
Human Leukocyte Antigen Complex
and Other Immunogenetic and
Clinical Factors Influence
Susceptibility or Protection to
SARS-CoV-2 Infection and Severity
of the Disease Course.
The Sardinian Experience
Roberto Littera1,2*†, Marcello Campagna3*†, Silvia Deidda4, Goffredo Angioni5,

Selene Cipri1,6, Maurizio Melis3, Davide Firinu3, Simonetta Santus7, Alberto Lai7,

Rita Porcella1, Sara Lai1, Stefania Rassu1, Rosetta Scioscia3, Federico Meloni3,

Daniele Schirru3, William Cordeddu5, Marta Anna Kowalik8, Maria Serra9,

Paola Ragatzu9, Mauro Giovanni Carta3, Stefano Del Giacco3, Angelo Restivo10,

Simona Deidda10, Sandro Orrù9, Antonella Palimodde4, Roberto Perra4, Germano Orrù11,

Maria Conti12, Cinzia Balestrieri12, Giancarlo Serra12, Simona Onali8,

Francesco Marongiu3, Andrea Perra2,8*† and Luchino Chessa2,3,12*†

1Complex Structure of Medical Genetics, R. Binaghi Hospital, Area Socio-Sanitaria Locale (ASSL) Cagliari, Azienda per la Tutela

della Salute (ATS) Sardegna, Italy, 2 Associazione per l’Avanzamento della Ricerca per i Trapianti O.d.V., non profit organisation,

Cagliari, Italy, 3Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy, 4Complex Structure of

Pneumology, PO SS Trinità, ASSL Cagliari, ATS Sardegna, Cagliari, Italy, 5Complex Structure of Infectious Diseases, PO SS

Trinità, ASSL Cagliari ATS Sardegna, Cagliari, Italy, 6Department of Medical Biotechnology and Translational Medicine, University
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Aim: SARS-CoV-2 infection is a world-wide public health problem. Several aspects of its

pathogenesis and the related clinical consequences still need elucidation. In Italy, Sardinia

has had very low numbers of infections. Taking advantage of the low genetic polymorphism

in the Sardinian population, we analyzed clinical, genetic and immunogenetic factors, with

particular attention to HLA class I and II molecules, to evaluate their influence on

susceptibility to SARS-CoV-2 infection and the clinical outcome.

Method and Materials: We recruited 619 healthy Sardinian controls and 182 SARS-

CoV-2 patients. Thirty-nine patients required hospital care and 143 were without

symptoms, pauci-symptomatic or with mild disease. For all participants, we collected

demographic and clinical data and analyzed the HLA allele and haplotype frequencies.

Results: Male sex and older age were more frequent in hospitalized patients, none of

whom had been vaccinated during the previous seasonal flu vaccination campaignes.
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Compared to the group of asymptomatic or pauci-symptomatic patients, hospitalized

patients also had a higher frequency of autoimmune diseases and glucose-6-phosphate-

dehydrogenase (G6PDH) deficiency. None of these patients carried the beta-thalassemia

trait, a relatively common finding in the Sardinian population. The extended haplotype HLA-

A*02:05, B*58:01, C*07:01, DRB1*03:01 [OR 0.1 (95% CI 0–0.6), Pc = 0.015] was absent

in all 182 patients, while the HLA-C*04:01 allele and the three-loci haplotype HLA-A*30:02,

B*14:02, C*08:02 [OR 3.8 (95% CI 1.8–8.1), Pc = 0.025] were more frequently represented

in patients than controls. In a comparison between in-patients and home care patients, the

HLA-DRB1*08:01 allele was exclusively present in the hospitalized patients [OR > 2.5 (95%

CI 2.7–220.6), Pc = 0.024].

Conclusion: The data emerging from our study suggest that the extended haplotype

HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01 has a protective effect against SARS-

CoV-2 infection in the Sardinian population. Genetic factors that resulted to have a

negative influence on the disease course were presence of the HLA-DRB1*08:01 allele

and G6PDH deficiency, but not the beta-thalassemic trait. Absence of influenza

vaccination could be a predisposing factor for more severe disease.

Keywords: human leukocyte antigen, SARS-CoV-2 infection, immunogenetic background, COVID-19 severity,

Sardinian population, alleles, haplotypes, glucose-6-phosphate dehydrogenase

INTRODUCTION

Outbreak of the coronavirus disease (COVID-19) was declared a

pandemic by the World Health Organization (WHO) on 11
March 2020 (1) and since then continues to pose a threat to the

sustainability of public health systems worldwide. Although

consensus on total mortality and morbidity has yet to be

reached, current data show that over 50 million people have

contracted the SARS-CoV-2 virus globally, and of these, more

than 1,250,000 have died (2).

Although only a few months have passed since the onset of the
pandemic, a myriad of attempts have been made to unravel the

unknowns surrounding disease pathogenesis and the related clinical

consequences. Currently, it is assumed that the mean incubation

period is4–6dayswithanestimated rangeof2–14days, althoughrare

cases of up to 27 days have been reported. The large majority of

patients have a good prognosis with an asymptomatic or pauci-
symptomatic disease course (3). However, about 20% of infected

subjects become seriously ill and 4% develop severe and even fatal

disease. Clinical features in hospitalized patients include

complications such as pneumonia and, in the most severe cases,

acute respiratory distress syndrome (ARDS). Devastating

neurological and gastrointestinal symptoms have also been

reported. Sepsis is another feared complication of COVID-19 that
can cause lasting damage to the lungs and other organs. Moreover,

heart failure, kidney failure, liver damage, hypercoagulability, septic

shock, and multiple-organ failure (MOF) have been shown to

precipitate death. The most severe cases of COVID-19 with

admission to the Intensive Care Unit (ICU) are generally more
frequent in males and the elderly, especially those with

comorbidities such as chronic cardiovascular and/or respiratory

disease (4–8).

A plethora of drugs and treatments have been tried around the

world in the battle against the pandemic but, so far, none of those

tested or included in clinical trials have yielded a significant reduction

in the morbidity and mortality rates (9). Contemporarily, the
scientific community is striving hard to produce a vaccine but in

spite of the many encouraging results, health experts warn that a

coronavirus vaccine is unlikely to be available in time to stop the

second wave of the epidemic which is expected to peak in European

countries, including Italy, this autumn or winter (10).

After China and South Korea, Italy was the first European
country to be hit by the explosive pandemic potential of COVID-

19, which sparked from the first cases diagnosed in the province

of Lodi (11) to a quickly rising toll of 250,000 infected individuals

and more than 35,000 deaths. The Northern regions of Italy were

the territories with the large majority of cases (12). A decreasing

gradient of infection levels from north to south was clearly

evident from the beginning of the epidemic, with atypical
differences even between the provinces of the most affected

regions (13).

Data published by the Italian National Institute of Statistics

(ISTAT) and the Italian National Institute of Health (ISS) on 3

August 2020 demonstrated that the number of people who had

been infected with the virus was six-fold higher than the total
number of individuals who had been identified by positive test

results for both nasopharyngeal and oropharyngeal swabs. The

seroprevalence survey on SARS-CoV-2 conducted at national

Abbreviations: G6PDH, glucose-6-phosphate dehydrogenase; HA,

hemagglutinin; NA, neuraminidase; MOF, multiple-organ failure; ARDS, acute

respiratory distress syndrome; ICU, Intensive Care Unit; SARS, Severe Acute

Respiratory Syndrome; MERS, Middle East Respiratory Syndrome; HLA, human

leukocyte antigen; MHC, major histocompatibility complex; TLR, toll-like

receptor; RT-PCR, real time quantitative PCR.

Littera et al. COVID-19 Susceptibility and Disease Course

Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 6056882

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


level showed that 1 million 482,000 individuals tested positive for

anti-SARS-CoV-2 IgG antibodies, corresponding to 2.5% of the

resident population. Data analysis confirmed the important

differences observed for spread of the infection between the

northern and southern regions of Italy, with the Islands of

Sardinia and Sicily having the lowest seroprevalence of anti-
SARS-CoV-2 IgG antibodies (0.3%) (14). The different routes of

transmission as well as the clinical, epidemiological and virologic

features of COVID-19 still need to be clarified today, at more

than 6 months from the start of the pandemic (15, 16).

