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Abstract

The Collective Variables Dashboard is a software tool for real-time, seamless exploration of

molecular structures and trajectories in a customizable space of collective variables. The Dash-

board arises from the integration of the Collective Variables Module with the visualization

software VMD, augmented with a fully discoverable graphical interface offering interactive

workflows for the design and analysis of collective variables. Typical use cases include a pri-

ori design of collective variables for enhanced sampling and free energy simulations as well

as post-mortem analysis of any type of simulation or collection of structures in a collective

variable space. A combination of those cases commonly occurs when preliminary simulations,

biased or unbiased, reveal that an optimized set of collective variables is necessary to improve

sampling in further simulations. Then the Dashboard provides an efficient way to intuitively

explore the space of likely collective variables, validate them on existing data, and use the re-

sulting collective variable definitions directly in further biased simulations using the Collective

Variables Module. We illustrate the use of the Dashboard on two applications: discovering co-

ordinates to describe ligand unbinding from a protein binding site, and designing volume-based

variables to bias the hydration of a transmembrane pore.
*Corresponding author: henin@ibpc.fr
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1 Introduction

Research using biomolecular modeling and simulations nearly always resorts to geometric descriptors for

analyzing molecular trajectories, or structures and their differences. Such descriptors are low-dimension

functions of atomic coordinates, and are often referred to as collective variables (abbreviated to colvars).

Collective variables can be used either for post-mortem analysis of sets of structures and simulated trajec-

tories, or to modify simulations on the fly in order to restrain, enhance, or otherwise bias the motion of

chosen degrees of freedom. When preparing a biased simulation, these variables are chosen based on pre-

vious knowledge. Constructing such a reduced space of relevant coordinates constitutes a dimensionality

reduction process. This step may be performed as an automated, data-driven approach, where dimen-

sionality reduction algorithms determine optimal collective variables for a given problem.1, 2 Still, these

approaches are a topic of active research, and have not reached the stage where they can be applied as

routine, black-box tools. Furthermore, an intuitive interpretation of the reduced representation is always

desirable eventually. Some dimensionality reduction methods are explicitly aimed at constructing inter-

pretable coordinates.3 In most current applications, the dimension-reduction process is knowledge-based

rather than data-driven: the practitioner’s intuition, guided by available information, is the driving force.

Choosing and refining the relevant collective variables requires a large expense of human time and effort.

Thus, any workflow using collective variables sooner or later requires an intuitive connection between the

space of atomic coordinates and the space of collective variables. These variables are typically analyzed

and visualized using combinations of more or less ad hoc analysis software and generic plotting tools.

The new tool we publish here provides an immediate, intuitive connection between existing molecular

data and a very broad space of possible collective variables, resulting in more robust reduced descriptions

with reduced researcher time and effort. It provides a concrete, visual sense of the abstract mathematical

objects that are collective variables. In our hands, this has proven just as useful to scientists in training as

to experienced practitioners.

A fundamental everyday tool of molecular biophysicists is molecular graphics software, such as VMD.4

In addition to graphics, VMD already provides some ways to access geometric measurements on static

structures or along trajectories. The simplest form consists in picking pairs, triplets and quadruplets of

atoms with the mouse to label distances, angles and dihedral angles respectively. Analysis plugins of-

fer more variables that can be analyzed, notably root-mean-square deviations (RMSD), H-bonds and salt

bridges, and more collective properties such as contact maps, radial distribution functions, or projections

along normal modes. These represent only a limited subset of the variables that are used for biasing or

analyzing simulations.

The Collective Variables Module (Colvars)5 is a software library integrated with the standard releases

of major molecular simulation and analysis software packages, including LAMMPS,6 NAMD7 and VMD.4

Additionally, patched releases of GROMACS8 have also become available recently. Colvars can be used to
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modify the simulated dynamics according to various types of biasing algorithms acting on functions of the

atomic Cartesian coordinates; we refer to those functions as collective variables, or colvars in short. The

Colvars Module implements adaptively biased, free energy simulations such as variants of the Adaptive

Biasing Force (ABF)9–11 and metadynamics.12, 13 The complete space of collective variables can be used

for adaptive free energy calculations using eABF,11 which lifts some technical requirements of ABF.9, 14

Within VMD, the Collective Variables Module functions as an analysis tool, allowing for computation and

analysis of colvars through a scripting interface based on the Tcl language used by VMD’s command line

interface.

