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The human leukocyte antigen (HLA) system is one of the most crucial host factors influencing disease progression in bacterial and
viral infections. This review provides the basic concepts of the structure and function of HLA molecules in humans. Here, we
highlight the main findings on the associations between HLA class I and class II alleles and susceptibility to important
infectious diseases such as tuberculosis, leprosy, melioidosis, Staphylococcus aureus infection, human immunodeficiency virus
infection, coronavirus disease 2019, hepatitis B, and hepatitis C in populations worldwide. Finally, we discuss challenges in
HLA typing to predict disease outcomes in clinical implementation. Evaluation of the impact of HLA variants on the outcome
of bacterial and viral infections would improve the understanding of pathogenesis and identify those at risk from infectious
diseases in distinct populations and may improve the individual treatment.

1. Introduction

The cell-mediated adaptive immune response is regulated by
the major histocompatibility complex (MHC) or human leu-
kocyte antigen (HLA) in humans [1]. HLA molecules are cell
surface glycoproteins whose primary function is to present
endogenous and exogenous antigens to T lymphocytes for
recognition and response [2]. The HLA molecules that pres-
ent antigen to T lymphocytes are divided into two main clas-
ses: HLA class I and HLA class II molecules. HLA class I
molecules play an essential role in the immune defense
against intracellular pathogens, whereas HLA class II mole-
cules are predominantly involved in displaying peptides
from extracellular pathogens [3]. The HLA region is highly
polymorphic, and polymorphisms in the HLA molecules
result in variability in amino acid sequences of HLA mole-
cules and thus affect the peptide binding specificity [4].
HLA molecules encoded by different alleles have different
peptide-binding repertoires [5]. The polymorphisms in the
HLA locus contribute to the genetic diversity of humans
and the differences in susceptibility to diseases among genet-
ically distinct groups, thus offering evolutionary advantages

of a diverse immunological response to a wide range of
infectious pathogens [6]. The associations between HLA
alleles and susceptibility to or protection from infectious dis-
eases have been well documented. However, the molecular
mechanism underlying host HLA function to infection
remains far from understood. Infectious disease continues
to affect poor and marginalized populations; therefore, it is
essential to utilize the increasing knowledge and technologi-
cal advances in HLA typing to study the pathogenesis and
development of novel therapeutic targets in infectious dis-
eases of public health concerns.

Genetic variations at the loci encoding HLA genes are
associated with susceptibility or protection to infectious dis-
eases. Genetic studies have found an association between
the HLA alleles or haplotypes and bacterial infectious dis-
eases, including tuberculosis, leprosy, and melioidosis
[7–9]. Identifying risk and protective HLA alleles will provide
critical insights into the mechanisms that influence the path-
ogenesis of infections and protection. HLA typing can iden-
tify associations between HLA alleles and infections in an
individual [10]. Patients exhibit different immune responses
to bacterial and viral infections, and HLA molecules play an
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essential role in regulating the host’s immune response.
Therefore, the reported HLA alleles contributing to the sus-
ceptibility or protective effect to bacterial and viral infections
will aid in elucidating the immunological mechanisms in dis-
ease outcomes [11, 12].

This review will provide the basic concepts of HLA and
the current status of the HLA associations with bacterial
and viral infections across world populations. This review
primarily focuses on predisposing risk and protective HLA
alleles among several populations in major infectious dis-
eases, including bacterial infections (tuberculosis, leprosy,
melioidosis, and Staphylococcus aureus infections) and viral
infections (human immunodeficiency virus (HIV) infection,
coronavirus disease 2019 (COVID-19), hepatitis B, and hep-
atitis C). Many studies on these infections have shown HLA-
associated susceptibility in many populations, but the associ-
ation with melioidosis and S. aureus infections is less charac-
terized. We also discuss the challenges of complicating
disease outcome prediction through HLA typing. A deeper
understanding of the genetic basis of susceptibility to these
infections will aid in understanding the pathogenesis of the
disease, identify new molecular targets for prophylactic and
therapeutic interventions, and develop a potential tool to
identify those at risk of rapid disease progression.

2. Structure and Function of Human
Leukocyte Antigen

The HLA molecule is the name for the human MHC, which
orchestrates immune regulation by antigen presentation to T
cells [13]. The HLA system resides in a region that spans
approximately 4,000 kilobases (kb) of DNA on the short
arm of chromosome 6 (6p21). This region encodes three
major classes of proteins, HLA class I (HLA-A, HLA-B,
and HLA-C), class II (HLA-DP, HLA-DQ, and HLA-DR),
and class III (components of the complement system, 21-
hydroxylase, heat shock protein, and tumor necrosis factors)
(Figure 1) [14, 15].

HLA class I molecules are present as transmembrane
glycoproteins on the surface of nearly all nucleated cells.

These molecules present intracellular self- or non-self-
antigens to CD8+ cytotoxic T cell receptors and killer cell
immunoglobulin-like receptors (KIR) [16]. HLA class I mol-
ecules consist of two heterodimer polypeptide chains, a
heavy α chain, and a lighter β2-microglobulin chain. The α
chain has three extracellular domains (α1, α2, and α3), a
transmembrane region, and a C-terminal cytoplasmic tail.
The two domains, α1 and α2, fold to form a peptide-
binding groove and are referred to as the recognition region.
The β2-microglobulin chain is primarily associated with the
α3 domain and is responsible for HLA stability (Figure 2(a))
[17, 18].

HLA class II molecules are present on the surface of
antigen-presenting cells (APC), such as macrophages, B cells,
and dendritic cells, and display short antigen peptides to
CD4+ helper T cells and their receptors [19]. HLA class II
molecules consist of two polypeptide chains (an α and a β
chain), and each chain is folded into two separate domains:
α1 and α2 and β1 and β2, respectively. A peptide-binding
groove is formed by the distal α1 and β1 domains. The prox-
imal domains, α2 and β2, are highly conserved to which the
T cell receptor (TCR) binds (Figure 2(b)) [18].

