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Abstract

Human leucocyte antigen (HLA) sensitisation, including the 

formation of antibodies against HLA, can cause serious ef-

fects in patients receiving blood. Under certain circumstanc-

es, donor HLA antibodies in the blood product can trigger 

the patient’s granulocytes to release mediators that cause 

transfusion-associated lung injury (TRALI), a serious compli-

cation of transfusion. The HLA systems of both donor and 

patient are involved in transfusion-associated graft-versus-

host disease, which is a rare disease with a high mortality. 

Patient HLA antibodies can destroy incompatible platelets 

and may cause refractoriness to platelet transfusion. Identi-

fication of a patient’s HLA antibody specificities is necessary 

for issuing compatible platelets to overcome refractoriness. 

Many techniques for the detection and identification of HLA 

antibodies have been developed, including complement-

dependent cytotoxicity assay, bead-based assays, the plate-

let adhesion immunofluorescence test, and the monoclonal 

antibody-specific immobilisation of platelet antigens assay. 

Different strategies for the selection of HLA-compatible 

platelets are applied. These strategies depend on the breadth 

of antibody reactivity and range from avoiding single HLA 

antigens in the platelet concentrates issued to apheresis of 

platelets from HLA-identical donors. The mechanisms of HLA 

sensitisation and the efforts made to provide compatible 

blood products to sensitised patients are reviewed in this 

article from the perspective of clinical transfusion medicine.

© 2019 S. Karger AG, Basel

Introduction

Several groups reported on antileucocyte antibodies in 
patient sera in the year 1957 [1–3]. In the following years 
the human leucocyte antigens (HLA) were discovered 
step by step, and their relevance for the transplantation of 
solid organs and for the transplantation of haematopoi-
etic stem cells was recognised.

The HLA system did not play a role for transfusion of 
blood. Blood had been transfused for decades without re-
alising what an immunological barrier the HLA system 
can actually be for the transfer of allogeneic cells. The ma-
jor reason for unimpeded transfusions is that erythro-
cytes, which were by far the largest and clinically most 
relevant cell population in the transfused blood compo-
nents, whether whole blood in the beginning or red cell 
concentrates later on, carry only very few HLA molecules 
on their surface. This low antigen density protects the red 
cells from the attack by HLA antibodies or specific T cells 
and allows transfusion to sensitised patients without hae-
molysis. It took until 1969 to establish a connection be-
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tween erythrocytes and the HLA system because a clinical 
relevance was missing: the recently described Bennett-
Goodspeed red cell antigen [4] was identified 6 years lat-
er to represent the HLA-B7 antigens on red cells [5]. At 
that time, most clinically relevant blood group systems 
had already been discovered [6].

Increasing treatment of patients with leukaemia re-
quired more and more platelets for the treatment of 
bleeding or for prophylactic transfusion. Platelets have a 
short lifespan (8–12 days in vivo) [7], which is why trans-
fused platelets cause an only short increase of the patient’s 
platelet count. The platelet count repeatedly fails to in-
crease after transfusion in some of these patients, a condi-
tion which is called refractoriness to platelet transfusion. 
HLA antibodies are the cause in about 20% of refractori-
ness. As little as HLA interfere with red cell transfusion, 
for successful platelet transfusion paying attention to 
HLA antigens and HLA antibodies may become crucial. 
In addition, HLA antibodies are involved in a very rare 
but dramatic transfusion reaction, transfusion-associated 
lung injury (TRALI). Plasma, platelets, and even red cell 
concentrates containing only minimal volumes of donor 
plasma can transfer HLA antibodies from the donor into 
a patient. Under certain conditions the patient’s granulo-
cytes are triggered by HLA antibodies and release cyto-
toxic mediators. Pulmonary oedema may develop within 
minutes and often requires intubation and intensive care.

Numerous efforts were made to investigate the mech-
anisms of HLA sensitisation and to find ways to prevent 
it. Laboratory methods for detection and identification of 
HLA antibodies were developed. The apheresis technique 
was used and further developed in order to yield thera-
peutic doses of platelets from HLA-compatible donors. 
These and other aspects will be reviewed in this article.

Causes and Mechanisms of HLA Sensitisation

HLA Sensitisation during Pregnancy
HLA sensitisation results from exposure to alloanti-

gens, as it occurs in transplantation of solid organs, after 
transfusion of blood, or during pregnancy. Pregnancy is 
a major cause of HLA sensitisation. Half of a foetus’ genes 
are allogeneic and so are many of the cellular antigens. 
The mother’s immune system tolerates the foetal tissue 
growing in the uterus, but can simultaneously mount a 
humoral and cellular immune response against paternal 
antigens, including the HLA. This “immunological para-
dox of pregnancy” [8] is still not understood. The cells of 
the cytotrophoblast and of the syncytiotrophoblast form 
the border between embryonic and maternal tissue. They 
lack HLA-A and HLA-B, but express HLA-G, an atypical 
class I HLA molecule that protects the embryonic cells 
from lysis by natural killer cells [9]. This and other mech-