The workflow typically begins with exploratory, unbiased simulations. The resulting trajectories can

inform the design of biased simulations aimed at more fully exploring regions of interest and sampling

those metastable degrees of freedom that are deemed relevant by the scientist. Information gleaned from

biased simulations may in turn suggest an improved space of collective variables, resulting in the iterative

workflow illustrated by the solid arrows in Figure 1.

colvar design

colvar definition biased simulation

trajectory analysis

VMD + Colvars dashboard

Figure 1: A generic collective variables modeling workflow. Several steps are unified and simplified using

the Dashboard, and transfer between analysis and simulation is streamlined thanks to the compatible Colvars

Module interface.

This process is limited by two types of obstacles. The fundamental obstacle is the difficulty of defining

and discovering the most relevant degrees of freedom in high-dimensional systems; this may require itera-

tions on any existing structural or simulation data. Technical obstacles arise in the various steps necessary

to design, implement and calculate collective variables on-the-fly or when post-processing simulations. The

Collective Variables Module (Colvars) is a broad-purpose toolbox, and writing correct input files making

use of all its features requires some time and care. Analyzing trajectories may involve running several

pieces of specialized software in succession, either manually, or with the help of in-house scripts. The

Colvars Dashboard is a software helper designed to accelerate this process going from data to information,

to knowledge. Even In the case of a purely data-driven dimensionality reduction such as PCA, dihedral

PCA,15 FCA16 or TICA,17–19 the Colvars Dashboard allows for inspecting the data in the reduced space, to

build a posteriori a physical intuition about the reduced space.

There are currently graphical interfaces for VMD that interact with the collective variable software

PLUMED:20 Plumed-GUI21 as a writing aid, and METAGUI22, 23 for clustering and free energy analysis.

Both plugins invoke PLUMED as an external executable, passing data from VMD’s memory as temporary

files; in addition, PLUMED-GUI offers configuration templates and an interface for plotting variables using
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the Colvars Module. However, the present tool provides a much broader access to the functionality of the

Colvars Module. In particular, it exploits the binary-level integration of Colvars with VMD to provide a

fully interactive workflow where variables are updated in real-time and the molecular and collective variable

visualizations are tightly linked.

Use cases for the Colvars Dashboard include:

• Defining colvars a priori based on a single known structure;

• Exploring different colvars on a set of known structures;

• Analyzing simulated trajectories in colvar space;

• Refining colvars based on simulated trajectories.

Below we describe the design and implementation of the Dashboard, explain its uses through two types

of typical tasks (visualizing a given set of variables, and designing new variables). We then illustrate its

functionality on two real-world scientific applications: exploring protein-ligand binding and unbinding, and

designing and visualizing variables based on volumetric maps.

2 Design and implementation

The functional, user-visible design of the Dashboard is summarized in Table 1.

Task Technical solution

explore previously defined colvars load config file

use colvars from Dashboard in future simulations save config file

rapidly create new colvars colvar templates

choose among available components link to list of components in online documentation

rapidly define chosen components component templates and online documentation

define atoms involved in variables insert atoms from representations, labeled atoms, or VMD selections

double-check atom selections show colvar atoms in molecular representation

explore dependence on atomic coordinates colvar gradient visualization

explore dependence on specific molecular motion interactively move atoms/molecules and update colvars

explore time-behavior of variables timeline plots

explore correlation between variables pairwise scatterplots

visualize specific high-dimensional quantites rotation display, volume map display

other quantitative analysis export timeline to external software

Table 1: Summary of useful tasks in a collective variable workflow, and the corresponding technical solu-

tions implemented by the Colvars Dashboard

Internally, the Colvars Dashboard is written in the scripting language Tcl, and calls four programming

interfaces:
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1. the Collective Variables Module, to create and query colvars;

2. VMD, to drive the display of specific trajectory frames, interact with atom selections and representa-

tions, and visualize Cartesian gradients;

3. Tk, to create the graphical user interface;

4. the VMD plugin Multiplot, for interactive plots.

The Collective Variables Module (Colvars) is already included in official binary releases of VMD, and

thus available to all users on Linux and MacOS platforms since version 1.9.2, and on Windows platforms

starting with VMD 1.9.4. The Dashboard graphical plugin is also distributed with VMD 1.9.4 and later

(the recommended version as of publication is 1.9.4a54). The latest version can be downloaded at any time

from the Colvars public repository on GitHub (https://github.com/Colvars/colvars/tree/

master/vmd/cv_dashboard), and updated in an existing VMD installation without recompiling.

