stable None

3 42/F 8 15 32 Better: EDSS improved 

from 6.0 to 5.5

None

26 62/F 9 2 5.3 EDSS stable None

5 70/F 4 4 27.2 Lost to fu None

Park +/MSA 8 72/F 1.5 4 7.7 Deceased None

4 67/M 13 1 31.1 Worse (stopped treatment 

electively)

None

23 77/M 9 6 10.8 Stable None

Park + PSP 6 81/M 2 3 4 Deceased None
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but also has indigenous anti-inflammatory properties [56]. It 

therefore, made sense to move forward using SVF in a num-

ber of neurodegenerative disorders where an inflammatory 

component might be implicated. AD [57, 58] and MS [59] 

are two such devastating diseases. ALS and PD+ syndromes 

may also be autoimmune and inflammatory in nature, as 

may TBI or chronic traumatic encephalopathy (CTE) [21, 

60, 61]. Of course, the second capability of stem cells, to 

actually regenerate dead or diseased neurons, also needed 

experimentation.

As ADCS are entering the practical arena of translational 

medicine, the issue of refining practical aspects of the most 

safe and effective delivery methods has become of utmost 

importance. There should be two major types of the deliv-

ery routes considered: intraparenchymal and systemic. Intra-

parenchymal or intracerebral injection presents a significant 

degree of two major common neurosurgical risks—bleeding 

and infection. Furthermore, even though there are multiple 

reports of high level of migratory capability of stem cells in 

animal experiments [62, 63], it is difficult to expect the stem 

cells to repopulate the entire human brain and/or spinal cord, 

which is crucial for efficacy of the treatment of the disorders 

with widely spread neuronal degeneration. Another disad-

vantage of the intraparenchymal injection is unavoidable, 

albeit transient, disruption of the blood–brain barrier (BBB). 

Alas, another limitation for using direct intraparenchymal 

injection is that such an approach does not allow for the 

injection of large numbers of stem cells due to comparatively 

high density of the brain tissue.

Intravenous and intra-arterial administration routes have 

yielded varied outcomes. This may be due to equally varied 

biodistribution. In preclinical and first clinical experiments, 

intravenous injection has been the most popular approach 

[64, 65] for the treatment of orthopedic, cardiovascular, 

erectile, and other disorders. The intravenous delivery is 

safe [11], but may be optimized by regional deployment. 

Intra-arterial delivery was also investigated. It provides a 

better biodistribution of the stem cells through the brain, 

but increases the risk of cerebral lesions/microstrokes [66].

Overall, this analysis demonstrates four key requirements 

to an ideal delivery tool: (a) safety; (b) circumventing BBB 

presumably via glymphatic system distribution; (c) ensuring 

biodistribution throughout the entire brain, and (d) technical 

feasibility. Deployment of SVF via an ICV Ommaya res-

ervoir or VP shunt satisfies these requirements most fully. 

They allow for multiple injections safely, which presented an 

additional important feature for our clinical trial. Similarly, 

a pre-existing, or electively implanted VP shunt may also 

serve as a conduit for stem cell delivery.

To date, there are only a few publications reporting use 

of an implanted Ommaya reservoir into the brain for injec-

tion of stem cells from an autologous mesenchymal source. 

Fauzi et al., injected autologous MSCs from bone marrow 

into the cerebroventricular system of 2 patients for chronic 

vegetative state secondary to devastating intracerebral hem-

orrhage. One-year follow-up and multiple injections not only 

showed safety, but neurologic improvement in the 2 patients 

[67]. Three anecdotal case reports using stem cells derived 

from fetal, umbilical and bone marrow sources, injected into 

the brain have also been reported; 2 for fetal hypoxia [68, 

69] and 1 for ALS [70]. There are no reports of using a VP 

shunt for this use.