While some traditional or home remedies may alleviate

symptoms of mild COVID-19, there are still no drugs or
treatments that have been shown to prevent or cure the disease.

An initially high viral load has been shown to be independently

associated with disease severity and could be influenced by host

immune responses (17). Based on the experience gained during the

previous Severe Acute Respiratory Syndrome (SARS) and Middle

East Respiratory Syndrome (MERS) epidemics, it is likely that both
innate and adaptive host immunity play a role in viral clearance,

disease severity and the different clinical manifestations of the

disease (18).

Recently published data suggest that appropriate innate and

adaptive T-cell-mediated humoral and cellular immune

responses could have a critical role in the elimination of the

SARS-CoV-2 virus and confer consequent protective immunity,
which in most cases coincides with clinical recovery (11, 19, 20).

On the other hand, an excessive cell-mediated and dysregulated

innate and adaptive immune response can lead to an aggressive

inflammatory reaction with the release of large amounts of pro-

inflammatory cytokines. This so-called “cytokine storm”—

resulting from the excessive production of cytokines by
immune cells such as the innate dendritic cells, macrophages,

natural killer (NK) cells and the adaptive T and B cells—directly

correlates with lung injury, ARDS and MOF including the

kidneys and the central nervous system and overall leads to an

unfavourable prognosis (5, 11, 21–26).

The human leukocyte antigen (HLA) class I and II molecules

are actively engaged in immune response mechanisms against
invading pathogens. Their pivotal role in viral immune response

has already been highlighted in studies performed on the two

coronaviruses responsible for SARS and MERS. Also, in SARS-

Cov-2 infection, there is evidence of how different HLA alleles of

the major histocompatibility complex (MHC) can define

individual susceptibility to infection and its spread (19).
Previous studies on different viruses have shown a correlation

between the susceptibility and/or severity of disease and the genetic

variability of HLA alleles. These alleles are critical components of

the viral antigen presentation pathway. In fact, a study carried out

on transgenic mice has shown that the DRB1*04:01 allele, which

confers susceptibility to certain autoimmune diseases, generates a

robust toll-like receptor (TLR) response and eliminates H1N1
infection. Furthermore, following vaccination and exposure to the

H1N1 influenza strain, these mice exhibited cross protective

immunity also for the H3N2 strain (27).

Interesting studies conducted on the SARS-CoV-1 virus have

identified HLA polymorphisms associated with the disease risk

in the Asian population. The HLA-B*46:01 allele was observed

with a high frequency in a group of patients from Taiwan

classified as being “probable SARS cases” from coronavirus

infection. This allele was also significantly increased in the

group of seriously ill patients (28). In Chinese patients, the

HLA-B*07:03 and HLA-DRB1*03:01 alleles closely correlated
with SARS-CoV-1 infection. Moreover, the HLA-B*07:03 and

HLA-B*60 alleles were observed with a significantly higher

frequency in patients in comparison to the expected frequency

of the general population (29). In a group of SARS-CoV-1

positive Vietnamese patients, a strong association was observed

for HLA-DRB1*12:02 in comparison to the control group (30).
Also, the HLA-C*08:01 allele seemed to confer susceptibility to

SARS-CoV-1 (31).

Immunogenetic variation inhumans isbecomingan increasingly

important target for clinical diagnosis and therapeutic intervention.

Binding between peptide epitopes and HLA proteins significantly

contributes to cellular immune response mechanisms in human
beings. Several studies describe the pivotal role of peptides in the

specificity, magnitude and quality of both humoral and cellular

immune responses. This is furthermore supported by the recent

emphasis put on the use of peptides in vaccine design and medical

diagnostics. In silico studies have greatly facilitated analysis of the

binding affinity between all the viral peptides of SARS-CoV-2 and

different HLA class I genotypes. It has been shown that the HLA-
B*46:01 allele has a low degree of binding affinity, suggesting that

subjects with this allele may have a higher risk of developing the

more severe forms of COVID-19. On the other hand, the HLA-

B*15:03 allele is reported as having the highest binding affinity for

viral peptides (32).

Another study describes high binding affinity between SARS-
CoV-2 epitopes and the HLA-A*02:06, HLA-B*52:01, and HLA-

C*12:02 alleles. In particular, two epitopes displayed strong binding

affinity for HLA-A*24:02, HLA-A*02:01, and HLA-A*02:06 (33).

Unfortunately, these two studies present mathematical predictions

that need to be clinically and experimentally evaluated and

confirmed in a suitable study population with appropriate

immunogenetic characteristics.
Researchers in Italy set up a study to investigatewhether specific

class I HLA alleles could at least partially explain the huge

differences observed for the spread of SARS-CoV-2 infection

between northern and southern Italy. They compared HLA allele

prevalence retrieved through the Italian Bone-Marrow Donor

Registry with the incidence of SARS-CoV-2 infections in the
different geographical regions. It emerged that HLA-A*25, B*08,

B*44, B*15:01, B*51, C*01, and C*03 positively correlated with the

incidence of SARS-CoV-2 infection, while HLA-B*14, B*18, and

B*49 showed an inverse correlation. After applying a multiple

regression model to eliminate confounding factors, only the

HLA-C*01 and –B*44 alleles, which are present with a higher

frequency in the northern regions of Italy, remained positively
associated with COVID-19 (34).

Sardinia is an autonomous region of Italy and the second-

largest Island in the Mediterranean Sea. The Island has one of the

lowest infection and mortality rates in Italy and on 7 November

2020 registered 11,412 positive individuals (infections: 7x10-3
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Sardinian inhabitants vs 14x10-3 Italian mainland inhabitants)

and 249 deaths (mortality: 2.18% Sardinian inhabitants vs 3.81%

Italian mainland inhabitants). Moreover, during the second wave

of the epidemic, Sardinia continued to be one of the Italian

regions with the lowest transmission rate (Rt) for SARS-CoV-2

(Sardinian Rt index = 1.16 vs Italian Rt index 1.7— http://www.
salute.gov.it/portale/nuovocoronavirus/).

The geographic isolation of Sardinia throughout history has

limited the genetic diversity of its people. The population with its

low levels of genetic polymorphism has made important

contributions to genome-wide association studies of complex

disease traits. Many disease risk alleles are shared between
Sardinian and other populations which makes it an ideal location

for the identification of immunogenetic factors potentially involved

in resistance or susceptibility to SARS-CoV-2 infection.

Based on these premises, we set up a study to investigate the

clinical characteristics and genetic traits of Sardinian patients

affected by SARS-CoV-2 infection. Particular emphasis was put
on the influence of HLA Class I and II alleles on disease

susceptibility and the varying severity of the disease course.

MATERIALS AND METHODS

A cohort of 182 patients were recruited from 1 June to 1 August

2020. All patients had been diagnosed with SARS-CoV-2 by RT-

PCRfromnasopharyngeal swab.Thepatientswere divided into two

groups according to disease severity. Thirty-nine patients had been
admitted to the Covid Unit of the SS.Trinità Hospital in Cagliari

withmoderate or severe disease (group S) and143 asymptomatic or

pauci-symptomatic patients (group A) were confined to home

quarantine. According to WHO classification, patients with

severe disease were considered to be those who needed invasive

mechanical ventilation or high-flow nasal oxygen in the hospital,

while patients classified as having moderate symptoms did not
require oxygen. Pauci-symptomatic patients presented mild

symptoms such as loss of taste or smell and/or cold or flu-like

symptoms (35). Sixhundredandnineteenhealthy controls,without

SARS-CoV-2 infection (negative forRT-PCR fromnasopharyngeal

swab), were extracted from the Sardinian Voluntary BoneMarrow

Donor Registry, which is highly representative of the genetically
homogeneous island population of Sardinia, Italy (36, 37). The

controls were selected to appropriately represent the male-to-

female ratio and genetic frequencies of the population pertaining

to the areas of central and southern Sardinia from where the

COVID-19 patients were recruited.