2.1 Underlying library: the Collective Variables Module, distributed with VMD

Colvars5 is a portable C++ library, with an interface class colvarproxy that allows for writing new inter-

faces to C++, C, or Fortran programs without modifying the core of Colvars. In MD simulation programs,

Colvars is called at every timestep to update variables and biases as needed. In contrast, in VMD, access

to Colvars features is enabled on-demand, through its rich Tcl scripting interface. This interface, already

available since the Colvars versions included in the VMD 1.9.3 release, allows for dynamically allocating

the library, creating and deleting variables and biases, parsing configuration files, and computing quantities

such as the variables’ values and atomic gradients on the fly, using the current atomic coordinates stored by

VMD in memory. The Dashboard here introduced leverages this existing scripting interface, and binds the

most commonly used functionality to simple graphical objects such as menus and buttons.

2.2 Discoverability and documentation

The Dashboard’s graphical interface is designed to be simple and discoverable. Rather than menus, all

functions are visible as clearly labeled buttons, making the learning curve quite smooth. Power users may

use an extensive collection of keyboard shortcuts, some of which are directly mentioned in the interface,

while all are included in the documentation.

The documentation is available online as part of the VMD edition of the Colvars user’s guide.24

The Configuration Editor window, the use of which requires the most background information, features

direct links to the relevant sections of the online documentation. The template configurations provides syn-

tax examples for virtually all features, while the online documentation provides a reference and background

explanations.
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2.3 Interaction with MD engines

To ensure a smooth workflow, the same Colvars configuration file should be used in sequence in the Dash-

board and in MD simulations, without modifications. The compatible MD engines are all those with func-

tional interfaces with Colvars: LAMMPS,6 NAMD,7 and our public, patched version of GROMACS.8 Most

of these programs use different unit systems from each other: in particular, LAMMPS is used for a broad

variety of application domains and offers a choice of multiple unit systems that can be set by the user. To

enable interoperability with all MD engines, the Colvars/VMD interface performs unit conversion between

VMD’s internal units and the current set of units for Colvars. The unit system can be changed within the

graphical interface. A “units” flag is added to the Colvars configuration to avoid accidental use of incon-

sistent units: running Colvars with a specific MD engine will trigger an error condition if the configuration

specifies units that are inconsistent with those of the engine.

3 Task 1: Visualizing a given set of variables

The main window 2 features a two-column table listing the variables on the left, and their values for the

current timestep on the right. Vector variables such as vector distances or orientation quaternions can be

expanded to select their scalar components individually for plotting. By default, values are updated in real-

time to track the current trajectory frame displayed by VMD, however this can be disabled especially for

computationally expensive sets of variables that are not suitable for real-time display.

Figure 2: The Collective Variables Dashboard main window.
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3.1 Loading and saving configuration files

Key to integration of the interactive colvar modeling process into the simulation workflow is the ability to

read and write the same configuration files that would be used in biased simulations in any of the supported

MD engines. The selection of colvars that has been refined interactively can be saved at any time. The

Dashboard only handles collective variables themselves, not biasing methods. therefore, the configuration

of biases should be kept in a separate file and loaded separately in MD simulations engines.

3.2 Visualizing trajectories simultaneously in VMD’s molecular representations

and in colvar space

Figure 3: Plots of collective variable values along a loaded trajectory. Left: Timeline plot. Right: Pairwise

plot. The vertical blue line in the timeline and blue dot in the pairwise plot indicate the current frame in

VMD.

The timeline view provides a plot of the values of a selection of variables as a function of time (Figure 3).

A vertical time cursor points to the current frame of the trajectory being displayed, and moves when the

trajectory is animated. Conversely, clicking on any point in the timeline window brings VMD’s display to

that frame in the trajectory. Left and right arrow keys on the keyboard navigate in the trajectory, while up

and down keys provide a zoom in/zoom out functionality to access detailed features of long trajectories.

The pairwise scatter plot can be created for pairs of scalar colvars (or scalar components of vector

variables), and is useful for exploring correlation between variables (see Figure 9). As in the timeline view,

trajectory animation is visualized, with a colored dot representing the current frame. A click on a dot brings

the VMD representation to the frame in question.