anisms help the embryonic or foetal cells to evade the rec-
ognition by the maternal immune cells. However, during 
growth of the placenta, cells of the syncytiotrophoblast 
become apoptotic and will be degraded and shed cellular 
debris, including foetal DNA, into the maternal circula-
tion. Foetal DNA can be found in maternal plasma from 
7 weeks after gestation; its concentration is high enough 
to enable foetal genotyping [10]. It is not known whether 
the debris of these immunologically camouflaged cells 
can elicit an immune response to classical class I HLA, but 
there are other cells escaping from the uterus into the ma-
ternal circulation: foetal blood vessels in the chorionic 
villi are separated from maternal blood in the intervillous 
spaces by a thin cell layer. Foetomaternal haemorrhage 
can occur if this cell layer loses its integrity and foetal 
erythrocytes and leucocytes are released into the maternal 
blood [11]. It is well known that RhD-positive foetal red 
cells can cause the formation of anti-D in an RhD-nega-
tive mother. The mother’s immune response to the foetal 
cells is very effective; high titres of maternal anti-D can 
cause severe and even fatal haemolytic disease of the foe-
tus and the newborn. In the same way, foetal leucocytes 
may elicit maternal antibody formation against leucocyte 
antigens, including the HLA. In contrast to antibodies di-
rected against, e.g., red cell antigens, platelet-specific gly-
coprotein antigens, or granulocyte antigens, maternal 
HLA antibodies normally do no harm to the foetus.

The rate of HLA sensitisation that can be found de-
pends on several variables when women with pregnancy 
in their history are studied; it increases with the number 
of pregnancies, it depends on the sensitivity of the method 
used, i.e., bead-based solid-phase assays will find higher 
rates than complement-dependent cytotoxicity (CDC) as-
says, and it depends on what time after delivery the moth-
ers are investigated. After their first pregnancy, 1–4% of 
women were found to have class I HLA antibodies when 
tested with an agglutination assay [12] or with the CDC 
assay [13]. Multiparous women were found to have sensi-
tisation rates ranging from 20 to 50% [12–15]. HLA class 
II antibodies were found by CDC assay in the sera of 14% 
of primigravidae and in the sera of 28% of multigravidae 
[15]. In one study, 294 women were retested 3 months af-
ter delivery, and it was found that the sensitisation rate as 
tested by CDC assay had increased from 18 to 21% [14]. 
When the same group of women was tested with a bead-
based assay, the rate at delivery was 45% and increased to 
54% when they were tested 3 months later. Of these wom-
en, 20% had class I antibodies, 8% had class II antibodies, 
and 26% had both class I and class II antibodies. Over 
years and decades antibody titres may fall below the detec-
tion threshold. In another study, 3,992 parous women 
were tested years after delivery [16]. The women were 
grouped according to the time since their last delivery: 
within the last 10 years, between 10 and 20 years, between 



Weinstock/SchnaidtTransfus Med Hemother 2019;46:356–368358
DOI: 10.1159/000502158

20 and 30 years, and more than 30 years since their last 
delivery. The sensitisation rates found by a bead-based 
method declined from 31 to 26, 22, and 18%, respectively.

HLA Sensitisation by Platelet Concentrates
Blood components transfer large amounts of HLA 

molecules into the recipient: red cells, platelets, and con-
taminating leucocytes carry HLA molecules in their 
membranes, and plasma carries soluble HLA molecules. 
Red cells are not the major source of transfused HLA; 
only about 90 HLA molecules/red cell (range 40–550) 
were found on their surface [17, 18]. Platelets, in contrast, 
carry way more HLA (between 50,000 and 120,000 HLA 
molecules/cell), although their surface is markedly small-
er than that of red cells [19]. Platelets only express class I 
molecules, predominantly HLA-A and HLA-B [20, 21]. It 
was suggested that platelets absorb HLA molecules that 
have been shed by other cells into the plasma [22, 23]. In 
a recent investigation, however, HLA-A*0201 molecules 
were prepared from platelets that presented different 
peptides in their antigen recognition site, including pep-
tides that had derived from glycoprotein IX, a molecule 
which is predominantly expressed by platelets. The au-
thors concluded that these HLA-A*0201 molecules, 
therefore, must have been assembled in a megakaryocyte 
or its precursor cell [24].

HLA Sensitisation by Plasma
HLA molecules are present in abundance in plasma. 

HLA class I protein was found in concentrations between 
0.25 and 4.1 µg/mL [25, 26]; 1 µg of HLA class I protein 
equals about 1 × 1013 HLA molecules when calculating 
with a molecular weight of 55 kDa. For HLA class II mol-
ecules similar concentrations up to 11 µg/mL were re-
ported [27, 28]. Therefore, between 0.25 × 1013 and 4.1 × 
1013 HLA class I molecules/mL fresh frozen plasma, up to 
9.6 × 1010 molecules/mL albumin preparation, and up to 
2.09 × 1011 HLA class I molecules/mL immunoglobulin 
preparation are transfused into patients [29]. The role of 
soluble HLA in sensitisation has not been investigated ex-
haustively. It has been stated that in patients with renal 
insufficiency who had received plasma only, soluble HLA 
elicited the production of HLA antibodies [30]. Soluble 
HLA class I molecules may, for example, integrate into 
low-density lipoproteins [31] and may be phagocytosed, 
degraded, and presented by macrophages and other 
phagocytic cells of the recipient. B cells and T cells may 
recognise the presented peptides and mount a humoral 
immune response to the allogeneic HLA. Others ob-
served an immunosuppressive effect for soluble HLA, at 
least in mice. When the mice were pretreated with puri-
fied, recombinant soluble HLA-B7, their humoral re-
sponse to a challenge with leucocytes carrying HLA-B7 
on their membrane was significantly blocked [32].