Unlike HLA class I and HLA class II regions, whose
functions in the immune response are well defined, the
HLA class III region encodes for various inflammatory mol-
ecules, complement, and heat shock protein [11]. The HLA
class III region spans 700 kb of DNA and is located between
the centromeric class II (HLA-DRA) and the telomeric class
I regions (MICB) (Figure 1) [20].

3. HLA Nomenclature

The WHO Nomenclature Committee for Factors of the HLA
System is responsible for the formal naming of HLA alleles
and has reported the names through two websites, Immuno
Polymorphism Database-International ImMunoGeneTics
project/HLA (IPD-IMGT/HLA) database (https://www.ebi
.ac.uk/ipd/imgt/hla/) and HLA Nomenclature (http://hla
.alleles.org/nomenclature/naming.html) [21, 22]. The cur-
rent HLA nomenclature system uses a unique number

Chromosome 6
Long arm Short arm

HLA region
6p21.1-21.3

Class II Class III Class I

DP DQ DR CYP21 C4 C2 HSP-70 B C ATNF

Figure 1: Schematic representation of the HLA locus on human chromosome 6.
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corresponding to up to four sets of digits separated by colons
(Figure 3). The HLA-prefix signifies the human MHC gene
complex. The next portion after the HLA-prefix indicates
the specific HLA genomic region. The first two digits of the
number (field 1) show the allele group (or allele family).

The second field provides the specific HLA allele (HLA pro-
tein). The third field names the alleles that differ only by syn-
onymous nucleotide substitutions within the coding region.
The fourth field names the alleles that vary only by sequence
polymorphisms in introns, 3′-untranslated regions, and 5′
-untranslated regions. Last is the suffix consisting of a letter
that denotes alleles with changes in expression levels of the
HLA protein products. The suffix “N” is used for null alleles
with no HLA protein expression. Other letters have been
used to designate an allele to indicate its expression status:
L: low expression, S: secreted, and Q: questionable. A stan-
dardized HLA nomenclature has contributed to the under-
standing of the HLA system and proved to be an essential
resource to address HLA typing ambiguity in the clinical
applications of HLA [23].

4. Genetic Association between HLA Loci and
Infectious Diseases

The HLA family of genes is one of the most polymorphic
genes in the human genome [24]. The IPD-IMGT/HLA
Database is a repository for the variant sequences of HLA
alleles. As of April 2022, the IPD-IMGT/HLA Database
has reported 33,490 HLA alleles. Of the 24,308 HLA class I
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Figure 2: Schematic presentation of the structure of HLA class I (a) and class II (b) molecules.
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Figure 3: HLA molecule nomenclature with information between prefix (HLA) and suffix (N).

Table 1: HLA class I and class II genes and number of alleles (April
2022).

HLA locus Number of alleles Number of expressed proteins

HLA-A 7,742 4,355

HLA-B 8,849 5,343

HLA-C 7,393 4,095

HLA-DRA 32 5

HLA-DRB 4,018 2,736

HLA-DQA1 442 205

HLA-DQA2 40 11

HLA-DQB1 2,230 1,407

HLA-DPA1 406 173

HLA-DPA2 5 0

HLA-DPB1 1,958 1,223

HLA-DPB2 6 0
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alleles, 7,452, 8,849, and 7,393 alleles are counted in HLA-A,
HLA-B, and HLA-C genes. Of 9,182 HLA class II alleles, 32,
4,018, 442, 40, 2,230, 406, 5, 1,958, and 6 alleles are counted
in HLA-DRA, HLA-DRB, HLA-DQA1, HLA-DQA2, HLA-
DQB1, HLA-DPA1, HLA-DPA2, HLA-DPB1, and HLA-
DPB2 genes, respectively (https://www.ebi.ac.uk/ipd/imgt/
hla/about/statistics/) (Table 1) [21]. Research in infectious
diseases has not described the strongest association with
HLA class III in different ethnic groups. Our review will
assess the association studies focusing on HLA class I and
class II variants associated with susceptibility or protection
to infectious diseases.

4.1. HLA Associations with Tuberculosis. Tuberculosis (TB),
caused by Mycobacterium tuberculosis (M. tuberculosis), is
an infectious disease posing a significant public health threat
primarily in low- and middle-income countries [25]. The
World Health Organization reported an estimated 10.0 mil-
lion TB cases, 1.2 million TB deaths among HIV-negative
people, and an additional 208,000 TB deaths among HIV-
positive people in 2019 [26]. M. tuberculosis can modulate
the HLA class II pathway by inhibiting phagosome matura-
tion and thus preventing the formation of bacterial peptide-
MHC-II (HLA class II) complexes and subsequent T cell
responses to bacterial antigens [27]. M. tuberculosis also
inhibits MHC-II expression and antigen processing resulting
in decreased recognition by T cells [28].

Several genetic polymorphisms of HLA have been impli-
cated in individuals’ genetic susceptibility to tuberculosis in

distinct populations (Table 2). A study on 31 pulmonary
tuberculosis patients in Poland showed a higher frequency
of HLA-DRB1 ∗ 16 in patients when compared to the 58
healthy controls. In comparison, the frequency of the HLA-
DRB1 ∗ 13 allele was significantly lower in the patient group
than in the healthy controls [29]. In Iranian patients with
pulmonary tuberculosis, HLA-DRB1 ∗ 07 and HLA-DQA1
∗ 01:01 alleles appeared to be the risk alleles, and HLA-
DQA1 ∗ 03:01 and HLA-DQA1 ∗ 05:01 alleles were the pro-
tective alleles [30]. Wamala et al. investigated HLA class II
gene polymorphisms in susceptibility to pulmonary tubercu-
losis in Uganda and observed that the HLA-DQB1 ∗ 03:03
allele was associated with resistance to pulmonary tubercu-
losis [31]. In the study performed in South India, the fre-
quencies of HLA-DRB1 ∗ 15:01 and HLA-DQB1 ∗ 06:01
alleles were higher in pulmonary tuberculosis patients than
in the control group. In contrast, the frequency of the HLA-
DPB1 ∗ 04 allele was highly prevalent among the control
group and was deemed to be a protective allele against pul-
monary tuberculosis [32]. A study by Sveinbjornsson et al.
in Icelanders demonstrated HLA-DQA1 ∗ 03 (represented
by p.Ala210Thr) and a noncoding variant, rs557011, located
between HLA-DQA1 and HLA-DRB1 contributing to
genetic susceptibility to tuberculosis [33]. They also demon-
strated the association of rs9271378 with a reduced risk of
pulmonary TB in Icelanders. A first genome-wide associa-
tion study (GWAS) on tuberculosis in Han Chinese
revealed HLA loci, rs41553512 (a missense mutation in
HLA-DRB5), significantly associated with tuberculosis [34].