3.3 Exploring the dependence of colvars on atomic coordinates

Atom coordinates can be modified interactively using VMD tools (translate and rotate atoms, residues, and

molecules using a mouse or another device). Then the table of colvars can be updated almost instantly

by pressing F5, allowing for a near-real-time exploration of changes in collective variables in response to
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changes in structure.

In addition, the Dashboard features a real-time visualization of the gradient of an arbitrary scalar vari-

able with respect to Cartesian coordinates (Figure 4). In this visualization, the gradient of the variable with

respect to the position of each atom is represented by an arrow starting from the atom in question. Like

the colvar values, the gradients are computed on the fly, and can be updated near-instantly after a change in

coordinates. This is particularly useful for variables whose mathematical expression is too complex to build

a clear intuition, such as dihedral principal components15 (Figure 4), or distance to bound configuration25

(Figure 11).

Figure 4: VMD molecular representation of the backbone of deca-alanine, featuring the atomic gradients of

its first two dihedral principal components,15 as defined in reference.26 Gradients of the the first and second

mode are represented by yellow and orange arrows, respectively. The arrow length scale is arbitrary but

identical for both coordinates, allowing for comparing the gradient magnitudes.

3.4 Dedicated visualizations for specific quantities

Colvars offers a special type of variable to represent rotation operators, encoded as unit quaternions. In

particular, the orientation component describes the collective rotation of a group of atoms with respect

to reference coordinates, computed based on a roto-translational least squares fit.5 This is particularly useful

to capture the collective rotation of a flexible object in a robust way. Rotations have three degrees of freedom

(e.g. two defining the axis and one defining the angle of rotation), and are difficult to visualize in an intuitive

way. The Dashboard offers a specific representation for such variables, illustrated in Figure 5. An arrow

represents the axis of rotation, oriented so that the rotation angle is between 0 and 180 degrees in the direct

(counterclockwise) sense. The angle itself is represented by two segments protruding from the axis.

The Dashboard also facilitates the visualization of volume maps associated with existing colvars: see

Section 5.2 for details.
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Figure 5: Graphical representation of a rotation operator characterizing the orientation of a molecule with

respect to a reference, viewed orthogonal to (left) and along (right) the axis of rotation. Here the molecule

of interest (red) and the reference (blue) are two copies of a 15-alanine helical peptide. The rotation operator

is represented by the yellow arrow, oriented along the axis of direct rotation, and the angle between the two

side “arms” is the angle of rotation.

4 Task 2: Designing new collective variables

4.1 Editing colvar configurations

The Dashboard includes a Collective Variable Editor dialog, which presents the text of the configuration

string, as well as a number of helper features that make creating and modifying variables much faster and

less error-prone. The editor contains direct links to relevant sections of the online documentation. To

soften the learning curve, most of the features can be inserted as templates which require only limited

modifications. In addition, possible syntax errors are handled gracefully: while the configuration of an

existing variable (or several variables) is being edited, its previous working configuration is backed up. If

the user submits an edited configuration string and Colvars returns an error, the complete error message

is displayed, and the editor window is shown again, providing a chance to fix the error. If the window is

closed before any changes can be applied successfully, the saved, functioning version of the variable(s) is

restored.

4.2 Inserting atom selections

A significant part of defining collective variables is to specify which atoms are involved in the various groups

used to calculate the variable. The Dashboard provides several helper features to create atom selections:

1. From a VMD atom selection text. This helps leverage the very powerful atom selection language of

VMD. Furthermore, atom selections created this way are dynamic: the selection text is embedded in

the Colvars configuration string as a special comment, and recomputed every time the configuration is

parsed, possibly adapting to changes in coordinates, or topology if the same configuration is applied

to different molecules.

2. From a VMD representation, selected via a dropdown menu. This lets the user immediately transpose
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atom groups being visualized into collective variables.

3. From ”picked atoms” selected using the mouse in VMD’s graphical window.

The last helper is a file picker dialog, which allows for inserting the paths of files containing reference

coordinates or atom group definitions, together with the relevant keywords.

Figure 6: Colvar configuration editor window.

Atom groups used by existing variables can be visualized by selecting them and clicking “Show Atoms”

in the main window. This creates VMD representations showing atoms as spacefill, with distinct colors for

each atom group. This is useful to check that the designated atoms correspond to those intended, preventing

issues such as off-by-one errors due to conflicting atom numbering schemes between software. Note this is

the reverse operation to creating an atom group directly from a representation.