HLA Sensitisation by Leucocytes
Leucocytes present in red cell and platelet concentrates 

became the main suspects [33, 34]. Peripheral blood lym-
phocytes carry up to 250,000 HLA class I molecules on 
their cell surface [35, 36]. Other than platelets and red 
cells, leucocytes also carry HLA class II molecules. They 
may shed HLA molecules into the patient’s plasma, which 
are taken up and presented by antigen-presenting cells of 
the patient. More important is probably the fact that leu-
cocytes also carry costimulatory proteins. Patient lym-
phocytes, which are specifically directed against the HLA 
of the donor, recognise the allogeneic HLA molecules and 
bind to them. The costimulatory molecules on the do-
nor’s leucocytes stimulate and activate the patient’s lym-
phocytes. When early work showed that the use of leuco-
cyte-reduced platelets and red cells prevented HLA sen-
sitisation [33, 37], efforts were made to reduce the number 
of leucocytes in blood components.

Efforts Made to Reduce HLA Sensitisation

The awareness that leucocytes are the major cause of 
HLA sensitisation fostered the development of methods 
which either inactivated HLA-bearing cells by ultraviolet 
B irradiation [38, 39] or which reduced the leucocytes in 
red cell concentrates and in platelets [40, 41]. In addition 
to lower HLA sensitisation rates, there were other good 
reasons to reduce the leucocytes in blood components: 
leucocytes can carry intracellular pathogens, including 
cytomegalovirus or human T-cell lymphotropic virus, 
and can release cytokines and other immunologically ac-
tive substances into the blood component, which may 
cause febrile or allergic transfusion reactions.

Differential centrifugation is one of the techniques 
used to reduce leucocytes. It enables the separation of 
whole blood into red cells, plasma, and a layer between 
red cells and plasma, which resembled a buffy coat. This 
buffy coat-like layer contains the major part of the leu-
cocytes and is separated from the red cells and the plas-
ma. Differential centrifugation was further developed by 
introduction of a special mechanical clamping device to 
produce leucocyte-depleted red cell concentrates. This 
device was also used to separate bone marrow haemato-
poietic stem cells from ABO-incompatible red cells [42]. 
In the 1980s leucocyte adhesion filters became the stan-
dard technique [43]. Prestorage filtration reduces the to-
tal number of approximately 3 × 109 leucocytes found in 
500 mL of whole blood by more than 99.9% to 1 × 106 or 
less.

Leucocytes in platelet concentrates were reduced by 
81% only in a small study [44]; the difference between the 
sensitisation rates did not reach statistical significance. 
The results of several other studies did not reach statisti-
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cal significance either (reviewed by Vamvakas [45]). The 
large TRAP study [39] enrolled more than 500 patients 
and found a significant reduction in HLA sensitisation in 
women who had never been pregnant and in men from 
32% in the control group (non-filtered platelets) to 9% in 
the group receiving filtered platelets. When the earlier 
and smaller studies were reviewed in a meta-analysis, the 
results of the TRAP study were confirmed [45].

After many countries and institutions had introduced 
universal pre- or poststorage leucocyte filtration, only few 
studies on the success of these measures with respect to 
HLA sensitisation were published. One study investigat-
ed 617 patients and found a reduced HLA sensitisation 
(from 19 to 7%) and refractoriness (from 14 to 4%) [46]. 
However, two other studies did not find lower rates of 
HLA sensitisation after introduction of leucocyte filtra-
tion [47, 48].

Leucocyte filtration may have reduced, but has not 
eliminated, HLA sensitisation. Still 2–9% of patients 
with no pregnancies or transfusions in their history are 
sensitised by transfusion of filtered red cells or platelets 
and produce HLA antibodies [39, 46, 49]. Further, sen-
sitisation by pregnancy will be unaffected by these mea-
sures.