Table 2: Associations between HLA and tuberculosis.

Population Study design Sample size
Serotype, allele, SNP,

or haplotype
Type of association Ref.

Polish Case-control
31 pulmonary TB patients and

58 healthy controls
HLA-DRB1 ∗ 16 Susceptibility

[29]
HLA-DRB1 ∗ 13 Protection

Iranian Case-control
40 pulmonary TB patients and

100 healthy controls

HLA-DRB1 ∗ 07 and HLA-
DQA1 ∗ 01:01

Susceptibility
[30]

HLA-DQA1 ∗ 03:01 and
HLA-DQA1 ∗ 05:01

Protection

Uganda Case-control
43 pulmonary TB patients and

42 healthy controls
HLA-DQB1 ∗ 03:03 Protection [31]

Indian Case-control
126 pulmonary TB patients and

87 healthy controls

HLA-DRB1 ∗ 15:01 and
HLA-DQB1 ∗ 06:01

Susceptibility
[32]

HLA-DPB1 ∗ 04 Protection

Icelander Case-control

3,686 pulmonary TB patients, 14,723 patients
with M. tuberculosis infection, 8,162 patients
with any other forms of TB, and 277,643

healthy controls

rs557011[T] located
between HLA-DQA1 and

HLA-DRB1

Susceptibility to pulmonary
TB and M. tuberculosis

infection

[33]HLA-DQA1 ∗ 03
Susceptibility to M.
tuberculosis infection

rs9271378[G] located
between HLA-DQA1 and

HLA-DRB1

Reduced risk of pulmonary
TB

Han
Chinese

Case-control 4,310 TB patients and 6,386 healthy controls HLA-DRB5 rs41553512 Susceptibility [34]

Thai Case-control 682 TB patients and 836 healthy controls
HLA-DRB1 ∗ 09:01 and
HLA-DQB1 ∗ 03:03

Susceptibility to TB caused
by modern M. tuberculosis

strains
[35]
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Strain-based association analysis between HLA class II
genes and tuberculosis in the Thai population identified a
significant association of HLA-DRB1 ∗ 09:01 and HLA-
DQB1 ∗ 03:03 with a modern strain of M. tuberculosis
(absence of M. tuberculosis-specific deletion 1 (TbD1)
region) [35].

4.2. HLA Associations with Leprosy. Leprosy is a chronic
infectious disease caused by Mycobacterium leprae. Based
on clinical, histopathological, microbiological, and immuno-
logical features, Ridley and Jopling classified the leprosy
spectrum into five groups: tuberculoid (TT), borderline-
tuberculoid (BT), borderline-borderline (BB), borderline-
lepromatous (BL), and lepromatous (LL) [36].

Both HLA class I and class II genes have been implicated
in susceptibility to leprosy and its subtypes in different pop-
ulations (Table 3). In a study in India, the frequencies of
HLA-A ∗ 02:06, HLA-A ∗ 11:02, HLA-B ∗ 40:16, HLA-B ∗
51:10, HLA-Cw ∗ 04:07, and HLA-Cw ∗ 07:03 alleles were
significantly higher in leprosy patients compared to healthy
controls, while the frequencies of HLA-A ∗ 0101, HLA-Cw
∗ 04011, and HLA-Cw ∗ 06:02 alleles were markedly lower
in leprosy patients compared to healthy controls [37].
Another study of genetic susceptibility to leprosy in India

found rs1071630 located in HLA-DQA1 and rs9270650 in
HLA-DRB1 associated with susceptibility to leprosy [38]. A
genome-wide association study in 706 patients with leprosy
and 1225 unaffected controls in Han Chinese found a
single-nucleotide polymorphism (SNP) rs602875 at the
HLA-DR-DQ locus associated with susceptibility to leprosy
[39]. HLA-DR molecules activate T cells by presenting M.
leprae peptide antigens to CD4+ T cells and activate various
pathways. Anomalies in those pathways could cause HLA-
associated leprosy [39]. The HLA-DRB1 ∗ 15 allele was asso-
ciated with leprosy, while HLA-DRB1 ∗ 09 was significantly
protective against leprosy in Han Chinese [40]. A meta-
analysis by Zhang et al. identified HLA-DQA1 ∗ 03:03 and
HLA-C ∗ 08:01 as causal variants to leprosy susceptibility
in the Han Chinese population [41]. In the association study
between HLA-DRB1 and leprosy among Brazilian and Viet-
namese people, the HLA-DRB1 ∗ 04 allele was associated
with protection against leprosy, and the HLA-DRB1 ∗ 10
allele was found to be associated with susceptibility to lep-
rosy [42]. A recent study was conducted to investigate the
association of HLA class I and II genes with leprosy in a Bra-
zilian population. The study identified the association of
HLA-C ∗ 12 and HLA-DPB1 ∗ 105 with susceptibility to lep-
rosy, while HLA-C ∗ 08, HLA-DPB1 ∗ 04, and HLA-DPB1 ∗

Table 3: Associations between HLA and leprosy.