The HLA class I and class II allele frequencies (HLA-A, -B, -C,
-DRB1) observed in the two groups of patients (Group S andGroup

A) were compared to those of the 619 unrelated healthy controls.

Ethics Statement
Patients were recruited and enrolled in the study protocol at the

Department of Medical Sciences and Public Health of the

University of Cagliari, the University Hospital of Cagliari

(AOUCA) and the SS.Trinità Hospital of the Sardinian Regional
Company for the Protection of Health (ATS Sardegna). Written

informed consent was obtained from all patients and controls in

accordancewith the ethical standards (institutional andnational) of

the local human research committee. The study protocol, including

informed consent procedures, conforms to the ethical guidelines of

the Declaration of Helsinki and was approved by the responsible

ethics committee (Ethics Committee of the Cagliari University

Hospital; date of approval: May, 27, 2020; protocol number GT/
2020/10894). Records of written informed consent are kept on file

and are included in the clinical record of each patient.

HLA Allele Typing
DNA from nasopharyngeal swab was extracted with the Qiagen

QIAamp DNA Mini Kit (Qiagen, Valencia, CA, USA) according

to the manufacturer’s instructions. Briefly, each swab was washed
with PBS (200 µl). The recovered washing buffer was mixed with

20 µl of proteinase k and 200 µl of the AL buffer was added to the

mix. After 10 min of incubation at 56°C, the sample was processed

according to the kit instructions. Purity and quantification of total

DNA were assessed with the NanoDrop 1000 Spectrophotometer

(Thermo Fisher Scientific).

Patients and controls were typed at high resolution for the
alleles at the HLA-A, B, C, and DRB1 loci using a polymerase

chain reaction sequence-specific primer (PCR-SSP) method

according to the manufacturer’s instructions (Allele-specific

PCR-SSP kits: Olerup SSP AB, Stockholm, Sweden).

HLA typing validation was performed by Next Generation

Sequencing on 96 randomly selected samples of patients and
controls, according to a previously reported method (38). The

concordance of the two different methods was 100%.

HLA Haplotype Analysis in Patients
and Controls
Four-loci HLA haplotypes are sequences of four HLA alleles

localized in four different HLA loci: HLA-A*ai, HLA-B*bj, HLA-

C*ch, HLA-DRB1*dk, where ai, bj, ch, dk are integers (or couples

of integers in high resolution) and each index i, j, h, k = 1,2

indicates one of the two alleles in the respective HLA-locus. The

four-loci HLA haplotypes in each subject are 24 = 16, obtained by

combining four alleles localized in four different HLA loci.
Analogously, the three-loci HLA haplotypes in each subject are

23 = 8, obtained by combining three alleles localized in three

different HLA loci. Finally, the two-loci HLA haplotypes are 22 =

4, formed by two alleles localized in two different HLA loci.

The frequency of each HLA haplotype in a sample of size is

computed by dividing the number of times the HLA haplotype
appears in that sample by the total number of alleles for each

HLA locus.

The HLA analysis in patients and controls was performed

using a specific programming code written with R language (R

core39). The statistically significant outcomes given by the R

code were also checked “by hand” through the direct evaluation

of the number of HLA haplotypes in each group of subjects.

Statistical Analysis
The clinical and genetic characteristics of patients with SARS-

CoV-2 infection were analyzed using R software version 4.0.2

(39). Mean standard deviation (SD) and interquartile range

(IQR) were calculated for all continuous variables; percentages
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and 95% confidence intervals (95% CI) were computed for

categorical data. P values were calculated using two-tailed

Fisher’s exact test or Student’s test as appropriate. Only P

values below 0.05 were considered to be statistically significant.

To compare the HLA allele and haplotype frequencies of

COVID-19 patients with those of the healthy controls we used
the two-tailed Fisher’s exact test. For each single HLA allele, Pc

was obtained by multiplying the uncorrected P value by the

number of alleles observed. The frequencies of the HLA extended

(four loci) and partial (three or two loci) haplotypes were

obtained analytically using a programming code created with

R language.
Cochran’s rule—claiming that a minimum expected frequency

of 5 can be regarded as adequate in analyzing tables with more

than a single degree of freedom—was used to establish which HLA

haplotypes had frequencies sufficiently high to allow for significant

comparisons between the two groups of patients and controls.

For each HLA haplotype the corrected P value (Pc) was
calculated by multiplying the P value obtained with the two-

tailed Fisher’s exact test by the number of tested allelic

combinations. Only Pc values lower than 0.05 were considered

to be statistically significant (see Supplementary Material).

RESULTS

Main Clinical and Genetic Characteristics
of Sardinian COVID-19 Patients
The most relevant clinical and genetic features of patients positive

for SARS-CoV-2 are shown in Table 1. Mean age at the time of

infection was 53 years (mean ± SD: 53.2 ± 18.1; 95% CI 50.6–55.9;

IQR = 27.4), with a prevalence of female patients (61.5%).

Moreover, 53% (n = 96) of the patients had an age at onset of ≤

50 years; 21% (n = 38) of the patients were over 65 years of age. In

line with previous clinical studies, the most severe symptoms were
present in adults aged 65 years and older [OR 10.1 (95% CI 4.2–

25.2), P = 1.5 10-8]. The clinical manifestations were less severe in

female patients (n =112). In fact, 28 of the 39 critically ill patients

weremales [71.8%vs28.2%,OR6.1 (95%CI2.6–14.8), P=2.2 10-6].

Approximately 13% of the examined subjects had been

vaccinated against the flu in the last year. This percentage rose
to 15% when the 3-year period 2017-2020 was considered. None

of the 39 patients with moderate or severe disease had received

anti-flu vaccination during this 3-year period, unlike the group of

patients with pauci-symptomatic infection or mild symptoms

[0% vs 16.1%, OR 0.07 (95% CI 0–0.5), P = 0.002]. During the

winter season in Sardinia of 2019, about 14.2% of the general
population underwent flu vaccination. An annual flu vaccination

is strongly recommended for people at risk of severe outcomes

and in 2019 was administered to 46,5% of the population over 65

years of age (40). It is interesting to note that none of the 22

seriously ill patients, who were over the age of 65, had received a

flu vaccination in recent years.

About 8% of the subjects examined had ischemic heart disease,
15% arterial hypertension, 10% hypercholesterolemia, 12%

autoimmune diseases and 3.3% type 1 diabetes mellitus.

Comorbidities were present in both groups of patients. The only

significant difference was a higher frequency of autoimmune

diseases (rheumatoid arthritis, type I diabetes and autoimmune

hepatitis) in group S [28.2% vs 7.7%, OR 4.7 (95%CI 1.9–11.9), P =

0.001]. Type I diabetesmellitus was presentwith a higher frequency

in the group of patientswith a severe clinical picture (5.1% vs 2.8%),

but considered separately, did not reach statistical significance.
Five percent (5%) of group S subjects took steroidal anti-

inflammatory drugs, 6% non-steroidal anti-inflammatory drugs,

10.4%ACE II inhibitors and/or blockers of angiotensin II receptors

(5.5%), 13.7% beta blockers or calcium channel blockers. No

statistically significant differences were observed when comparing

chronic drug intake between the two groups.
Additionally, twoverycommongenetic traitswere considered in

the Sardinian population: the beta thalassemic trait and theG6PDH

enzyme deficiency. Nineteen COVID-19 positive patients (10.4%)

were heterozygous for the b0-39 mutation of the beta globin chain.

Noneof the groupSpatients carried thismutation [0%vs13.3%,OR

0.2 (95% CI 0.1–0.8), P = 0.015].
Twenty-four patients (13.2%) had G6PDH enzyme deficiency,

resulting in a markedly higher frequency in group S patients

compared to group A patients [25.6% vs 9.8%, OR 3.2 (95% CI

1.3–7.9), P = 0.015]. The gene encoding G6PDH maps to the long

arm of the X chromosome. There are different genetic variants of

G6PDHdepending on the geographical area. In Sardinia the enzyme

deficiency is caused by the Mediterranean variant (G6PDHMed)
which is characterized by the absence or marked reduction of

enzymatic activity (0%–10% compared to normal enzyme activity)

(41). It should be noted that all 10 patients (25.6%) with G6PDH

deficiencyof the39patientsofgroupSweremaleandtherefore lacked

or had markedly reduced enzyme activity.