Laboratory Testing for HLA Antibodies

CDC Assay
The classical and best-known assay for the detection of 

HLA antibodies is the CDC assay [50]. It was introduced 
in 1964 and is still the gold standard for the allocation 
crossmatch procedure in organ transplantation [51]. 
Trays with 60 or 72 flat wells holding a maximum of  
10 μL that fit onto an inverted microscope are used. One 
microlitre of a lymphocyte suspension is placed in a well 
and 1 μL of patient serum is added. After incubation, a 
few microlitres of complement-active human or rabbit 
serum are added. If patient antibodies have bound to the 
lymphocytes, they can now activate the added comple-
ment and cause the lysis of cells. Addition of a dye that 
enters only dead cells allows the detection of cytotoxic 
HLA antibodies. IgM, IgG1, and IgG3 are able to activate 
complement; IgG2 and IgG4, which do not activate com-
plement, are not detected by the CDC assay. Further, an 
appropriate density of IgG bound to the lymphocytes is 
required for binding and activation of C1, the first com-
ponent of the complement system. The CDC assay will 
therefore not detect low-titre HLA antibodies. The per-
centage of reactive wells is given as percent panel reactive 
antibodies. Low panel reactive antibody values indicate 
the presence of singular HLA specificities in a serum, 
whereas highly sensitised patients have panel reactive an-
tibody values up to 100%.

Platelet Adhesion Immunofluorescence Test
With the platelet suspension immunofluorescence test 

[52], platelet-bound antibodies, including glycoprotein-
specific antibodies, isoagglutinins, drug-dependent anti-
bodies, and HLA class I antibodies, can be detected. This 
test was simplified by taking advantage of the platelets’ 
ability to adhere to glass surfaces [53]. Suspensions of re-
agent platelets are placed on the marked fields of a glass 
tray, allowing the platelets to adhere. Excess suspension 
is removed and the platelets are overlaid with patient se-
rum. Antibodies present in the serum bind to the platelets 
and are detected using fluorescence-conjugated antihu-
man IgG antibodies and a microscope (Fig. 1A). Com-
pared to the CDC assay, the platelet adhesion immuno-
fluorescence test (PAIFT) is more sensitive; it detects 
HLA antibodies with 2- to 3-fold lower titres. The PAIFT 
is a valuable tool for crossmatching donor platelets.

Monoclonal Antibody-Specific Immobilisation of 
Platelet Antigens
The monoclonal antibody-specific immobilisation of 

platelet antigens (MAIPA) assay was initially developed to 
test patient sera for antibodies against human platelet an-
tigen (HPA) [54], but it is also an excellent tool for the in-
vestigation of HLA antibodies and crossmatching of plate-
lets. Intact reagent platelets are incubated with patient se-
rum suspected to carry anti-HLA antibodies. The platelets 
are then washed and incubated with a mouse monoclonal 
antibody directed against a different epitope on the glyco-
protein under investigation, adding up to a bimolecular, or 
in the presence of patient antibody trimolecular, complex 
(Fig. 1B). In case of HLA antibody testing the monoclonal 
antibody is directed against beta-2 microglobulin. After a 
second washing step the platelets are lysed and the HLA 
molecules are released from the membrane into the super-
natant, which is transferred onto a microtitre plate coated 
with goat antimouse IgG. The HLA molecules are immo-
bilised and the presence of patient antibody is detected by 
enzyme-linked antihuman IgG. As it is for the PAIFT, the 
MAIPA assay is more sensitive for detection of HLA anti-
bodies than the CDC assay [55].

Luminex-Based Bead Assays
The Luminex technology was introduced some years 

ago. It consists of a flow cytometer with two lasers and  
a set of up to 200 polystyrene beads which are identifi-
able by their individual fluorescent dye. One of the lasers 
(635 nm) induces the beads to emit their bead-specific 
light, while the second laser (532 nm) causes phycoery-
thrin (PE)-conjugated substances to emit light at 573 nm. 
In case of HLA antibody assays the beads are coated with 
HLA molecules [56]. Beads for antibody screening carry 
HLA molecules with different specificities, beads for an-
tibody identification carry only one HLA specificity per 
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Fig. 1. A PAIFT. Platelets adhere to glass 
trays and are overlaid with patient serum. 
Platelet antibodies bind to their cognate 
antigens and are detected by fluorescence-
labelled dyes by using a microscope. B 
MAIPA assay. Reagent platelets are incu-
bated with patient serum containing HLA 
antibodies. After washing, a mouse mono-
clonal antibody directed against beta-2 mi-
croglobulin (green) is added and the plate-
lets are lysed. Antibody-HLA complexes 
are centrifuged into the supernatant and 
carried onto microtitre plates coated with 
goat antimouse IgG (blue). The HLA mol-
ecules are immobilised and presence of 
 patient antibody is detected by enzyme-
linked antihuman IgG. C Luminex-based 
bead assays. Polystyrene beads, which are 
identifiable by their individual fluorescent 
dye, are coated with HLA molecules. One 
of the lasers induces the beads to emit their 
bead-specific light (i.e., the bead’s ID), the 
second laser causes PE-conjugated sub-
stances to emit light. For each bead passing 
the flow chamber its ID and its PE mean 
fluorescence are saved to listmode files. 
HLA, human leucocyte antigen; MAIPA, 
monoclonal antibody-specific immobilisa-
tion of platelet antigens; MFI, mean fluo-
rescence intensity; PAIFT, platelet adhe-
sion immunofluorescence test; PE, phyco-
erythrin.
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bead type (single-antigen beads [SABs]). After incuba-
tion with patient serum, the beads are washed and PE-
conjugated antihuman IgG is added. Beads carrying HLA 
that have bound patient antibody now also carry PE-con-
jugated detection antibody. The flow cytometer simulta-
neously records which type of bead is passing the flow cell 
and whether the passing bead has the PE-conjugated an-
tibody bound. The ID and the intensity of the PE fluores-
cence are registered by the system for each bead and can 
be analysed using a special software (Fig. 1C).