Population Study design Sample size Serotype, allele, SNP, or haplotype Type of association Ref.

Indian Case-control
32 leprosy patients and 67

healthy controls

HLA-A ∗ 02:06, HLA-A ∗ 11:02, HLA-B ∗
40:16, HLA-B ∗ 51:10, and HLA-Cw ∗ 04:07

Susceptibility

[37]
HLA-A ∗ 0101, HLA-Cw ∗ 04011, and

HLA-Cw ∗ 06:02
Protection

HLA-A ∗ 11-B ∗ 40, HLA-A ∗ 11:02-B ∗
40:06-Cw ∗ 04:07, and HLA-A ∗ 11:02-B ∗

40:06-Cw ∗ 15:02

Susceptibility to
lepromatous leprosy

Indian
Case-control
and family-

based

258 leprosy patients, 161
families, and 300 healthy

controls

HLA-DQA1 rs1071630 and HLA-DRB1
rs9270650

Susceptibility [38]

Han Chinese Case-control
3,254 leprosy patients and
5,955 healthy controls

HLA-DR-DQ rs602875 Susceptibility [39]

Han Chinese Case-control
305 leprosy patients and 527

healthy controls
HLA-DRB1 ∗ 15 Susceptibility

[40]
HLA-DRB1 ∗ 09 Protection

Han Chinese Meta-analysis Four imputed data sets HLA-DQA1 ∗ 03:03 and HLA-C ∗ 08:01 Susceptibility [41]

Brazilian Case-control
578 leprosy patients and 691

healthy controls
HLA-DRB1 ∗ 10 Susceptibility

[42]
HLA-DRB1 ∗ 04 Protection

Brazilian Case-control
411 leprosy patients and 415

healthy controls

HLA-C ∗ 12 and HLA-DPB1 ∗ 105 Susceptibility
[43]HLA-C ∗ 08, HLA-DPB1 ∗ 04 and

HLA-DPB1 ∗ 18
Protection

Vietnamese Family-based 194 families
HLA-DRB1 ∗ 10 Susceptibility

[42]
HLA-DRB1 ∗ 04 Protection

Vietnamese Case-control
687 leprosy patients and 468

healthy controls
HLA-DQA1 ∗ 01:05 and HLA-DRB1 ∗ 10:01 Susceptibility

[44]
HLA-C ∗ 07:06 Protection

Argentinean Case-control
142 leprosy patients and 162

healthy controls
HLA-DRB1 ∗ 14 :01 and HLA-DRB1 ∗ 14:06 Susceptibility

[45]
HLA-DRB1 ∗ 08:08 and HLA-DRB1 ∗ 11:03 Protection

Taiwanese Case-control
65 multibacillary leprosy
patients and 190 healthy

controls
HLA-DRB1 ∗ 04:05

Protection against
multibacillary

leprosy
[46]
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18 were protective against leprosy [43]. Dallmann-Sauer
et al. performed next-generation sequencing to genotype
three HLA class I and eight class II genes in 1,155 individ-
uals from a Vietnamese leprosy case-control sample. The
HLA-DQA1 ∗ 01:05 and HLA-DRB1 ∗ 10:01 alleles in com-
plete linkage disequilibrium (LD) were associated with lep-
rosy, whereas the HLA-C ∗ 07:06 allele was shown to be
protective against leprosy in the Vietnamese population
[44]. A study of the association of HLA-DRB1 alleles in 71
leprosy patients and 81 healthy controls in Argentina found
a higher frequency of HLA-DRB1 ∗ 14:01 and HLA-DRB1 ∗
14:06 alleles in leprosy patients compared to controls. In
contrast, the frequency of HLA-DRB1 ∗ 08:08 and HLA-
DRB1 ∗ 11:03 was highly prevalent among the healthy con-
trols compared to the leprosy patients hence indicating resis-
tance to leprosy [45]. Interestingly, a study in Taiwan
assessing the leprosy association with HLA class I and class
II alleles found a protective effect of HLA-DRB1 ∗ 04:05 on
multibacillary leprosy [46].

4.3. HLA Associations with Melioidosis. Melioidosis is an
infectious disease caused by the Gram-negative bacillus Bur-
kholderia pseudomallei. Melioidosis is widely endemic in
Southeast Asia, especially in Thailand, and northern Austra-
lia [47]. The disease is highly seasonal, and the organism is
commonly found in soil and water in the endemic areas
[48]. Risk factors include diabetes mellitus, chronic kidney
disease, chronic lung disease, alcohol abuse, and steroid
therapy [49, 50]. Diabetes mellitus is the major underlying
risk factor occurring in 60-75% of patients diagnosed with
melioidosis [50–52]. Clues to the mechanisms involved
between diabetes mellitus and melioidosis might be
explained by the role of HLA alleles in both diabetes mellitus
and melioidosis. HLA class II alleles have been documented
to have prominent effects on diabetes mellitus in distinct
populations [53–57].

Studies in Thailand have reported the risk of HLA alleles
associated with melioidosis (Table 4). In 1998, Dharakul et al.
investigated the associations between HLA class II alleles
and melioidosis in 79 melioidosis patients and 105 healthy
controls in Northeast Thailand [8]. The study demonstrated
a significant association between the DRB1 ∗ 16:02 allele and
the susceptibility to melioidosis in the Thai population. In
addition, associations were observed with the DRB1 ∗
16:02 allele for severe melioidosis and septicemic melioidosis
when various clinical groups of melioidosis patients were
compared with healthy controls. In another study in North-
east Thailand, HLA-B ∗ 46 and HLA-C ∗ 01 (HLA class I
alleles) were associated with increased mortality from acute
melioidosis compared to the survived patients from acute
melioidosis [58].