Mechanisms of action

Possible mechanisms of action include the following: anti-

inflammatory effect, angiogenesis, improvement in neu-

ronal pruning, neurogenesis, inhibition of angiogenesis, 

expression of trophic factors, telomere preservation, and 

inhibition of cell death. An interesting observation in the 

current study was that most patients with MS-P and AD 

noticed an improvement in their clinical function within the 

first week of injection followed by a “wearing-off” effect 

after 6–8 weeks. Our patients, whom have had more than 

Table 2  (continued)

Dx Pt ID Age at start/sex Duration of illness 

prior to 1st injection 

(years)

No. of 

injec-

tions

FU 

interval 

(months)

Status Complication

21 55/M 2 2 1.9 Deceased Hospitalized after 2nd 

injection for meningis-

mus, oral flora grew from 

csf culture, Ommaya 

removed, replaced 

2 weeks later

28 73/F 3.5 2 2.1 Better clinical exam None

SCI 17 44/F 5 6 19 Better clinical exam None

Stroke 15 70/F 1 1 0 Stable None

TBI 9 67/M 2 3 26.3 Worse (since stopping 

treatment electively)

None
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6 injections, have had an anecdotal decrease in the “wear-

ing-off” effect to the extent that future injections could be 

delayed up to 4 months. This suggests a permanence to an 

anti-inflammatory effect, a rebuilding of neurons and their 

function, and/or an epigenetic phenomenon of genetic 

remodeling.

Rejection and tumorogenicity

We found no evidence of rejection of the injected SVF in 

this study. Nor have we found such evidence in our experi-

ence with intraarticular or IV administration in more than 

8000 patients [11]. As these cells are autologous, rejection 

is not expected, however longer term follow-up is necessary 

to determine tumorogenicity. Ra et al., have reported no evi-

dence of tumor formation in their experience administering 

autologous SVF [71].

ALS

In a superoxide dismutase 1 G93A-mutated (SOD1G93A) 

ALS mouse model, ICV delivery of ADSCs delays the onset 

of ALS and extends survival [29]. After transplantation, ele-

vated levels of neurotrophic factors were found in the spinal 

cord of this ALS mouse model. In another report, upregu-

lation of glial-derived neurotrophic factor occurred, indi-

cating a role in neuroprotection as well [72]. Indeed many 

experimental reports for using ADSCs for this disease exist 

[29, 61, 73–83]. Of note, Habisch, et al. [83]., reported the 

inefficacy in obtaining adequate stem cell levels in the brain 

parenchyma with intrathecal injection due to layering out 

secondary to the effect of gravity. This is one of the largest 

series of intrathecal injection of stem cells in the human, 

which led us alternatively to direct ICV deployment.

Results in our late-stage patients were unimpressive, per-

haps ADSCs injected in earlier phases of the disease could 

have more effect.

AD

Intracerebral administration of ADSCs in amyloid precur-

sor protein/presenilin 1 (APP/PS1) double transgenic mice 

improves the recovery of spatial learning/memory ability 

[84]. Intravenous administration of ADSCs has also been 

shown to have beneficial effects dementia in AD mouse 

models [85]. Overall, there is growing preclinical evidence 

that transplantation of ADSCs and/or their exosomes, may 

potentially prevent the neurodegeneration associated with 

AD [86–88]. The autoimmune component of this disease 

remains to be elucidated [89–91]. The use of ADSCs, 

exosomes, and SVF have all shown promising results in 

experimental models [20, 84, 85, 87, 92–98]. Our results in 

humans, especially with reduction in P-tau levels and actual 

growth of hippocampal tissue, are exceedingly promising. 

In addition, our improvement/stabilization in MMSE scores 

underlies a clinical efficacy of SVF in the human as well.

MS

MS-P is the progressive form of this well-known inflamma-

tory disease affecting myelinated axons. Once diagnosed, 

this disease leads to degeneration of the myelin sheath sur-

rounding neural axons, leading to loss of motor and sensory 

function subsequently leading to death. There is evidence 

supporting a role the antiinflammatory capacity of ADSCs 

for this devastating disorder [99–101], as well as their neu-

ron-rebuilding capability. Indeed, both SVF and ADSCs 

appear to be effective in animal models of this disease [99, 

102–111]. Bowles, et al., reported an advantage of SVF over 

ADSCs in the experimental autoimmune encephalomyelitis 

(EAE) model in the mouse [103, 104].