Allele and Haplotype Frequencies
Associated With SARS-CoV-2 Infection
The HLA allele frequencies are illustrated in Table 2 and the

Supplementary Material. The 364 alleles of the 182 patients

infected by SARS-CoV-2 were compared to the 1,238 alleles of

the 619 unrelated healthy controls representative of the HLA

frequencies in the Sardinian population. No substantial

differences were observed for the HLA Class I (HLA-A, HLA-B,
HLA-C) and Class II (HLA-DRB1) alleles. Most of the significant

differences (P value < 0.05) were lost after adjustment for multiple

comparisons (Pc). The only allele that maintained significance was

HLA-C*04:01 [OR = 1.8 (95% CI: 1.3–2.4), P = 0.001; Pc = 0.012].

The HLA-B40 antigen, which initially resulted to be significantly

associated to SARS-Cov-2 (Table 2), only exhibited the single allele
HLA-B*40:02 in the control group, while in patients it was present

with two allelic variants: HLA-B*40:02 and HLA-B*40:01.

Therefore, even if the HLA-B40 antigen remained weakly

significant after correction for multiple-testing, the alleles lost

statistical significance (P = 0.016, Pc = 0.24).

More important results were obtained for the haplotypes that

characterize the Sardinian population (Table 3). Rather
surprisingly, none of the patients affected by COVID-19 carried

the HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01 extended

haplotype [OR 0.1 (95% CI 0–0.6), P = 0.0006, Pc = 0.015]. After

breaking down this extendedhaplotype intopartial haplotypeswith

three or two loci, deriving from the different allelic combinations, it

Littera et al. COVID-19 Susceptibility and Disease Course

Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 6056885

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


emerged that no patient infected with SARS-CoV-2 had the three-

loci extended haplotype HLA-A*02:05, B*58:01, DR*03:01 [OR 0.1

(95% CI 0–0.5), P = 0.0007, Pc = 0.016]. Also, the HLA-A*02:05,

B*58:01, C*07:01 three-loci haplotype had a significantly reduced
frequency in patients compared to controls [OR 0.4 (95% CI 0.2–

0.7), P = 0.0004, Pc = 0.011].

Conversely, the HLA-A*30:02, B*14:02, C*08:02 three-loci

haplotype was overexpressed in patients compared to the controls

[OR 3.8 (95% CI 1.8 –8.1), P = 0.0008, Pc = 0.025].

Overall, the analysis of the HLA alleles and haplotype
frequencies revealed seven HLA alleles or haplotypes with a

protective effect (OR <1) against SARS-CoV-2 infection and five

alleles or haplotypes that instead were associated with an

increased susceptibility to infection (Figure 1).

Correlation Between HLA Allele and
Haplotype Frequencies and Severity of
Clinical Manifestations in SARS-CoV-2
Infection
Comparisons of the allele frequencies between the two groups A

and S are shown in Table 4 and the Supplementary Material. The

alleles that remained significant after correction for multiple

comparisons were HLA-A*23:01 and HLA-DRB1*08:01. These

two alleles were exclusively present in patients with a moderate or
severe disease course [OR > 2.5 (95% CI 2.7–220.6), P = 0.002, Pc =

0.038 and OR > 2.5 (95% CI 2.7–220.6), P = 0.002; Pc = 0.024,

respectively]. However, it must be considered that HLA-A*23:01 is

an uncommon allele in the Sardinian population for which it is

difficult to assess its true impact on the evolution of the disease.

TABLE 1 | Comparisons of baseline clinical, genetic and biochemical parameters between COVID-19 patients with asymptomatic/pauci-symptomatic and moderate/

severe disease.

Characteristics of Sardinian COVID-19 pts Total pts (N = 182) Group A (N = 143) Group S (N = 39) Comparison Group S vs

Group A

Age (yr): mean ± SD (95% CI; IQR) 53.2 ± 18.1 (50.6–55.9;

27.4)

49.1 ± 17.2 (46.3–52.0;

20.9)

66.1 ± 15.3 (61.1–71.0;

26.8)

P = 9.2 · 10-8

n (%) 95% CI (%) n (%) 95% CI n (%) 95% CI (%) P value OR (95% CI)

Age ≤ 50 yr 96 (52.7) 45.4–60.0 85 (59.4) 51.3–67.6 11 (28.2) 13.6–42.8 5.8 10-4 0.3 (0.1–0.6)

50 yr < Age < 65 yr 48 (26.4) 19.9–32.8 42 (29.4) 21.8–36.9 6 (15.4) 3.7–27.1 0.101 0.4 (0.1–1.2)

Age ≥ 65 yr 38 (20.9) 14.9–26.8 16 (11.2) 6.0–16.4 22 (56.4) 40.3–72.5 1.5 10-8 10.1 (4.2–25.2)

Male 70 (38.5) 31.3–45.6 42 (29.4) 21.8–36.9 28 (71.8) 57.2–86.4 2.2 10-6 6.1 (2.6–14.8)

Female 112 (61.5) 54.4–68.7 101 (70.6) 63.1–78.2 11 (28.2) 13.6–42.8 2.2 10-6 0.2 (0.1–0.4)

FLU vaccine 2019 (total pts) 23 (12.6) 7.8–17.5 23 (16.1) 10.0–22.2 0 0.0–9.0 0.005 0.0 (0.0–0.6)

- FLU vaccine 2019 (age ≥ 65 yr) 0 0.0–2.0 0 0.0–2.5 0 0.0–9.0 1 –

FLU vaccine last 3 yr 27 (14.8) 9.6–20.0 27 (18.9) 12.4–25.4 0 0.0–9.0 0.002 0.0 (0.0–0.5)

- FLU vaccine last 3 yr (age ≥ 65 yr) 0 0.0–2.0 0 0.0–2.5 0 0.0–9.0 1 –

Comorbidity

Cancer 4 (2.2) 0.1–4.3 4 (2.8) 0.1–5.5 0 0.0–9.0 0.579 0.0 (0.0–5.6)

Type I Diabetes Mellitus 6 (3.3) 0.7–5.9 4 (2.8) 0.1–5.5 2 (5.1) 0.0–12.3 0.610 1.9 (0.2–13.6)

Chronic pulmonary disease1 2 (1.1) 0.0–2.6 2 (1.4) 0.0–3.3 0 0.0–9.0 1 0.0 (0.0–19.7)

Ischemic heart disease2 14 (7.7) 3.8–11.6 12 (8.4) 3.8–13.0 2 (5.1) 0.0–12.3 0.737 0.6 (0.1–2.8)

Hypertension 27 (14.8) 9.6–20.0 21 (14.7) 8.8–20.5 6 (15.4) 3.7–27.1 1 1.1 (0.3–3.0)

Autoimmune disease3 22 (12.1) 7.3–16.9 11 (7.7) 3.3–12.1 11 (28.2) 13.6–42.8 0.001 4.7 (1.7–13.2)

Hypercholesterolemia 18 (9.9) 5.5–14.3 11 (7.7) 3.3–12.1 7 (17.9) 5.5–30.4 0.071 2.6 (0.8–8.1)

Chronic Medication use

Steroidal anti-inflammatory drug 9 (4.9) 1.8–8.1 6 (4.2) 0.9–7.5 3 (7.7) 0.0–16.3 0.406 1.9 (0.3–9.4)

Non-steroidal anti-inflammatory drug4 11 (6.0) 2.6–9.5 6 (4.2) 0.9–7.5 5 (12.8) 2.0–23.7 0.060 3.3 (0.8–14.0)

ACE II inhibitor5 19 (10.4) 6.0–14.9 12 (8.4) 3.8–13.0 7 (17.9) 5.5–30.4 0.134 2.4 (0.7–7.2)

Angiotensin II receptor blocker6 10 (5.5) 2.2–8.8 7 (4.9) 1.3–8.5 3 (7.7) 0.0–16.3 0.449 1.6 (0.3–7.5)