In melioidosis, suppressed HLA-DR expression on clas-
sical monocytes was associated with poor outcomes [59]. A
transcriptomic analysis of changes in gene expression of
nonsurvivors from melioidosis in Northeast Thailand found
the downregulation of HLA class II genes, including HLA-
DPB1, HLA-DRA, HLA-DOA, and HLA-DOB [60]. The role
of HLA in the pathogenesis and poor prognosis of melioido-
sis is not fully understood. Reynolds et al. demonstrated a

strong binding affinity of alkyl hydroperoxide reductase
(AhpC), a highly dominant B. pseudomallei antigen, with
HLA-DR alleles, HLA-DR1, HLA-DR3, HLA-DR4, HLA-
DR7, HLA-DR9, HLA-DR11, HLA-DR13, HLA-DR15:01,
and HLA-DR15:02, and the HLA-DQ alleles, HLA-DQB1 ∗
06:02 and HLA-DQB1 ∗ 03:02 [61]. In addition, the study
also reported that among patients with acute melioidosis in
Northeast Thailand, survival was associated with a strong
HLA class II-restricted T cell response to AhpC.

4.4. HLA Associations with Staphylococcus aureus Infections.
S. aureus is an opportunistic pathogen and a leading cause of
morbidity and mortality in hospital and community settings
[62]. The S. aureus superantigens, toxic shock syndrome
toxin-1 (TSST-1) and S. aureus enterotoxin B (SEB), bind
to the HLA class II molecule HLA-DR1 [63]. Genetic varia-
tions within the host are associated with susceptibility to S.
aureus infections suggesting why one-third of humans are
known to be colonized with S. aureus in their anterior nares,
but most avoid clinically significant S. aureus infections [64].

Several HLA alleles are proposed as susceptibility factors
to S. aureus infection (Table 5). A GWAS conducted to iden-
tify specific genetic variants that underlie susceptibility to
infections caused by S. aureus in white subjects reported
three SNPs, rs4321864 located in the HLA-DRA gene and
rs115231074 and rs35079132 located in HLA-DRB1 genes,
associated with S. aureus infection. The study also found
an association between HLA-DRB1 ∗ 04 serotype and S.
aureus infection [65]. Cyr et al. evaluated the role of genetic
variation on susceptibility to S. aureus bacteremia in African
Americans. They found the genetic association of one region
on chromosome 6 in the HLA class II region with suscepti-
bility S. aureus bacteremia [66].

4.5. HLA Associations with HIV Infection. HIV infection is a
major global public health issue with a devastating impact
on social and economic indicators [67–69]. HLAs play a
complex role in immunomodulation during HIV infection,
and variations at the HLA class I locus have been linked to
the efficiency of CD8+ T cell control of viremia [70].

Polymorphisms within HLA class I and II loci have been
identified as the host genetic modifier of HIV disease pro-
gression in several populations (Table 6). In the Argentinian
population, the frequency of the HLA-B ∗ 39 allele was sig-
nificantly higher in HIV-1-positive subjects than in controls,
whereas the HLA-B ∗ 44 allele was absent among the HIV-1-
positive subjects [71]. Claiborne et al. identified four HLA
class I alleles (B ∗ 14:01, B ∗ 57, B ∗ 58:01, and B ∗ 81)
and two HLA class II alleles (DQB1 ∗ 02 and DRB1 ∗ 15)
associated with the protection from rapid CD4+ T cell
decline without controlling early plasma viral load in a Zam-
bian early infection cohort [72]. A GWAS in HIV-1 infected
Caucasian subjects showed HLA-B ∗ 57:01 rs2395029 and
HLA-C rs9264942 associated with HIV-1 disease progres-
sion [73]. Analysis of the HLA-B allele frequencies among
HIV-1-infected individuals classified as rapid progressors
(RPs), typical progressors (TPs), and long-term nonprogres-
sors (LTNPs) in the Brazilian population revealed the higher
frequency of the HLA-B ∗ 52 allele in the LTNP group than
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in either the TP group or the RP group, and thus, the pres-
ence of the HLA-B ∗ 52 allele is favorable to slow AIDS pro-
gression [74]. A study involving treatment-naive patients
with chronic HIV-1 infection from (i) Warsaw, Poland; (ii)
Athens, Greece; (iii) Mexico City, Mexico; (iv) Bonn, Ger-
many; (v) Boston, MA; (vi) Barcelona, Spain; and (vii)
Thames Valley, UK, suggested that HLA-B ∗ 27:02 was asso-
ciated with slower progression to HIV disease [75]. In a
study among the HIV clade B-infected ART-naïve individ-
uals from Mexico and Central America, several HLA alleles
were identified as protective (A ∗ 03:01, B ∗ 15:39, B ∗
27:05, B ∗ 39:02, B ∗ 57:01/02/03, and B ∗ 58:01) and risk
(A ∗ 68:03/05, B ∗ 15:30, B ∗ 35:02, B ∗ 35:12/14, B ∗
39:01/06, B ∗ 39:05, and B ∗ 40:01) factors for disease pro-
gression [76].

4.6. HLA Associations with COVID-19. COVID-19 is
caused by the severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2). It is a worldwide pandemic with
198,778,175 confirmed cases, including 4,235,559 deaths
(as of 3 August 2021) [77]. Patients with severe COVID-
19 have been found to exhibit immune dysregulation char-
acterized by IL-6-mediated low HLA-DR expression [78].

Several HLA polymorphisms are associated with suscep-
tibility and severity to COVID-19 in different populations
(Table 7). In a study among individuals of European descent
experiencing variable clinical outcomes following COVID-
19 infection, the frequency of HLA-DRB1 ∗ 04:01 was higher
among asymptomatic COVID-19 patients than the severe
COVID-19 patients and suggested the protective effects of
the HLA-DRB1 ∗ 04:01 allele against developing severe com-
plications from COVID-19 [79]. The DRB1 ∗ 09:01 allele
was associated with risk for severe COVID-19 in Japanese
[80]. Novelli et al. analyzed the HLA allele frequency distri-
bution in Italian COVID-19 patients to identify potential
markers of susceptibility to the disease and observed that

Table 4: Associations between HLA and melioidosis.