The SAB assay can be easily performed and is very sen-
sitive, but shows two unwanted effects. High-titre anti-
bodies that bind to the beads may activate the comple-
ment system. Activated complement components inter-
fere with the detection of the antibodies and cause false 
low or even negative results [57, 58]. This effect can be 
circumvented by pretreatment of the serum by dilution, 
heat inactivation, treatment with dithiothreitol, or by ad-
dition of EDTA to the serum [59]. The second effect de-
rives from denaturation of HLA antigens during the man-
ufacturing process of the beads. HLA molecules devoid of 
beta-2 microglobulin or HLA molecules lacking the pep-
tide [60] in the antigen recognition site may be present on 
the beads [61, 62]. Such altered molecules may give false-
negative results, or they may cross-react with non-HLA 
antibodies and give false-positive results [63–65]. The 
mean fluorescence intensity values depend on the manu-
facturer of the test kit [66], the lot used [67, 68], and the 
pretreatment of the sample [57]. For these reasons, no 
consensus cut-off mean fluorescence intensity value ex-
ists for clinically relevant antibodies in organ transplanta-
tion [69] or platelet transfusion. Another approach was 
tried to identify clinically relevant antibodies: the HLA-
SAB assay had been modified to distinguish between 
non-complement-fixing and complement-fixing IgG. 
Exogenous C1q is added to the HLA-SAB and C1q bind-
ing to patient HLA antibodies is detected using fluores-
cent-conjugated antihuman C1q antibody. C1q binding 
depends on IgG subclass (IgG1 and IgG3), on the level of 
antibodies bound to the bead [57], and on technical arte-
facts that interfere with IgG or C1q binding [70]. The use 
of C1q-SAB has been suggested for both organ transplan-
tation [71, 72] and platelet transfusion [73], but its value 
for clinical routine is uncertain [74].

Platelet Refractoriness

Clinical conditions may cause increased consumption 
or destruction of platelets. Based on studies in patients 
with acute myeloid leukaemia or haematopoietic stem 
cell transplantation, these conditions include, but are not 
limited to, bleeding, fever, sepsis, graft-versus-host dis-
ease (GVHD), disseminated intravascular coagulation, 

splenomegaly, HLA antibodies, HPA antibodies, and 
medications. Transfusion of platelets in such patients 
may not lead to the expected rise in platelet numbers in 
the posttransfusion count. Refractoriness is diagnosed 
when after at least two consecutive transfusions of “fresh” 
(issued as soon as possible after production, latest within 
2 [75] to 3 [76] days) ABO-compatible platelets increase 
or the platelet count is unsatisfactory. There is lack of 
agreement on whether the count should be done 1 h or 
20–24 h after transfusion and what formula [77] should 
be used for correcting for the patient’s blood volume and 
the number of platelets transfused [78]. One simple, clin-
ically oriented approach to diagnose refractoriness could 
be the finding of an increment of less than 10 × 109/L 
20–24 h after transfusion [79].

In 16–18% of patients refractory to platelet transfusion 
HLA antibodies and in 2–4% antibodies against HPAs are 
detected [80, 81]. These antibodies destroy incompatible 
platelets and are the cause of platelet refractoriness. Con-
trary to red cells, the destruction of platelets normally 
does not cause clinical signs.

Transfusion of Platelets to Patients with HLA 

Antibodies: Management of Refractoriness

Not all patients with HLA or HPA antibodies become 
refractory to platelet transfusions [49, 82]. In one of these 
studies, refractoriness depended on a higher titre and 
probably on other, unknown factors. In addition, patients 
receiving chemotherapy or who are otherwise immuno-
compromised may not be able to booster existing low-
titre HLA antibodies.

At the latest when a patient becomes refractory, HLA 
antibody testing and HLA-A and -B typing is advisable. 
Even if no HLA antibodies are detected, transfusing HLA-
matched platelets is worth a try in order to rule out anti-
bodies below the detection limit or interferences with the 
assay used which cause false-negative results.

For patients with low panel reactivity, platelets can be 
selected that avoid the cognate HLA antigens. HLA anti-
gens have private and public epitopes. A public epitope is 
shared with other HLA antigens, which serologically 
form a cross-reactive group (CREG) [83]. HLA antibod-
ies directed against a public epitope of an HLA antigen 
may therefore cross-react with the other antigens of this 
CREG. In addition to donors expressing the cognate HLA 
antigens, also donors with HLA antigens belonging to the 
same CREGs should be ruled out. The selection of com-
patible donors can be refined by identifying related epi-
topes using a bead-based single-antigen method for anti-
body identification in combination with the HLAMatch-
maker software [84, 85]. The corrected count increments 
at 1 h of platelets from donors selected by this latter ap-
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proach were comparable to the increments of platelets 
from donors without HLA-A and -B mismatch.