4.3 Inserting templates

The editor interface allows for inserting templates for all types of basis functions, and for colvars with

specific options whose syntax might be difficult to recall. The templates contain placeholders for key pa-

rameters, and comments that function as a first level of inline documentation. More in-depth documentation

is available by clicking the documentation links.

4.4 Inserting geometric observables from VMD

VMD lets users select and measure distances (Bonds), angles, and dihedral angles between particles by

selecting them with the mouse in the graphical window. These geometric quantities can be directly inserted

as collective variable component definitions.

4.5 Setting up biased MD simulations

Typically, a project will start with unbiased simulations for an agnostic, local exploration of configuration

space. The Dashboard greatly reduces the time needed to test new ideas for collective variables based on
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any such trajectories, biased or unbiased, to use in further biased simulations. Although major MD engines

support “reruns”, analysis of colvars in VMD is much quicker, and the new variables are evaluated frame by

frame in real time. This is even more relevant when analyzing simulations made with one MD engine but

planning simulations with another one to take advantage of unique features in each package. The Colvars

Module allows this transferability, and the Dashboard facilitates it. In particular, changes in unit systems

between different MD engines are handled gracefully and safely.

5 Example applications

5.1 Exploring ligand binding and unbinding

5.1.1 Monitoring ligand unbinding simulations

Quantitative studies of ligand unbinding kinetics raise major sampling challenges, which can be alleviated

through the use of a number of enhanced sampling methods. Many of those require a precise definition of

the bound state as well as a suitable coordinate to track the ligand’s progress. In those tasks, the use of a

tool like the Dashboard enables the user to test multiple colvar candidates in order to find what best suits the

problem. The example discussed in this section consists in the unbinding of a pharmacological ligand from

the N-terminal domain of the heat shock protein 90 (Hsp90) chaperone (Figure 7). The system was first

explored using Adiabatic Bias MD (ABMD)27 (implemented in Colvars/NAMD), which generated a family

of possible exit trajectories under a mild non-equilibrium bias. Then an unbiased sample of exit trajectories

as obtained using the Adaptive Multilevel Splitting (AMS) method.28 The Colvars Dashboard was used in

the analysis of trajectories generated with both methods.

The analysis of the ABMD trajectories using VMD reveal that the ligand detaches from the protein first

by its aromatic ring, followed by its bicycle structure (Figure 7). This suggests the distances from those

two sections of the ligand should be considered separately. Figure 8 shows the Dashboard session used in

the exploration of new collective variables based on that idea. The time plot confirms that the aromatic ring

is the first to disconnect from the protein, but also shows that this represents an intermediate state, as the

ligand stays a while bound only through its bicycle.

Another result from the analysis of those trajectories using Colvars Dashboard is that only one compo-

nent of the distance vector is necessary to describe the ligand’s exit. Figure 9 shows the axis used in this

new coordinate, along the direction of the cavity opening. The pairwise plot between the distance and the

projection onto the plane shows a poor correlation, but the pairwise plot with the projection onto the axis

exhibits a high correlation, suggesting this new variable as a suitable progress coordinate. Furthermore,

compared with the isotropic distance, it provides a better resolution between states where the ligand is at a

small distance from the protein and escaping along the axis leading away from the site, and those where the

ligand is interacting nonspecifically with the protein surface outside the cavity.

The two trajectories generated with the AMS method exhibit a long residence time within two distance

intervals distinct from the initial bound state, suggesting the existence of two additional metastable states.

11



Figure 7: Left) The Hsp90/ligand system. The ligand is represented as ball-and-stick, and the protein as

cartoon, with residues chosen to represent the binding site colored green. Right) In a zoomed view of the

binding site, the two bound states are represented by a collection of configurations from simulations, shown

as sticks: the main bound state is colored blue, and the secondary one is colored orange. The latter was

discovered by analyzing ABMD trajectories.

Figure 8: Colvars visualization of ABMD escape trajectories using the Dashboard. Left: Timeline of the

center of mass distance to the protein cavity (black), the distance of the bicycle (red) and the distance of the

aromatic ring (green). Right: Pairwise plot that correlates the global site-ligand distance distt with the

distance from the aromatic ring d2

Because those intervals did not coincide but did overlap, it was necessary to find a new coordinate that

could separate them, to distinguish them within the AMS approach.