Population Study design Sample size
Serotype, allele, SNP,

or haplotype
Type of association Ref.

Thai Case-control
79 melioidosis patients and

105 healthy controls
HLA-DRB1 ∗ 16:02 Susceptibility and poor prognosis [8]

Thai Case-control
183 acute melioidosis patients and

21 healthy controls
HLA-B ∗ 46 and
HLA-C ∗ 01

Increased mortality [58]

Table 5: Associations between HLA and S. aureus infections.

Population Study design Sample size Serotype, allele, SNP, or haplotype
Type of

association
Ref.

White Case-control
4,701 culture-confirmed S. aureus
cases and 45,344 healthy controls

HLA-DRA, rs4321864, HLA-DRB1, rs115231074
and rs35079132, and HLA-DRB1 ∗ 04

Susceptibility [65]

African
American

Case-control 390 cases and 175 healthy controls
52 SNPs from physical position 32377284 to
32660943 (hg19) in the HLA class II region

Susceptibility [66]

Table 6: Associations between HLA and HIV infection.

Population Study design Sample size
Serotype, allele, SNP,

or haplotype
Type of

association
Ref.

Argentinian Case-control
56 HIV-1-positive patients
and 56 healthy individuals

HLA-B ∗ 39 Susceptibility
[71]

HLA-B ∗ 44 Protection

Zambian Longitudinal
127 subjects with acute

HIV-1 infections

HLA-B ∗ 14:01, B ∗ 57, B ∗ 58:01
and B ∗ 81, and HLA-DQB1 ∗ 02 and

DRB1 ∗ 15

Slow disease
progression

[72]

Caucasian Longitudinal
2,554 HIV-1 infected

subjects
HLA-B ∗ 5701, rs2395029 and HLA-C,

rs9264942

Accelerated
disease

progression
[73]

Brazilian
Retrospective
observational

218 HIV-1 infected subjects HLA-B ∗ 52
Slow disease
progression

[74]

Mexican and Central
American

Multicenter cross-
sectional

3,213 HIV clade B-infected
patients

HLA-A ∗ 68:03/05, HLA-B ∗ 15:30, B ∗
35:02, B ∗ 35:12/14, B ∗ 39:01/06, B ∗

39:05, and B ∗ 40:01

Accelerated
disease

progression
[76]

HLA-A ∗ 03:01, HLA-B ∗ 15:39, B ∗
27:05, B ∗ 39:02, B ∗ 57:01/02/03, and

B ∗ 58:01

Slow disease
progression
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the frequencies of HLA-DRB1 ∗ 15:01, HLA-DQB1 ∗ 06:02,
and HLA-B ∗ 27:07 alleles were higher among the severe
affected COVID-19 patients compared to healthy controls
[81]. In a comprehensive in silico analysis, HLA-B∗46:01
had the fewest predicted binding peptides for SARS-CoV-
2, indicating that the individuals with this allele may be par-
ticularly vulnerable to COVID-19 [82]. Another in silico
analysis found the association between HLA-A ∗ 02:01 and
an increased risk for COVID-19, and HLA-A ∗ 02:01 was
predicted to present the lower SARS-CoV-2 antigens and
subsequent lower T cell-mediated antiviral responses com-
pared to HLA-A ∗ 11:01 or HLA-A ∗ 24:02 alleles [83]. In
a study conducted by Shkurnikov et al. in deceased patients
with COVID-19 in Russia, HLA-A ∗ 01:01 was associated
with early COVID-19 deaths among the high-risk patients,
and HLA-A ∗ 02:01 and HLA-A ∗ 03:01 alleles were associ-
ated with early COVID-19 deaths among the low-risk
patients [84].

4.7. HLA Associations with Hepatitis B. Hepatitis B is a
significant public health problem putting people at high
risk of death from cirrhosis and liver cancer [85]. Hepati-
tis B is caused by the hepatitis B virus (HBV). HBV-
specific CD8+ cytotoxic T lymphocytes play a critical role
in viral clearance and liver injury, and HLA polymor-
phisms have been reported to alter CD8+ cytotoxic T lym-
phocyte responses [86].

Multiple population association studies have provided
evidence of an association between HLA locus variations
and hepatitis B virus infection (Table 8). A study comparing
the distribution of HLA alleles between persistent and tran-
sient HBV infection in children and adults in the Gambia
found HLA-DRB1 ∗ 13:02 associated with protection against
persistent HBV infection among children and adults [87]. A
Chinese study by Fan et al. showed an association between
the HLA-DQ rs9275319C allele and decreased HBV infec-
tion risk and an increased HBV clearance [88]. Another
Chinese study showed that HLA-DQB1 ∗ 06:03 protected
against HBV infection [89]. An association analysis per-
formed among the Turkish population revealed the associa-
tion of the HLA-DPB1 rs9277535A allele with the risk of
persistent HBV infection [90]. A Caucasian study showed
that HLA-A ∗ 03:01 was associated with viral clearance,
and HLA-B ∗ 8 was associated with viral persistence [91].
Al-Qahtani et al. demonstrated an association of HLA-DQ

alleles (rs2856718A and rs9275572A) and HLA-DP alleles
(rs3077G and rs9277535G) with HBV infection in Saudi
Arabian patients [92]. Nishida et al. showed that HLA-
DQB1 ∗ 06:01 was associated with chronic HBV infection
in Japanese patients [93].

4.8. HLA Associations with Hepatitis C. Hepatitis C virus
(HCV) infection is a significant cause of acute and chronic
hepatitis. Chronic hepatitis leads to liver cirrhosis and hepa-
tocellular carcinoma (HCC) [94, 95]. HCV persistence or
clearance is proposed to depend on the response of the
HLA class I-restricted HCV-specific CD8+ cytotoxic T cell-
mediated lysis of virus-infected host cells [96].