Complications and serious adverse events (SAE)

Of the patients with apparent aseptic meningitis, it is known 

that patients with intraventricular hemorrhage experience 

BBB breakdown and expression of various cytokines—

which have induced the breakdown. Theoretically, injection 

of SVF is not dissimilar to an intraventricular hemorrhage 

in that the cells creating the inflammation are similar in both 

respects. We fully expected signs of meningismus in our 

patient population and indeed observed these signs in 11% 

of patients. All recovered perfectly within 2–5 days post 

symptoms. In theory, such a disruption of the BBB would be 

clinically advantageous for the patient in that this is a natural 

(albeit uncomfortable) method of breaking open the BBB; 

thus, allowing the stem cells to better and more thoroughly 

infiltrate the parenchyma [112–116]. It is possible that this 

complication correlates with volume of SVF injected, den-

sity of the non-nucleated cells in the SVF specimen, inclu-

sion of pro-inflammatory endogenous red blood cells in the 

SVF product, etc. This will remain to be elucidated in the 

future with larger sample sizes. “Lipoid meningitis” has 

been reported as a consequence of heterologous implantation 

of abdominal fat into the cerebrum for neurosurgical proce-

dures [117, 118]. In this series of patients, our experience 

with transient meningeal irritation is similar to these reports.

One patient required conversion of his lumboperitoneal 

shunt to a VP shunt for signs of hydrocephalus. It is entirely 

possible that injection of these cells can lead to this com-

plication either due to ependymal irritation, irritation of 

arachnoid villi, or mechanical obstruction of the aqueduct 

of Sylvius. For this reason, the authors are recommending 

VP shunting rather than Ommaya reservoir placements for 

all future patients.
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Secondary endpoints

Secondary endpoints showed very promising results in the 

AD and MS-P groups. In particular, the AD patient, who 

received 12 injections over 3 years, showed signs of hip-

pocampal volume increase on  NeuroQuant® volumetric 

MRI to the median volume for age-matched patients without 

AD and a stabilization of his MPI and MCI Screen™. This 

phenomenon has never been reported after pharmaceutical 

use. Another AD patient, who received 4 injections, showed 

P-tau and ATI trending toward normalization over 8 months. 

The MS-P patient who received 15 injections over 3 years 

went from being wheelchair bound to ambulating with a 

walker and driving a car without any change in medical ther-

apy. There was an anecdotal correlation between improve-

ment and number of injections. There was also an anecdo-

tal decline in patients 4-6 weeks after injection, prompting 

patients to return for a “booster” injection and supporting 

the need for multiple injections over time.

Of our 31 patients, 6 died. The typical patient with MSA/

PD+ and ALS usually survives no longer than 3–6 years 

after diagnosis. Of our 12 patients with these diagnoses, the 

6 deaths were in these two subgroups; their deaths were due 

to respiratory complications of their diseases. During our 

3-year follow-up we would expect this number of deaths 

in these subgroups of patients. Earlier intervention in these 

subgroups may yield better results.

Conclusion

We report the safety of single and repeat ICV injection of 

autologous fresh SVF containing progenitor stem cells in 

113 injections in 31 patients followed for 3 years. ADSVF 

was safely injected into the human brain ventricular system 

over multiple injections via an implanted conduit. The sec-

ondary endpoints of clinical improvement or stability were 

promising in the AD and MS-P groups in particular. Compli-

cations can be minimized with prophylactic dexamethasone 

and the use of a VP shunt in lieu of an Ommaya reservoir. 

The mortality in patients with ALS and MSA appeared 

unaffected by the cells, but this population may need earlier 

intervention.

The limitation of this study is the innate patient variabil-

ity of the number of cells and the quality of cells injected. A 

Phase 2, FDA-approved study using this injection technique 

with SVF-derived autologous pure MSC stem cell lines can 

address this variability. Purified autologous cells can be 

accurately dosed and qualitatively verified pre-injection. We 

plan submission of this Phase 1 work to the FDA to progress 

to a Phase 2 trial in the AD and MS-P populations and in 

early-diagnostic subsets of ALS and MSA.
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