A rapid visual inspection of the trajectories suggested that the larger, bicyclic moiety of the ligand expe-

riences a rotation between the two modes (Figure 10). The Dashboard allowed for quickly testing rotation

around different axes to separate those modes. Figure 10 show plots for the global rotation angle from the

reference (orientationAngle component), and angles of rotation around selected axes (spinAngle
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Figure 9: The axis (in red) used in the new explored coordinate. Both pairwise plots show the correlation

between the distance to the cavity and its projection onto, respectively, the plane parallel to the cavity

opening (left), and the axis perpendicular to it (right). The latter exhibits a high correlation with the isotropic

distance in this trajectory.

Figure 10: Left) Positions of the ligand’s bicyclic moiety for the two AMS trajectories. The two modes

differ by a rotation. At the bottom the axis used for the coordinate candidate (spinx). Right) Timeline

plots of 4 candidate coordinates along trajectories sampling each of the two states (upper and lower panel,

respectively). The angle of rotation around the x axis (spinx, red curve) proved a solid coordinate to separate

the two states.
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component).5 The time plot of the different trajectories shows that the rotation angle around the x axis (in

blue in Figure 9) was successful in separating the states. These orientations of the ligand were computed

relative to the protein, using the moving frame of reference formalism inherent to Colvars.5

In this example the use of Colvars Dashboard was key in the exploration of unknown metastable states,

the design of a better suitable progress coordinate, and the separation of metastable states. In the latter, the

comparison between different coordinates was critical, as the relevant axis of rotation could not be deter-

mined by eye. Finally, the Colvars Dashboard was able to aid in the setting of new unbinding simulations,

both in the progress coordinate and in the coordinates used to define different bound states.

5.1.2 DBC coordinate for ligand binding

Computational prediction of absolute binding affinities can also require careful design to ensure conver-

gence, including a potentially complex ensemble of binding restraints connected to the definition of the

binding site.29 The Streamlined Alchemical Free Energy Perturbation (SAFEP) approach25 offers a simpler

protocol based on flat-bottom restraints on a single, scalar binding coordinate named distance-to-bound-

configuration (DBC). DBC is a ligand RMSD with respect to an ideal bound pose, computed in a moving

frame of reference tied to the binding site.25, 30 DBC captures the ligands conformational changes as well

as its translational and rotational motion with respect to the binding site. Crucially, DBC is orthogonal to

all internal degrees of freedom or the receptor, so that restraint forces on DBC do not bias the receptor’s

internal dynamics.

As the DBC coordinate aggregates many degrees of freedom, it is helpful to make its meaning more

intuitive by visualizing its gradient for different ligand configurations. Close to the reference bound pose,

DBC is mostly sensitive to the ligand conformation and orientation (as in Figure 11), while at larger values,

it reflects mainly global translation away from the site.

Multimodal binding requires particular care to be correctly described, especially in quantitative affinity

predictions.

e−β∆G =
∑
i

e−β∆Gi , (1)

where ∆G is the global effective binding free energy, ∆Gi is the free energy of binding to individual mode

i, and β = 1/kBT . Different modes in the DBC distribution (or those of other descriptors) can easily be

related to different binding modes using the timeline view of the Dashboard.

5.2 Volumetric maps and Multi-Map variables

5.2.1 Support for volumetric maps by the Colvars module and the Dashboard

When using enhanced-sampling MD in biophysical applications, two frequent requirements are the ability

to tackle complex changes in macromolecular shape, and the ease of implementation of a suitable CV. One

approach aimed at attaining both is defining a CV as a function of a volumetric map, expressed on a three-

dimensional grid of Cartesian coordinates. Additionally, the use of multiple maps to represent the distinct
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Figure 11: Gradients of the Distance-to-Bound-Configuration (DBC) coordinate visualized on a bound

pose of Hsp90 and a pharmacological ligand. The arrows represent gradient components on atoms of the

ligand and those protein atoms involved in the binding site definition. The gradient components on ligand

atoms represent roto-translational as well as conformational degrees of freedom, whereas the components

on protein atoms correspond to the purely roto-translational, rigid-body motion obtained by least-squares

fit.5, 25

relevant states of one macromolecule (e.g. a protein) or many molecules (e.g. a lipid membrane) allows for

reliable thermodynamic sampling, a capability provided by the Multi-Map method.31