Depending on ethnicity, a significant association has
been suggested between HLA alleles and HCV persistence
or spontaneous clearance (Table 9). In the Thai population,
the frequency of HLA- DRB1 ∗ 03:01 and HLA-DQB1 ∗
02:01 was higher in the persistent HCV infection group than
in the transient HCV infection group, revealing their suscep-
tibility effect on persistent HCV infection [97]. Genotyping a
large multiracial cohort of US women to evaluate associa-
tions between HLA alleles and HCV viremia indicated some
HLA alleles (B ∗ 57:01, B ∗ 57:03, Cw ∗ 01:02, and DRB1 ∗
01:01) were associated with the absence of HCV RNA. At the
same time, the presence of HCV RNA was observed for
HLA-DRB1 ∗ 03:01 [98]. Huang et al. reported the associa-
tion of HLA-A ∗ 02:01 and HLA-DRB1 ∗ 11:01 with HCV
spontaneous clearance in the Chinese population [99]. In
Egyptian HCV patients and their families or close household
contacts, HLA-DRB1 allele associations with HCV were
reported (DRB1 ∗ 03:01:01 and DRB1 ∗ 13:01:01 alleles
and the risk of progression to chronic hepatitis C infection
and DRB1 ∗ 04:01:01, DRB1 ∗ 04:05:01, DRB1 ∗ 07:01:01,
and DRB1 ∗ 11:01:01 and protection against HCV infection)
[100].

5. Challenges in HLA Typing to Predict
Disease Outcomes

5.1. HLA Diversity. The genetic diversity of HLA within each
population can be explained or measured by allelic richness
(ar) and the expected heterozygosity (H). The allelic richness
of a population at a particular locus is the expected number
of alleles present in the population at that locus [101]. The
expected heterozygosity is defined as the average proportion

Table 7: Associations between HLA and COVID-19.

Population Study design Sample size Serotype, allele, SNP, or haplotype Type of association Ref.

European Case-control
49 severe COVID-19 patients and 69
asymptomatic COVID-19 patients

HLA-DRB1 ∗ 04:01
Protection against
disease severity

[79]

Japanese Case-control
73 severe COVID-19 patients and 105

nonsevere COVID-19 patients
HLA-DRB1 ∗ 09:01

Risk of severe
COVID-19

[80]

Italian Case-control
99 severe COVID-19 patients and 1,017

healthy controls
HLA-B ∗ 27:07, HLA-DQB1 ∗ 06:02,

and HLA-DRB1 ∗ 15:01
Risk of severe
COVID-19

[81]

Russian Case-control
111 deceased patients with confirmed
COVID-19 and 428 healthy controls

HLA-A ∗ 01:01, HLA-A ∗ 02:01, and
HLA-A ∗ 03:01

Early COVID-19
deaths

[84]
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of heterozygotes per locus in a randomly mating population
[102]. Pathogen richness is the number of pathogens within
a defined geographical region [103]. Sanchez-Mazas et al.
reported a significant positive correlation between genetic
diversity and pathogen richness at HLA-A and HLA-B and
a significant negative correlation at HLA-DQB1 [104].

Identifying the most clinically relevant HLA variant is
necessary for facilitating improvements in the diagnosis
and treatment of human disease. The identifiable HLA vari-
ants provide opportunities to refine medical management to
optimize patient health and medical outcomes. However,
genetic diversity within and between populations poses a

Table 8: Associations between HLA and hepatitis B.

Population Study design Sample size
Serotype, allele, SNP,

or haplotype
Type of association Ref.

Gambian Case-control

185 children with persistent HBV infection, 218
children with transient HBV infection, 40 adults
with persistent infection, and 195 adults with

transient HBV infection

HLA-DRB1 ∗ 13:02
Protection against

persistent HBV infection
[87]

Chinese Case-control
397 chronic hepatitis B subjects, 434 HBV

spontaneous clearance subjects, and 238 healthy
controls

HLA-DQ, rs9275319C
Decreased HBV infection
risk and an increased

HBV clearance
[88]

Chinese Case-control
256 patients with HBV infection and 433 healthy

controls
HLA-DQB1 ∗ 06:03

Protection against
chronic HBV infection

[89]

Turkish Case-control
294 chronic HBV infection patients and 234

persons with HBV natural clearance
HLA-DPB, rs9277535A

Risk of persistent HBV
infection

[90]

Caucasian
Nested case-

control
194 persistent HBV infection individuals and 342

controls with viral clearance

HLA-A ∗ 03:01 Increased HBV clearance
[91]

HLA-B ∗ 8
Risk of persistent HBV

infection

Saudi
Arabian

Case-control

488 inactive HBV carriers, 208 active HBV carriers,
85 HBV-infected patients suffering from cirrhosis
or cirrhosis and hepatocellular carcinoma, 304

HBV-cleared individuals and 587 healthy
uninfected controls

HLA-DQ, rs2856718A,
and HLA-DP, rs3077G,

and rs9277535G
Risk of HBV infection

[92]

HLA-DQ, rs9275572A
Protective effect against
HBV infection and

increased HBV clearance

Japanese Case-control 805 HBV patients and 2,278 healthy controls HLA-DQB1 ∗ 06:01
Risk of chronic HBV

infection
[93]

Table 9: Associations between HLA and hepatitis C.

Population Study design Sample size
Serotype, allele, SNP,

or haplotype
Type of

association
Ref.