Another option is to crossmatch platelets from a donor 
panel and select the crossmatch-negative units [86]. Nei-
ther the patient’s HLA type nor the antibody specificity 
needs to be known for this approach. With crossmatch-
negative platelets the increment is comparable to that ob-
served with HLA-matched platelets. A large donor panel 
must be at disposal and must be tested when compatible 
platelets are searched for patients with a high panel reac-
tivity. This unfavourably increases the workload for the 
laboratory.

For highly sensitised patients, donors without an HLA-
A or -B mismatch (i.e., HLA-identical donors or donors 
homozygous for one HLA-A or/and one HLA-B antigen) 
are the first choice. For some phenotypes, compatible do-
nors are very rare and strategies to expand the donor pool 
were developed. Patients often do not make antibodies 
against HLA antigens that share public antigens with their 
own HLA antigens. Donors with HLA antigens from the 
patient’s CREGs can be tried and often expand the num-
ber of compatible platelet donors. Further, some donors 
express the HLA antigens B12, B8, or B35 at very low lev-
els on their platelets [87, 88]. For donor search, these an-
tigens can be added to the permissible antigens.

If HLA-matched platelets do not result in a satisfying 
increment, the patient should be tested for HPA antibod-
ies [89].

Transfusion of Red Cells to Patients with HLA 

Antibodies

HLA Expression on Red Cells
Red cells express only few copies of HLA antigens. The 

antigen density varies between individuals and seems not 
to be inherited [90]. The antigen density on the red cells of 
an individual also can vary over time. The reasons for this 
are not well understood, but an increase in HLA expression 
on red cells was observed during infections [91], in autoim-
mune disease [92], and in haematological disease [93]. In 
addition, individuals with HLA-A28, -B7, -B8, or -B17 ex-
press significantly more HLA on their red cells than those 
without [17, 94]. As with platelets, there is an ongoing dis-
cussion whether the HLA on erythrocytes are absorbed 
from the plasma [95] or are intrinsic red cell antigens [96].

Reagent red cells may react with patient sera containing 
HLA antibodies. Morton et al. [5, 97] established the con-
nection of HLA specificities with the Bennett-Goodspeed 
antigens. Bga correlated with the presence of HLA-B7 on 
the red cells, Bgb with HLA-B18, and Bgc with HLA-A28 
(Table 1). The concordance is not always complete, which 
can be explained by HLA antibodies reacting with addi-
tional antigens within the CREG. For example, anti-HLA-

B27 often cross-reacts with Bg(a+) red cells, or a strong-
reacting anti-HLA-A2 likely will react with Bg(c+) red cells. 
Patient sera containing specific HLA antibodies reacting 
with the “wrong” Bg antigens, or reagent red cells denoted 
as Bg(a+) reacting with patient sera containing no anti-
HLA-B7, often confuse in routine blood bank work.

Reagent cells for red cell antibody screening and anti-
body identification are selected for low or missing HLA 
expression by testing with HLA antisera. Some distribu-
tors use strongly reacting patient sera and denote their 
cells Bga, Bgb, or Bgc, others use monoclonal anti-HLA 
antibodies and mark the reactive cells with “Bg” only. De-
spite labelling reagent cells positive for Bg antigens and 
despite these cells reacting in the antiglobulin test, the 
Bennett-Goodspeed antigens, i.e., the HLA antigens, are 
not classified as blood group antigens because red cells 
are unsuitable for HLA phenotyping [98].

HLA Antibodies and the Transfusion of Red Cells
HLA antibodies normally do not haemolyse trans-

fused red cells. Many patients and many multigravidae 
have HLA antibodies, and statistically many of these pa-
tients receive red cells from donors carrying HLA anti-
gens the patients’ antibodies are directed against. For ex-
ample, the antigen HLA-A2 is found with more than 50% 
of an European population [99], and anti-HLA-A2 is one 
of the most prevalent antibody specificities. Thus, many 
red cell transfusions are incompatible regarding HLA, 
but only very few reports have been published on reduced 
survival of the transfused red cells [100] or on acute or 
delayed haemolysis [101–103]. Activation of the comple-
ment system requires bound IgM antibodies or two or 
more IgG bound in close proximity, which allow binding 
and activation of C1q. Similarly, initiation of phagocyto-
sis requires complement-coated, IgM-coated [104], or 
IgG-coated cells. Again, several IgG bound in close prox-
imity initiate or at least enhance phagocytosis [105]. Oth-
er than platelets, most red cells do not carry enough HLA 

Table 1. Association of Bennett-Goodspeed antigens with HLA 
specificities and their CREGs

Bg 
antigen

Correlation 
with

Cross-reacting with CREG 
[83]

Bga B7 B8, 13, 22 (54, 55, 56), 27,  
40 (60, 61), 41, 42, 47, 48, 59, 
67, 81, 82

7C

Bgb B18 B8, 14 (64, 65), 16 (38, 39), 59, 
67

8C

Bgc A28 
(A68, A69)

A2, 9 (23, 24), B17 (57, 58) 2C

CREG, cross-reactive group; HLA, human leucocyte antigen.
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molecules to allow activation of the complement system 
or phagocytosis by HLA antibodies. In addition, the re-
sidual donor plasma present in red cell concentrates 
transfers soluble HLA, which (partially) inhibit the re-
cipient’s HLA antibodies.