Beta and calcium channel blockers7 25 (13.7) 8.7–18.8 16 (11.2) 6.0–16.4 9 (23.1) 9.4–36.7 0.068 2.4 (0.8–6.4)

Levothyroxine 10 (5.5) 2.2–8.8 10 (7.0) 2.8–11.2 0 0.0–9.0 0.122 0.0 (0.0–1.6)

Genetic trait

Beta-thalassemic Trait 19 (10.4) 6.0–14.9 19 (13.3) 7.7–18.9 0 0.0–2.1 0.015 0.0 (0.0–0.7)

G6PDH deficiency 24 (13.2) 8.2–18.1 14 (9.8) 4.9–14.7 10 (25.6) 11.5–39.8 0.015 3.2 (1.1–8.5)

Serology Mean ± SD 95% CI (IQR) Mean ± SD 95% CI (IQR) Mean ± SD 95% CI (IQR) P value

White blood cell count (x103/µL) 8.3 ± 3.2 7.8–8.7 (4.5) 8.1 ± 2.3 7.7–8.5 (4.5) 8.4 ± 3.7 7.3–9.6 (4.6) 0.444

Lymphocyte count (x103/µL) 1.1 ± 0.7 1.0–1.2 (0.5) 1.2 ± 0.5 1.1–1.2 (0.7) 1.0 ± 0.8 0.8–1.3 (0.6) 0.182

Group A: patients with asymptomatic or pauci-symptomatic disease.

Group S: moderate or severe disease.

SD, Standard deviation; IQR, Interquartile range; CI, Confidence interval.
1Chronic obstructive pulmonary disease was defined as a diagnosis of emphysema and/or bronchitis.
2Ischemic heart disease was categorized as a history of myocardial infarction or angina.
3Autoimmune disease included Hashimoto’s thyroiditis, type I diabetes mellitus, rheumatoid arthritis, systemic lupus erythematosus, and autoimmune hepatitis.
4Non-steroidal anti-inflammatory drugs included aspirin, ibuprofen, diclofenac, naproxen, indomethacin, celecoxib, and meloxicam.
5Angiotensin-converting enzyme II inhibitors included captopril, enalapril, lisinopril, fosinopril, ramipril, and quinapril.
6Angiotensin II receptor blockers included losartan, candesartan, irbesartan, olmesartan, and valsartan.
7Dihydropyridine calcium channel blockers included amlodipine and nifedipine. Beta blockers included atenolol, bisoprolol, labetalol, metoprolol, and nebivolol.
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TABLE 2 | Comparisons of HLA Class I and Class II allele frequencies between patients and controls and patients with an asymptomatic/pauci-symptomatic or

moderate/severe disease course.

Controls (1238 alleles) Patients (364 alleles) P values Group A (286 alleles) Group S (78 alleles) P values

n (%) n (%) P Pc n (%) n (%) P Pc

HLA-A

A*11 81 (6.5) 36 (9.9) 0.039 0.694 32 (11.2) 6 (7.7) 0.530 1

A*26 28 (2.3) 14 (3.8) 0.133 1 7 (2.4) 2 (2.6) 1 1

A*30 230 (18.6) 56 (15.4) 0.186 1 45 (15.7) 12 (15.4) 1 1

A*03 65 (5.3) 26 (7.1) 0.197 1 19 (6.6) 4 (5.1) 0.795 1

A*33 45 (3.63) 8 (2.2) 0.242 1 7 (2.4) 2 (2.6) 1 1

A*29 26 (2.1) 4 (1.1) 0.274 1 4 (1.4) 0 0.582 1

A*32 108 (8.7) 38 (10.4) 0.351 1 28 (9.8) 10 (12.8) 0.411 1

A*01 102 (8.2) 24 (6.6) 0.375 1 21 (7.3) 2 (2.6) 0.187 1

A*02 363 (29.3) 98 (26.9) 0.392 1 79 (27.6) 23 (29.5) 0.778 1

A*24 119 (9.6) 38 (10.4) 0.618 1 32 (11.2) 6 (7.7) 0.530 1

A*23 20 (1.6) 4 (1.1) 0.626 1 0 4 (5.1) 0.002* 0.034

HLA-B

B*40 11 (0.9) 12 (3.3) 0.001† 0.049 7 (2.4) 6 (7.7) 0.038 0.950

B*58 141 (11.9) 22 (6.0) 0.002 0.059 19 (6.6) 4 (5.1) 0.795 1

B*55 40 (3.2) 2 (0.5) 0.002 0.066 2 (0.7) 0 1 1

B*53 5 (0.4) 8 (2.2) 0.002 0.077 4 (1.4) 4 (5.1) 0.068 1

B*35 153 (12.4) 58 (15.9) 0.078 1 45 (15.7) 12 (15.4) 1 1

B*18 315 (25.4) 76 (20.9) 0.082 1 58 (20.3) 16 (20.5) 1 1

B*08 30 (2.4) 14 (3.8) 0.147 1 11 (3.8) 4 (5.1) 0.537 1

B*44 58 (4.7) 24 (6.6) 0.175 1 17 (5.9) 4 (5.1) 1 1

B*14 74 (6.0) 28 (7.7) 0.271 1 19 (6.6) 8 (10.3) 0.328 1

B*07 37 (3.0) 14 (3.8) 0.399 1 7 (2.4) 6 (7.7) 0.038 0.950

B*39 22 (1.8) 8 (2.2) 0.659 1 9 (3.1) 0 0.214 1

B*13 23 (1.9) 8 (2.2) 0.667 1 7 (2.4) 2 (2.6) 1 1

B*15 23 (1.9) 8 (2.2) 0.667 1 4 (1.4) 4 (5.1) 0.068 1

B*49 75 (6.1) 20 (5.5) 0.801 1 19 (6.6) 2 (2.6) 0.271 1

B*51 79 (6.4) 22 (6.0) 0.903 1 21 (7.3) 2 (2.6) 0.187 1

HLA-C

C*04 139 (11.2) 66 (18.1) 0.001^ 0.012 51 (17.8) 14 (17.9) 1 1

C*07 369 (29.8) 88 (24.2) 0.040 0.527 68 (23.8) 23 (29.5) 0.305 1

C*16 34 (2.7) 18 (4.9) 0.040 0.567 15 (5.2) 2 (2.6) 0.544 1

C*12 77 (6.2) 34 (9.3) 0.046 0.593 34 (11.9) 2 (2.6) 0.010 0.120

C*03 48 (3.9) 8 (2.2) 0.145 1 4 (1.4) 4 (5.1) 0.068 0.816

C*06 76 (6.1) 16 (4.4) 0.249 1 15 (5.2) 2 (2.6) 0.544 1

C*05 243 (19.6) 62 (17.0) 0.288 1 45 (15.7) 16 (20.5) 0.310 1

C*08 73 (5.9) 26 (7.1) 0.387 1 17 (5.9) 8 (10.3) 0.206 1

C*02 73 (5.9) 24 (6.6) 0.618 1 19 (6.6) 2 (2.6) 0.271 1

C*01 26 (2.1) 6 (1.6) 0.676 1 7 (2.4) 0 0.354 1

C*15 54 (4.4) 14 (3.8) 0.768 1 9 (3.1) 4 (5.1) 0.488 1

HLA-DRB1

DR*14 34 (2.7) 20 (5.5) 0.0193 0.251 17 (5.9) 2 (2.6) 0.387 1

DR*11 195 (15.8) 44 (12.1) 0.0941 1 43 (15.0) 4 (5.1) 0.021 0.252

DR*12 19 (1.5) 2 (0.5) 0.193 1 2 (0.7) 0 1 1

DR*07 68 (5.5) 14 (3.8) 0.227 1 13 (4.5) 2 (2.6) 0.747 1

DR*13 51 (4.1) 18 (4.9) 0.466 1 17 (5.9) 2 (2.6) 0.387 1

DR*16 240 (19.4) 76 (20.9) 0.549 1 55 (19.2) 18 (23.1) 0.523 1

DR*01 104 (8.4) 34 (9.3) 0.595 1 23 (8.0) 10 (12.8) 0.189 1

DR*04 164 (13.2) 52 (14.3) 0.601 1 32 (11.2) 16 (20.5) 0.038 0.456

DR*03 272 (22.0) 82 (22.5) 0.829 1 66 (23.1) 16 (20.5) 0.760 1

DR*15 43 (3.5) 12 (3.3) 1 1 11 (3.8) 2 (2.6) 0.743 1

DR*08 23 (1.9) 4 (1.1) 0.486 1 0 4 (5.1) 0.002# 0.024

^HLA-C*04:01 was the only allelic variant observed for the HLA-C4 antigen. The difference observed for this allele between patients and controls remained significant after correction for

multiple comparisons [OR = 1.8 (95% CI: 1.3–2.4)].
†For HLA-B40: HLA-B*40:02 was found in controls and HLA-B*40:02 and HLA-BB*40:01 in patients; statistical significance was lost after analyzing each single allele.