The Colvars Dashboard is uniquely useful in assisting with the preparation and the analysis of volumet-

ric map and Multi-Map collective variables. VMD already provides functionality to analyze and manipulate

atomic structures alongside volumetric maps, a feature that has been exploited previously in the framework

of the MDFF structural refinement protocol.32, 33 Recently, the Colvars module has been extended with

the ability to access directly the volumetric maps loaded in VMD’s memory, and compute CVs based on

volumetric maps, such as “Multi-Map” variables.31 The Colvars Dashboard leverages this capability to

assist the two Tasks listed above, allowing to compute volumetric map-based CVs within VMD. This can

be particularly advantageous when the maps themselves are being prepared in VMD, such as the case of

Multi-Map CVs based on protein density maps, as exemplified in ref.34

Additionally, the Dashboard’s graphical user interface allows for one-click selection and visualization

of the maps themselves, consistent with how groups of atoms and gradient vectors are also selected and

visualized (see Table 1). Figure 12 shows molecular renders including graphical representations of the

volumetric maps generated through the Dashboard. This is achieved in a convenient manner by querying

VMD for the minimum and maximum values of each map, and using the mid-point between them to define

a reasonable contour level (of course, such choice may be customized per user preference).
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5.2.2 Example application: wetting/dewetting of a region confined in a protein’s structure

Beyond inducing shape changes in membranes31 or proteins,34 a useful biological application of volumet-

ric map-based CVs is enhancing the sampling of different wetting states in a confined protein cavity. A

simplified example of this was already shown in ref.,31 using a single-wall carbon nanotube in water as a

minimalistic system. Here, to illustrate the use of map-based CVs on a biologically significant system, we

consider the transmembrane pore of the M2 proton channel of the influenza virus. The pore of this channel

contains several clusters of water molecules, many of which resolved crystallographically,35 in dynamic

exchange with each other and with the outer water buffer. Using a previously equilibrated snapshot of the

protein embedded in a lipid bilayer36 and following an additional 50 ns of equilibrium MD simulation at

300 K and 1 atm, the spatial distribution of water molecules in the pore region was examined a different

levels of resolution.

Three different representations of the water density in the pore were used to generate map-based CVs for

enhanced sampling. First, the distribution of water oxygen atoms in a cylindrical region of 6 Å radius and

40 Å length was computed using VMD’s volmap occupancy command (Fig. 12A). Second, the same

distribution was convoluted to a Gaussian kernel with half-width σ ' 1.5 Å, using the volmap density

command (Fig. 12B). Third, a smoothed step-function was used to define a volumetric map equaling 1

within the cylindrical region described above and zero outside of it; a smooth transition was modeled as the

right branch of a Gaussian function (Fig. 12C):

φ(r) =

 1 if r ≤ r0

exp
(
− (r−r0)2

σr
2

)
if r > r0

(2)

where r is the radial distance from the pore axis, r0 = 6 Å, σr = 1 Å and similarly for the axial coordinate

z with ±z0 = 19 Å and σz = 1 Å.

All three maps were recorded on three-dimensional grids with spacing of 1 Å. In the remainder, any

small discrepancies between volumetric map values computed in VMD and NAMD due to different in-

terpolation methods (linear vs. cubic splines) are ignored; for additional details on this issue, consult the

Multi-Map tutorial.37

The maps were loaded into VMD, and each was used to define a CV based on the mapTotal Colvars

function.31 The number of water molecules in the cylinder, as well as the values of the three variables

computed by Colvars/VMD are plotted in Fig. 12D-F, along with their block-averages over 1 ns and 10 ns

segments.

Steered-MD simulations were carried out using a moving harmonic restraint with a force constant of

approximately (1, 000 kcal/mol)/〈ξ〉eq
2, where 〈ξ〉eq is the mean value of ξ in each equilibrium MD

simulation (Fig. 12D-F); the center of the restraint was initialized at ξ0 = 〈ξ〉eq and moved toward ξ0 = 0

in 50 ns. The trajectories of the values of ξ (Fig. 13A-C) show that all three definitions are suitable for

artificially changing the number of water molecules in the transmembrane pore, with the corresponding

water molecule count n decrease from ∼60 to about ∼20. The latter value is approximately the number of
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A B C

D E F

Figure 12: Shown are the M2 transmembrane channel (shown as ribbons) as well as three volumetric maps

containing respectively: (A) the unsmoothed histogram of oxygen atoms from equilibrium MD simulation,

(B) the smoothed histogram of the same, and (C) a smoothed step function defined on a cylindrical region;

each contour is drawn at 50% of the map’s maximum value. Also shown in panels (D-F) are the values of

the CVs based on the same volumetric maps, computed in VMD using the Colvars Dashboard and plotted

as a function of the number of water molecules in the same selection.

waters at the two interfaces between the pore and the outer water buffer, indicating that full dewetting of

the transmembrane pore was achieved in all three simulations.