Additional antibodies with “undetermined specifica-
tion” in the column agglutination technique were noticed 
in one of the reports on haemolysis [101]. In the other two 
reports, red cell antibody testing was done in the tube 
technique. It was not investigated whether more sensitive 
techniques, such as column agglutination technique or 
the use of polybrene, would have revealed low-titre blood 
group antibodies as the cause of the haemolysis [106].

It cannot be excluded that in very rare situations red 
cells with a high HLA antigen density are transfused to 
patients with high-titre HLA antibodies or to patients 
with IgM HLA antibodies, and that these antibodies at-
tack and destroy red cells. The possibility of haemolysis 
by HLA antibodies, therefore, should be kept in mind, but 
will be a very rare event.

Other Adverse Effects of HLA in Transfusion

Febrile Non-Haemolytic Transfusion Reactions
The main clinical signs of febrile reactions are chills fol-

lowed by a rise in temperature of 1 or 2  ° C during or short-
ly after transfusion. Pyrogenic cytokines are thought to me-
diate the fever and other possible symptoms such as rigor, 
discomfort, and nausea. These cytokines can be released 
from donor leucocytes during storage into the plasma or 
the additive solution of the blood component [107, 108]. 
The release of cytokines may depend on production and 
storage conditions because not all studies found elevated 
cytokines in platelet concentrates [109, 110]. Cytokines also 

can be released by donor leucocytes after transfusion when 
patient leucocyte antibodies, including HLA antibodies, 
have activated the cells [111, 112]. In addition, patient leu-
cocytes may release cytokines and cause febrile reactions 
when donor HLA antibodies are present in the transfused 
blood product [113]. Without leucocyte reduction, febrile 
reactions occur in 1 out of 200 transfusions, with platelet 
concentrates more often involved than red cells [114, 115]. 
The use of leucocyte-reduced blood products may help de-
crease the frequency of febrile reactions by 30–50% in red 
cell transfusion and by 70–90% in platelet transfusion [114, 
116]. Febrile reactions occurred in about 0.1% of transfu-
sions despite the use of leucocyte-reduced blood products 
[114] and are, together with minor allergic reactions, the 
most frequent adverse effects of transfusion.

Transfusion-Associated Lung Injury
TRALI is defined as an acute respiratory distress syn-

drome that develops during or within 6 h after transfu-
sion in the absence of other causes of acute respiratory 
distress syndrome and in the absence of circulatory over-
load [117]. One explanation for the pathogenesis of a 
TRALI is the “two-hit-model” [118]. It is thought that 
clinical events, including recent surgery (< 48 h), infec-
tion, and massive transfusion (first hit), make a patient 
susceptible for TRALI, which is triggered by a subsequent 
transfusion (second hit). In most TRALI cases the trigger-
ing blood component contained donor-derived antibod-
ies directed against human neutrophil antigens, HLA 
class I, or HLA class II. There is clinical and experimental 
evidence that neutrophilic granulocytes play a central 
role in the pathogenesis of TRALI [119]. HLA class I an-
tibodies may bind to the endothelium and trap and acti-
vate neutrophils via their Fc receptor [120]. Human neu-
trophil antigen antibodies and HLA class I antibodies also 
may bind directly to the cognate HLA molecules on the 
surface of the neutrophils and activate them [121]. Anti-
bodies directed against HLA class II likely bind to and 
activate the recipient’s monocytes. The activated mono-
cytes cause the neutrophils to release mediators including 
cytokines, oxygen radicals, and proteases, which damage 
the capillary endothelium and initiate the pathophysio-
logical changes leading to the symptoms of TRALI [122]. 
Leucocyte antibodies were detected in 80% of TRALI cas-
es; in 20% of cases antibodies were not detected [123] or 
other substances were suspected to have triggered TRALI 
[124].

It was realised that TRALI was one of the major caus -
es of transfusion-associated death. Since most TRALI cas-
es were caused by donor leucocyte antibodies, many 
countries implemented strategies to mitigate the risk for 
TRALI by producing plasma from selected donors only 
[125–131]. The selection criteria included male donors 
only, male donors without transfusion history, female do-

Table 2. Patients at risk of transfusion-associated GVHD

Congenital immunodeficiency
Intrauterine transfusions
Neonate with exchange transfusion

Prior to autologous stem cell collection and after transplantation 
until reconstitution of the immune system
Allogeneic stem cell transplantation until reconstitution of the 
immune system
GVHD in progress

Hodgkin’s lymphoma
Non-Hodgkin’s lymphoma
Therapy with purine analogues

Recipients of HLA-matched blood components
Recipients of blood products donated by relatives

GVHD, graft-versus-host disease; HLA, human leucocyte 
antigen.
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nors without history of transfusions or pregnancies, fe-
male donors tested negative for the presence of leucocyte 
antibodies, or a combination thereof. These measures re-
duced the plasma-related risk of TRALI by 80–90% [126, 
131, 132].