*The only allelic variant observed for HLA-A23 was HLA-A*23:01.
#The only allelic variant observed for HLA-DR8 was HLA-DRB1*08:01.

When comparing patients with pauci-symptomatic or mild disease to patients with moderate, severe or critical disease, only HLA-A*23:01 and HLA-DRB1*08:01 (OR > 2.5) maintained

statistical significance after correction for multiple comparisons.

Group A: patients with asymptomatic or pauci-symptomatic disease.

Group S: patients with moderate or severe disease.

Pc was obtained by multiplying the uncorrected P value by the number of alleles observed.
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Furthermore, the association with the severe form of the disease

could also be distorted by the limited number of subjects who

carried this allele and the fact that they all belonged to the same

family nucleus.

Only the HLA-A*30:02, B*14:02, C*08:02 three-loci
haplotype maintained statistical significance after correction of

the P values (Supplementary Material). This haplotype strongly

correlated with disease severity [OR 10.4 (95% CI 3.2–34.1), P =

0.0007; Pc = 0.008].

DISCUSSION

Investigation of the SARS-CoV-2 infection confirmed that patients
over 65 years of age, particularly males, with comorbidities or organ-

associated pathologies are at a higher risk of developing a severe,

critical or even fatal disease course (42). Consistent with the findings

of other authors, type I diabetes mellitus was more common in

patients with the severe clinical manifestations of SARS-CoV-2.

Concomitant conditions such as hypertension and cardiovascular

disease, obesity and/or a pro-inflammatory and pro-coagulative
state are all likely to increase the risk of a worse outcome (43). The

fact that type I diabetes mellitus was not significantly associated

to a worse prognosis in our study can be attributed to the limited

number of patients affected by this comorbidity and evidence of

a good glucometabolic control. Overall, our findings suggest that

autoimmune diseases (rheumatoid arthritis, autoimmune hepatitis,

and type 1 diabetes) are associated with the most severe cases.

In autoimmune disorders, impaired regulation of cell-mediated
immune response mechanisms triggers an exaggerated release of

proinflammatory cytokines and chemokines by T lymphocytes

leading to the so-called “cytokine storm” that often complicates

the disease course of COVID-19 (5). Indeed, it appears that SARS-

CoV-2 positive patients receiving immunosuppressive treatment

for an autoimmunepathology have amuch lower risk of developing
severe clinical manifestations, and so far no complications such as

acute respiratory distress syndrome (ARDS) have been reported in

these patients (44, 45).

Similar to the data from Wuhan (46), Lombardy (47) and the

USA (48), also in our study the female gender was associated with

less severe clinical symptoms. In fact, only 28% of the patients who

required oxygen therapy or mechanical ventilation were female.
Female sex hormones can only partially explain this protection

against SARS-CoV-2 infection. An important role can certainly be

attributed to the X chromosome and, in particular, to the

conservation of interacting gene clusters related to immune

response (49). These genes (microRNA, TLR-7, TLR-8, the

TABLE 3 | Comparison of HLA haplotype frequencies between controls and patients.

HLA Haplotypes Healthy controls (1238 haplotypes) Covid-19 pts (364 haplotypes)

n (%) n (%) P OR(95% CI) Pc

Complete HLA haplotypes

HLA-A*02:05, B*58:01, C*07:01, DRB1*16:01 82 (6.6) 10 (2.7) 0.004 0.4 (0.2–0.8) 0.103

HLA-A*02:05, B*58:01, C*07:01, DRB1*03:01 30 (2.4) 0 6.3 · 10-4 0 (0–0.6) 0.015

HLA-A*30:02, B*14:02, C*08:02, DRB1*03:01 8 (0.6) 10 (2.7) 0.002 4.3 (1.5–12.8) 1

Partial HLA haplotypes

HLA-A*02:05, B*58:01, C*07:01 107 (8.6) 12 (3.3) 3.7 · 10-4 0.4 (0.2–0.7) 0.011

HLA-A*02:05, B*58:01, DRB1*16:01 82 (6.6) 10 (2.7) 0.004 0.4 (0.2–0.8) 0.107

HLA-A*02:05, C*07:01, DRB1*16:01 106 (8.6) 18 (4.9) 0.025 0.6 (0.3–0.9) 0.654

HLA-B*58:01, C*07:01, DRB1*16:01 101 (8.2) 16 (4.4) 0.016 0.5 (0.3–0.9) 0.454

HLA-A*02:05, B*58:01, DRB1*03:01 31 (2.5) 0 6.8 · 10-4 0 (0–0.4) 0.016

HLA-A*02:05, C*07:01, DRB1*03:01 57 (4.6) 6 (1.6) 0.009 0.3 (0.1–0.8) 0.226

HLA-B*58:01, C*07:01, DRB1*03:01 39 (3.2) 6 (1.6) 0.150 0.5 (0.2–1.2) 1

HLA-A*02:05, B*18:01, DRB1*16:01 46 (3.7) 2 (0.5) 6.9 · 10-4 0.1 (0.0–0.6) 0.017

HLA-A*30:02, B*14:02, C*08:02 13 (1.1) 14 (3.8) 8.2 · 10-4 3.8 (1.6–8.8) 0.025

HLA-A*30:02, B*14:02, DRB1*03:01 8 (0.6) 10 (2.7) 0.002 4.3 (1.5–12.8) 1

HLA-A*30:02, C*08:02, DRB1*03:01 8 (0.6) 10 (2.7) 0.002 4.3 (1.5–12.8) 1

HLA-B*14:02, C*08:02, DRB1*03:01 22 (1.8) 10 (2.7) 0.285 1.6 (0.7–3.5) 1

HLA-A*02:05, B*58:01 109 (8.8) 12 (3.3) 2.6 · 10-4 0.4 (0.2–0.7) 0.007

HLA-A*02:05, C*07:01 209 (16.9) 36 (9.9) 8.9 · 10-4 0.5 (0.4–0.8) 0.028

HLA-A*02:05, DRB1*16:01 138 (11.1) 26 (7.1) 0.030 0.6 (0.4–1.0) 1

HLA-B*58:01, C*07:01 134 (10.8) 22 (6.0) 0.006 0.5 (0.3–0.9) 0.193

HLA-B*58:01, DRB1*16:01 102 (8.2) 16 (4.4) 0.012 0.5 (0.3–0.9) 0.347

HLA-C*07:01, DRB1*16:01 158 (12.8) 34 (9.3) 0.081 0.7 (0.5–1.0) 1

HLA-A*02:05, DRB1*03:01 111 (9.0) 22 (6.0) 0.084 0.7 (0.4–1.1) 1

HLA-B*58:01, DRB1*03:01 43 (3.5) 6 (1.6) 0.084 0.5 (0.2–1.1) 1

HLA-C*07:01, DRB1*03:01 109 (8.8) 24 (6.6) 0.196 0.7 (0.4–1.2) 1

HLA-A*30:02, B*14:02 14 (1.1) 16 (4.4) 2.2 · 10-4 4.0 (1.8–9.0) 0.006

HLA-A*30:02, C*08:02 13 (1.1) 14 (3.8) 8.2 · 10-4 3.8 (1.6–8.8) 0.025

HLA-A*30:02, DRB1*03:01 158 (12.8) 32 (8.8) 0.042 0.7 (0.4–1.0) 1

HLA-B*14:02, C*08:02 73 (5.9) 26 (7.1) 0.387 1.2 (0.7–2.0) 1

HLA-B*14:02, DRB1*03:01 22 (1.8) 10 (2.7) 0.285 1.6 (0.7–3.5) 1

HLA-C*08:02, DRB1*03:01 22 (1.8) 10 (2.7) 0.285 1.6 (0.7–3.5) 1

Pc was obtained by multiplying the uncorrected P value by the number of alleles observed.