Thai Case-control
57 subjects with persistent

HCV infection and 43 subjects with
transient HCV infection

HLA- DRB1 ∗ 03:01 and HLA-
DQB1 ∗ 02:01

Persistent
HCV infection

[97]
HLA-DRB1∗03:01-HLA-

DQA1∗05:01-HLA-DQB1∗02:01
Persistent

HCV infection

Multiracial
US women

Case-control
622 HCV RNA positive women and
136 HCV RNA negative women

HLA-B ∗ 57:01, B ∗ 57:03,
HLA-Cw ∗ 01:02, and HLA-

DRB1 ∗ 01:01

HCV
clearance

[98]

HLA-DRB1 ∗ 03:01
Persistent

HCV infection

Chinese Case-control
429 subjects with persistent HCV

infection and 231 subjects with HCV
clearance

HLA-A ∗ 02:01 and HLA-
DRB1 ∗ 11:01

HCV
clearance

[99]

Egyptian
Family-based and

case-control

162 Egyptian families (255 subjects with
chronic hepatitis C, 108 persons who

spontaneously cleared the virus, and 588
persons in the control group)

HLA-DRB1 ∗ 03:01:01 and
HLA-DRB1 ∗ 13:01:01

Persistent
HCV infection

[100]HLA-DRB1 ∗ 04:01:01, DRB1 ∗
04:05:01, DRB1 ∗ 07:01:01,

and DRB1 ∗ 11:01:01

HCV
clearance

9Journal of Immunology Research



challenge in HLA genomics to become a standard compo-
nent of health care. Many rare HLA variants are identified,
and they are likely to contribute to interindividual differ-
ences in risk or protection to disease. HLA data from various
populations have been collected, but populations of African
and Asian descent have limited representation to provide
insight into HLA disease associations [105]. HLA genetic
diversity among Europeans is well documented [106–108].
Hurley et al. recently reported global frequencies of com-
mon, intermediate, and well-documented HLA alleles and
highlighted the HLA diversity in world populations [109].

5.2. HLA Genotyping. Different DNA-based molecular tech-
niques represent the modern methods used for HLA typing
in clinical applications. Depending on their power to dis-
criminate between HLA alleles, DNA-based HLA typing
methods are characterized by low resolution (result at the
level of the digits composing the first field in the HLA
nomenclature) and high resolution (result at the level of four
digits) [110]. The most widely used DNA-based methods in
conjunction with PCR for HLA typing include sequence-
specific oligonucleotides (SSO), sequence-specific primers
(SSP), and sequence-based typing (SBT) [111]. In PCR-
SSO, PCR products are hybridized into sequence-specific
oligonucleotide probes. In PCR-SSP, primers complemen-
tary to particular HLA allele sequences are used, and ampli-
fication with sequence-specific primers yields only a product
if the target sequences are present in the DNA sample. In
SBT, HLA genetic regions are amplified by PCR using
locus-specific primers, followed by direct sequencing of the
PCR products [112].

Although SSO and SSP methods are widely used, they
are not practical and capable of detecting all known HLA
polymorphisms and novel HLA alleles [113]. SSO and SSP
typing methods struggle to resolve the major allele groups
[114]. The SBT provides high-resolution HLA genotyping
and can identify new alleles. While SBT allows for a detailed
interpretation of HLA alleles, it has limitations, including
time-consuming protocols, low throughput, and ambiguities
in HLA typing results [115–117]. SNP-based HLA typing on
microarray produces a high-resolution HLA type but has not
been used in clinical typing due to its tendency to miss sev-
eral HLA variants [117].

Next-generation sequencing- (NGS-) based HLA typing
methods allow high-throughput sequencing, massively par-
allel analysis, and high-resolution HLA typing with minimal
ambiguity [118, 119]. NGS-based HLA typing has been
implemented with better accuracy compared to traditional
HLA typing methods [120]. NGS-based HLA typing
approaches are promising but are not yet ready to be imple-
mented in routine clinical care settings due to the higher cost
and complex protocol [111].

5.3. Implementing Therapeutic Approaches Using Genomic
Knowledge of Specific Targets and Their Roles in Disease. Uti-
lization of HLA typing can identify alleles associated with
disease risks and improve clinical outcomes. However, geno-
mic literacy among clinicians is a low to moderate level
which presents a challenge in adopting genomic services by

clinicians in clinical practices [121]. To overcome this chal-
lenge, high-quality results in HLA association studies must
be disseminated among the health workforce, including the
policymakers and the personnel on the ground. Awareness
about the implications of HLA typing into mainstream clin-
ical practice must be raised by educating the health work-
force. There is a need for more reporting on the clinical
validity and clinical utility of genetic testing used for screen-
ing of risk and protective HLA alleles in diseases [122, 123].
Integrating genomic services utilizing HLA-specific tests face
challenges and barriers to widespread adoption. These
include the lack of a single standard approach to achieve
HLA typing by NGS data, integrating electronic health
records (EHR) of genomic results and clinical decision sup-
port (CDS), ensuring confidentiality for patients and fami-
lies and lack of reimbursement [124–127].

6. Conclusions

This article summarized the findings from association studies
of HLA variants with bacterial and viral infections. It is
important to note that there were no overlaps in the HLA
variants associated with susceptibility or protection to infec-
tious diseases in populations worldwide. Despite the evidence
of association of HLA variants with disease susceptibility in
our review, a consistent genetic HLA locus has not been dem-
onstrated within the population.

The global pathogens will expand to new geographical
locations with genetic mutations in the future [128]. New
sequencing techniques that allow faster, cheaper, and less
intensive sequencing need to be developed to effectively
implement HLA typing in routine clinical care. Advance-
ments in HLA typing technologies are enabling a more
accurate linking of HLA genotypes to disease outcomes.
NGS technologies will provide a deeper insight into dis-
ease mechanisms and biological processes of HLA. Com-
bining HLA sequencing with the expression levels of
HLA genes can provide a clearer picture of the role of
HLA genes in the pathogenesis of diseases. To understand
HLA evolution, HLA expression levels must be integrated
with information on HLA genetic variation in diverse pop-
ulations. At the same time, large data sets need to be gen-
erated to reinterpret information to understand pathogen
spread in the future [129].

In light of the current evidence, the goal of HLA typing
should aid in the realization of “precision medicine” that will
benefit patients in diverse populations. Significant research
on HLA and infectious diseases is needed in subjects of all
ethnic origins to achieve optimum therapeutic outcomes
for broader clinical implementation.
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