Transfusion-Associated GVHD
Acute GVHD is regularly observed with allogeneic 

haematopoietic progenitor cell transplantation and, in a 
mild form, accepted as a graft-versus-leukaemia effect. 
Transfusion-associated GVHD can develop not only in 
immunocompromised patients (Table 2), but also in im-
munocompetent patients after transfusion of leucocyte-
containing blood components. For the latter, a certain 
HLA constellation between donor and recipient is neces-
sary, in which the recipient’s lymphocytes do not recog-
nise the transfused leucocytes as allogeneic. For example, 
the donor is homozygous for an HLA haplotype and the 
recipient is heterozygous for the same haplotype. In this 
constellation the recipient’s lymphocytes will accept the 
donor lymphocytes as familiar, but the donor’s lympho-
cytes will mount an immune response against the host. In 
transfusion-associated GVHD, symptoms including fe-
ver, rash, diarrhoea, and liver disease develop within 8–10 
days after transfusion. Other than in transplantation-as-
sociated GVHD, the mortality of transfusion-associated 
GVHD is as high as 90%. Transfusion-associated GVHD 
can be prevented by irradiation of cellular blood compo-
nents at a minimum of 25 Gy. With this dose the DNA of 
the donor leucocytes will be severely damaged, which 
prevents proliferation of the cells and an effective im-
mune response. A similar protective effect can be achieved 
by application of pathogen inactivation procedures [133, 
134]. The risk for transfusion-associated GVHD in im-
munocompetent patients depends on the genetic varia-
tion at the HLA locus in a population. For a Europe- 
an population, the risk for HLA constellations facilitat-
ing transfusion-associated GVHD was estimated to be 
1/6,900 to 1/48,500 [135], while for the United States this 
risk was estimated to be 1/17,700 to 1/39,000. In these 
countries non-directed transfusions are not irradiated, 
unless the recipient is immunocompromised or at oth- 
er risk of developing transfusion-associated GVHD (Ta-
ble 2). In the Japanese population the risk was estimated 
as 1/1,600 to 1/7,900, which is the reason why cellular 
blood products are irradiated, even in the non-directed 
transfusion setting.

A Look into the Crystal Ball

The idea of removing HLA from the membrane of 
platelets [136–138] or leucocytes [139] has been around 
for years. Treatment of platelets with acid removed beta-

2 microglobulin and reduced HLA expression by 80–90% 
in a recent study [140]. The treatment prevented binding 
of patient HLA antibodies to the platelets, it prevented 
antibody-mediated complement activation, and it re-
duced antibody-mediated phagocytosis. The physiologi-
cal functions of the platelets remained intact after treat-
ment for at least 4 h. HLA stripping of platelets (and the 
residual leucocytes) prior to storage, during the routine 
preparation of the platelet concentrates, or, if implement-
ed, in combination with a pathogen inactivation process 
would be advantageous. Additional investigations on 
platelet function are needed, and the possibility of reas-
sembling HLA molecules [141] or of de novo synthesis 
and expression of HLA molecules [142] has to be investi-
gated. Finally, clinical studies are required. So far, 5 pa-
tients and 2 healthy volunteers have been transfused with 
acid-treated platelets by four different groups. In the 2 
healthy volunteers, recovery was 69 and 75%, respective-
ly with acid-treated platelets versus 71 and 76%, respec-
tively with control platelets [143]. In both volunteers the 
survival of acid-treated platelets was slightly reduced 
from 8 to 6 days when compared to control platelets. In 
patients, acid-treated platelets gave a corrected count in-
crement at 1 h comparable to that of HLA-matched plate-
lets [143] and stopped gastrointestinal bleeding [144, 
145]. One group did not observe a significant response to 
two acid-treated platelet concentrates [146]. In 1 patient 
a febrile reaction occurred and the observation was 
stopped 10 min after transfusion [145].

Supplying patients with HLA-stripped platelet prepa-
rations could help prevent transfusion-associated HLA 
sensitisation and overcome refractoriness.

Summary

Evidence of HLA sensitisation can be found in many 
patients. In rare cases, HLA sensitisation can be the cause 
of a severe complication of blood transfusion such as 
TRALI or transfusion-associated GVHD. Sixteen to eigh-
teen percent of patients with refractoriness to platelet 
transfusion carried HLA antibodies. Blood services suc-
cessfully implemented measures to mitigate these risks, 
including provision of HLA-compatible platelets, selec-
tion of plasma donors without sensitisation risk, and ir-
radiation of blood products. Efforts to prevent primary 
HLA sensitisation by reducing the leucocyte load of blood 
products were not as effective. Furthermore, a large part 
of HLA sensitisation occurs during pregnancy, which is 
why we will also have to deal with HLA sensitisation in 
the future. In order to further decrease the risk of HLA-
related serious transfusion reactions, the efforts to be 
made probably concern refined donor selection or more 
sophisticated processing of blood components.
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