Results displaying a Pc < 0.05 are in bold.
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chemokine receptor CXCR3 and the interleukin-2 receptor subunit

gamma IL2RG etc.) are more highly expressed in women than in

males (50). Chromosome X inactivation is random in normal

females for which the X chromosome inherited from the mother

is active in some cells and the X chromosome inherited from the
father is active in others. However, some genes on the X

chromosome escape X-inactivation and may at least partially

explain why women develop higher innate, humoral and cellular

immune responses against pathogens and viral infections (49).

Human Leukocyte Antigen (HLA)molecules play a critical role

in the battle between host innate and adaptive (cell-mediated and
humoral) immune response mechanisms and invading pathogens.

Epitope specificity of HLA Class I molecules creates diversity in

innate immune responsemechanisms and sees NK cells among the

main protagonists. This lymphocyte subpopulation regulates its

activity through binding of HLA class I molecules with specific

activating and inhibitory receptors (killer cell immunoglobulin-like

receptors, NKG2D etc.) and thereby mediates innate defense

strategies against viral infections (51, 52).
The HLA complex also has a central role in the recognition and

presentationof viral antigens to the immune system (CD4+andCD8

+ lymphocytes) generating a wide range of more or less effective

responses. The degree of affinity of the different HLA molecules for

specific viral peptides of coronaviruses, such as SARS-CoV and

MERS-CoV, drastically influences immune response mechanisms
and the consequential clinical manifestations of infection (28–33).

The HLA is a highly polymorphic system with profound

differences in different geographical areas. For this reason,

FIGURE 1 | The HLA alleles and haplotypes which confer susceptibility to or protection against SARS-CoV-2 infection. The figure shows the odds ratios (OR) for the

significantly different frequencies observed for HLA alleles and haplotypes (HLA-B*40:02; HLA-C*04:01; HLA-A*30:02, -B*14:02; HLA-A*02:05, -B*58:01; HLA-

A*30:02, -C*08:02; HLA-A*02:05, -C*07:01; HLA-A*02:05, -B*58:01, -C*07:01; HLA-A*30:02, -B*14:02, -C*08:02; HLA-A*02:05, -B*58:01, -DRB1*03:01; HLA-

A*02:05, -B*18:01, -DRB1*16:01; HLA-A*02:05, -B*58:01, -C*07:01, -DRB1*03:01 and HLA-A*02:05, -B*58:01, -C*07:01, DRB1*16:01) in the two groups of

COVID-19 patients and controls. The error bars, computed according to the two-tailed Fisher’s exact test, represent the 95% confidence intervals of the OR. The

red line represents the threshold OR = 1 at which the HLA allele and haplotype frequencies in the two groups of patients and controls are equal.

TABLE 4 | Comparison of HLA allele and haplotype frequencies between patients with pauci-symptomatic/mild (Group A) and moderate/severe disease (Group S).

Alleles/haplotypes Healthy controls (1238 alleles) Group A (286 alleles) Group S (78 alleles)

n (%) n (%) n (%) P OR (95% CI) Pc

HLA-A

A*23:01 20 (1.6) 0 4 (5.1) 0.002 > 2.5 0.034

A*69:01 0 2 (2.6) 0.045 > 0.7 0.765

HLA-B

B*07:02 or B*07:05 37 (3.0) 6 (2.1) 6 (7.7) 0.025 3.9 (1.0–14.9) 0.950

B*40:02 11 (0.9) 6 (2.1) 6 (7.7) 0.029 3.9 (1.2–12.4) 0.950

HLA-C

C*12:02, 12:03 77 (6.2) 34 (11.9) 2 (2.6) 0.010 0.2 (0.0–0.8) 0.120

HLA-DRB1

DRB1*08:01 23 (1.9) 0 4 (5.1) 0.002 > 2.5 0.024

DRB1*11:01, 11:02, 11:03, 11:04 195 (15.8) 42 (14.7) 4 (5.1) 0.022 0.3 (0.1–0.9) 0.252

DRB1*04:03 or DRB1*04:05 164 (13.2) 32 (11.2) 16 (20.5) 0.038 2.0 (1.0–4.1) 0.456

Haplotypes

HLA-A*02:05, B*58:01, C*07:01 107 (8.6) 12 (4.2) 0 0.077 0 (0–1.3) 1

HLA-A*30:02, B*14:02, C*08:02 13 (1.1) 4 (1.4) 10 (12.8) 5.9 · 10-5 10.3 (2.9–46.3) 0.022

Pc was obtained by multiplying the uncorrected P value by the number of alleles observed.

Results displaying a P or a Pc < 0.05 are in bold.
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association studies in the literature often report different and

sometimes conflicting results. In the study conducted by

Ellinghaus and colleagues, analysis of the classical HLA loci (53)

was performed to identify which variants could be correlated to the

clinical variability of the COVID-19 disease course. All the HLA

allelic variants, observed in 750 patients from Lombardy (northern
Italy region) and 850 Spanish patients, lost significance after

appropriate statistical correction.

Conversely, a study including about 500,000 voluntary donors

enrolled in the Italian BoneMarrowDonor Registry (IBMDR) and

representative of the entire Italian peninsula, compared the

distribution of certain genes crucial to functioning of the immune
system to examine whether they could underlie the geographic

differences in COVID-19 incidence. According to the results, the

prevalence of theHLA-C*01 andHLA-B*44 alleles are predictive of

the incidence of COVID-19 in the different Italian regions and

therefore confer susceptibility to SARS-CoV-2 infection (34). This

associationwas not observed in the Sardinian population, probably
because the HLA-C*01 and HLA-B*44 alleles, while being fairly

common in the north eastern areas of Italy, are scarcely represented

in the central-south (34). In other populations, theHLA-B*44 allele

would seem to exert a protective effect (54), as opposite to what was

observed by Correale et al. (34). In our study of the Sardinian

population, we found that the HLA-C*04:01 allele conferred

susceptibility to SARS-CoV-2 infection.
NK cell function is regulated by a large number of receptors

that transmit either activating or inhibitory signals. Killer cell

immunoglobulin-like receptors (KIRs) are among the most

important receptors used by NK cells to distinguish viruses and

other pathogens from healthy self-counterparts. HLA-C is the

dominant ligand for KIR on NK cells. All HLA-C allotypes fall
into two major groups of KIR epitopes (HLA-C1 and HLA-C2) on

the basis of a dimorphism at position 80 of the alpha domain. The

allele found associated to SARS-Cov-2 in our study encodes an

HLA-C antigen pertaining to the HLA-C2 group which has high

binding affinity for the activating KIR2DS1 receptor and its

inhibitory homologue KIR2DL1 (55). Upon binding to HLA-C2,

the inhibitory signal generated by KIR2DL1 would seem to
override target cell-induced activating signals via KIR2DS1. It is

plausible that the higher frequency of HLA-C*04:01 molecules

observed in our SARS-CoV-2 positive patients creates an

imbalance between HLA molecules of group C1 in favor of

those of HLA-C2. This could cause a reduction in some of the

functional KIR-HLA ligand interactions with a consequent
decrease in the ability of NK cells to control infection.