Nonetheless, the degree to which each map CV ξ may be used as a proxy for the exact number of waters

varies with respect to how smooth the map is. This is particularly true when considering the relatively small

equilibrium fluctuations (Fig. 12D-F). For example, using the exact histogram (volmap occupancy)

leads to relatively poor correlation between the map CV, ξ, and the number of waters, n (Fig. 12D). Us-

ing the smoothed density map (volmap density) largely improves correlation, both at the equilibrium

distribution (Fig. 12E) and under the moving restraint (Fig. 13B). Lastly, the most accurate match between

ξ and n is achieved with a cylindrical map, which implements the same selection criteria making up for n

following the same cylindrical shape.

The above behavior is attributable to the spatial location of the gradients of each map, which in turn

determine the atomic forces. As long as regions with lower water density (e.g. at the pore’s boundaries)

are geometrically accessible to water molecules, forces aimed at decreasing the corresponding ξ may lead
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A B C

Figure 13: Values of volumetric-map CVs during 50 ns-long steered-MD simulations, with the restraint

center initialized near the initial value of each variable and directed toward zero. Similarly to Fig. 12,

the CV defined from the occupancy histogram (A), the smoothed density map (B) and the cylindrical step

function (C) are shown.

to movement of water molecules along the membrane plane. On the other hand, if the map decays to zero

but far outside of the pore’s boundaries (e.g. near the lateral face of the cylinder), forces are only applied to

atoms positioned near the two interfaces with the outer buffer (e.g. the two end faces of the cylinder), and

only the latter achieves transport inside or outside of the pore.

This example illustrates two important facts:

1. The Colvars Dashboard is useful at speeding up the process of defining a suitable CV based on

volumetric maps. In the example shown, best agreement between the CV ξ and the size of the

VMD selection n were achieved by using a smoothed version of the same step function that defines

the selection itself. Alternatively, the next best choice was provided by a smoothed density map

computed from equilibrium MD.

2. Through analysis of equilibrium and non-equilibrium trajectories using the Colvars Dashboard, it

becomes easier to define statistically the relationship between the CV ξ and another quantity n, which

is in turn more intuitive to understand but at the same time cannot be used as a CV because it is

intrinsically discontinuous. That same relationship may be used later to express PMFs computed

along ξ as a function of the second more intuitive parameter. This is particularly useful when dealing

with Multi-Map variables, where the mean values of a relatively complex CV ξ can be expressed in

terms of a more physically intuitive parameter.31

6 Conclusion

The Colvars Dashboard of VMD constitutes a new type of interface to the versatile Collective Variables

Module, making it more useful for the purpose of fostering intuition, while easing its learning curve. The

interface is designed to be both accessible to newcomers, and very effective for expert users. It facilitates the
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definition of new variables from the wide repertoire afforded by the Module, and their visualization, tightly

integrated with the molecular graphics of VMD. The Dashboard also seamlessly integrates with biased

simulations using any of the molecular simulation software interfaced with the Collective Variables Mod-

ule. We expect that the Dashboard will help turn collective variable analysis from a somewhat specialized

computational method to an accessible tool for understanding any simulated molecular trajectory.
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[5] Giacomo Fiorin, Michael L. Klein, and Jérôme Hénin. Using collective variables to drive molecular

dynamics simulations. Mol. Phys., 111(22-23):3345–3362, 2013.

[6] Aidan P. Thompson, H. Metin Aktulga, Richard Berger, Dan S. Bolintineanu, W. Michael Brown,

Paul S. Crozier, Pieter J. in ’t Veld, Axel Kohlmeyer, Stan G. Moore, Trung Dac Nguyen, Ray Shan,

Mark Stevens, Julien Tranchida, Christian Trott, and Steven J. Plimpton. Lammps - a flexible simula-

tion tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer

Physics Communications, page 108171, 2021.

[7] James Phillips, David Hardy, Julio Maia, John Stone, Joao Ribeiro, Rafael Bernardi, Ronak Buch,
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