One of themost interesting findings emerging from the analysis

of HLA in Sardinian SARS-CoV-2 patients was the total absence of

the extended haplotype HLA-A*02:05, B*58:01, C*07:01,

DRB1*03:01. This HLA extended haplotype is third in order of

frequency in the Sardinian population (36) and would therefore

seem to confer protection against SARS-CoV-2 infection. The
three-loci haplotype HLA-A*02:05, B*58:01 DRB1*03:01, derived

from this extended haplotype, was also completely absent in SARS-

CoV-2 patients whereas the other three-loci haplotype HLA-

A*02:05, B*58:01 C*07:01 was present with a significantly lower

frequency in patients compared to the general Sardinian

population. However, patients carrying the latter three-loci

haplotype only had mild disease. Therefore, it is likely that both

these three-loci haplotypes exert a protective effect against the

severe clinical manifestations of SARS-CoV-2 infection.

The extended haplotype HLA-A*02:05, B*58:01, C*07:01,

DRB1*03:01 is extremely rare in other populations where it has a
frequency of <0.1% (http://www.allelefrequencies.net/). Therefore,

it will not be possible to confirm this result in other geographical

areas. The Sardinian population still today represents a genetic

isolate with a lowly polymorphic HLA system. This low level of

polymorphismmakes it easier to analyze the role ofHLAmolecules

in the onset and progression of diseases that are strongly influenced
by the immune system.

It is interesting to note how the protective effect against SARS-

CoV-2 infection is provided by the extended HLA haplotype and

not the individual component alleles. This suggests that

combinations rather than single HLA class I and II alleles are able

to generate interactionswithin the complex network of the immune
system that allow for an efficient fight against infection.

On the contrary, we observed a greater susceptibility to SARS-

CoV-2 infection and a severe disease course in subjects who

possessed the HLA-A*30:02, B*14:02, C*08:02 three-loci haplotype.

Previous studies have shown that the two-loci haplotype HLA-

B*14:02, C*08:02 is associated with hypersensitivity reactions to non-

nucleoside reverse transcriptase inhibitors (in particular nevirapine)
which are used in the treatment of HIV (56), while HLA-A*30:02 is

part of an extended haplotype commonly found in Sardinia (HLA-

A*30:02, B*18:01, C*05:01, DRB1*03:01) that is associated with

autoimmune diseases such as multiple sclerosis and autoimmune

type I hepatitis (37, 57). It is likely that these HLA molecules have

low binding affinity for the antigenic peptides of SARS-CoV-2,
generating immune responses that cannot effectively clear the

virus, but instead overreact causing self-damage.

Finally, we need to discuss the HLA-DRB1*08 (HLA-

DRB1*08:01) allele since it appears to be the allele associated with

the highest risk for severe clinical manifestations in Sardinian

SARS-CoV-2 patients. Because this allele confers susceptibility to

numerous autoimmune diseases (58), it can be postulated that the
more severe clinical manifestations observed in SARS-CoV-2

patients carrying this allele are caused by altered regulation of

cell-mediated immune response (5).

It is clear that the associations between HLA and

susceptibility to SARS-CoV-2 infection obtained in our study

may be difficult to confirm in other populations with a more
polymorphic HLA system. However, they provide valuable

information on the binding affinity between viral peptides and

MHC class I and II antigens and can contribute to the creation of

new antiviral molecules and the selection of vaccines with greater

immunogenic potential.

Another surprising finding was that none of the 39 patients

with severe disease had been vaccinated against the flu which is
strongly recommended, particularly for people over 65 years of

age. In Sardinia, the average flu vaccination rate for this category

of the population is 46.2%. There is growing consensus that

influenza vaccination does not increase the risk of an adverse

outcome of COVID-19 but instead may provide some protection

Littera et al. COVID-19 Susceptibility and Disease Course

Frontiers in Immunology | www.frontiersin.org December 2020 | Volume 11 | Article 60568810

http://www.allelefrequencies.net/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


against the onset of the more severe or critical clinical

manifestations (59). The pathogenesis of influenza viruses and

coronaviruses depends upon their ability to dock and enter

suitable human host cells. In influenza, the two major internal

proteins hemagglutinin (HA) and neuraminidase (NA) mediate

virus entry whereas in COVID-19 the spike (S) protein is the
leading mediator of virus entry and is a primary determinant of

cell tropism and pathogenesis. HA and S proteins are both

heavily glycosylated which could make them susceptible to

similar components of innate and adaptive immunity (60).

Further explanation for a protective effect of the flu vaccine

could be that the vaccine for H1N1 seems to have a protective
effect on other viruses such as H3N2, thanks to a protective

cross-response mediated by Toll Like Receptors through MHC II

molecules such as DRB1*04:01 (27).

Another very interesting finding is the higher frequency of

G6PDH enzyme deficiency in patients with severe symptoms,

compared to pauci-symptomatic patients (25.6% vs 9.8%). It
should be noted that the G6PDH deficiency found in 25.6% of the

39 patients with severe clinical pictures was characterized by a

marked reduction (10%) in normal enzymatic activity. The

importance of this finding should not be underestimated,

particularly in light of the high frequency of the G6PDHMed

enzymatic variant in Sardinia which fluctuates between 10-20%

depending on the coastal or inland areas of the island (61). Although

it is rather difficult to explain how the absence of enzymatic activity

can promote the onset of severe systemic manifestations in subjects

affected by COVID-19, previous studies have demonstrated that

virus infection induces production of reactive oxygen species (ROS)

andreactivenitrogen species (RNS),whichcanbothcausedamage to
proteins, DNA and cellular components of cells when antioxidant

enzymemetabolism is impaired. Since G6PDH deficiency triggers a

redox imbalance in the erythrocytes leading to hemolysis and tissue

damage as a result of insufficient oxygen transportation, COVID-19

might increase themortality risk of patients with this deficit (62, 63).

Another finding worthy of mention was that none of the
seriously ill patients were carriers of beta-thalassemia. Two recent

reports suggest that this genetic trait is likely to exert a protective

effect againstCOVID-19 since Italian regionswith ahighnumberof

beta-thalassemia carriers such as Sicily, Puglia, and Sardinia have a

very low incidence of SARS-Cov-2 infections (64, 65). This

hypothesis is supported by the consideration that ORF8 protein
and the surface glycoproteins of SARS-Cov-2 were shown capable

of binding to porphyrins. Moreover, computational proteomic

analysis revealed that some SARS-CoV-2 proteins could attack

the heme on the 1-ß chain of hemoglobin, resulting in the

dissociation of iron to form porphyrin SARS-Cov-2 viral

proteins (66).

FIGURE 2 | Factors influencing the clinical course of COVID-19 in Sardinian patients. To establish which factors had a major influence on the clinical disease course,

we compared asymptomatic/pauci-asymptomatic patients (Group A) to those with moderate or severe symptoms (Group S). Protective and risk factors were plotted

against the odds ratio (OR). Age > 65 years, male gender, autoimmune disease, the HLA-A*30:02, B*14:02, C*08:02 haplotype, G6PDH deficiency, and the HLA-

DRB1*08:01 allele conferred an increased risk for severe illness, whereas influenza vaccine (FLU vaccine), the HLA-A*02:05, B*58:01, C07:01, DRB1*03:01

haplotype, female gender, and the beta(0)39-thalassemia trait would seem to offer protection.
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In synthesis, this study highlights numerous clinical and

genetic factors that are more or less capable of influencing the

course of SARS-CoV-2, all of which can lead to the dreaded

severe clinical manifestations of the infection (Figure 2).

The new associations with COVID-19 revealed in the present

study deserve investigation on larger cohorts of patients.
Meanwhile, the information provided should contribute to the

optimisation of treatment and management of patients with the

disease. Our results also highlight the importance of influenza

vaccination in the battle against COVID-19. During the winter

months, SARS-CoV-2 infection can initially easily be confusedwith

theflu and lead to a delayed diagnosiswhich in turn hampers timely
contact tracing procedures to contain further spread of the disease

and overload of public health systems. Furthermore, this and other

studies suggest that the flu vaccine may offer a certain level of

protection against the more severe clinical forms of COVID-19.

However, despite the importance of the information provided,

our study only represents a small step ahead in the global effort to
understand the disease.Therefore,we strongly recommendanalysis

on larger samples and diverse populations to further unveil the

immunological pathways leading to disease severity and death.
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