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Abstract

Background: Two different Human-Machine Interfaces (HMIs) were developed, both based on

electro-biological signals. One is based on the EMG signal and the other is based on the EEG signal.

Two major features of such interfaces are their relatively simple data acquisition and processing

systems, which need just a few hardware and software resources, so that they are, computationally

and financially speaking, low cost solutions. Both interfaces were applied to robotic systems, and

their performances are analyzed here. The EMG-based HMI was tested in a mobile robot, while the

EEG-based HMI was tested in a mobile robot and a robotic manipulator as well.

Results: Experiments using the EMG-based HMI were carried out by eight individuals, who were

asked to accomplish ten eye blinks with each eye, in order to test the eye blink detection algorithm.

An average rightness rate of about 95% reached by individuals with the ability to blink both eyes

allowed to conclude that the system could be used to command devices. Experiments with EEG

consisted of inviting 25 people (some of them had suffered cases of meningitis and epilepsy) to test

the system. All of them managed to deal with the HMI in only one training session. Most of them

learnt how to use such HMI in less than 15 minutes. The minimum and maximum training times

observed were 3 and 50 minutes, respectively.

Conclusion: Such works are the initial parts of a system to help people with neuromotor diseases,

including those with severe dysfunctions. The next steps are to convert a commercial wheelchair

in an autonomous mobile vehicle; to implement the HMI onboard the autonomous wheelchair thus

obtained to assist people with motor diseases, and to explore the potentiality of EEG signals,

making the EEG-based HMI more robust and faster, aiming at using it to help individuals with severe

motor dysfunctions.

Background
Electro-biological signals have become the focus of several
research institutes, probably stimulated by the recent find-

ings in the areas of cardiology, muscle physiology and
neuroscience, by the availability of more efficient and
cheaper computational resources, and by the increasing
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knowledge and comprehension about motor dysfunc-
tions [1,2].

Electrical signals coming from different parts of the
human body can be used as command signals for control-
ling mechanical systems. However, it is necessary that the
individual in charge of controlling such devices be able to
intentionally generate such signals. It is also necessary that
the interface adopted (the Human-Machine Interface –
HMI) can "understand" and process such signals, setting
the command that better fits the wish of the individual.
Then, an HMI can be used to improve the capacity of
movement of individuals with motor dysfunctions, using,
for example, a robotic wheelchair to carry them.

Many electro-biological signals can be used in connection
with HMIs. Some of the more commonly adopted signals
are the Electro-Myographic (EMG) signal, the Electro-
Oculographic (EOG) signal and the Electro-Encephalo-
graphic (EEG) signal. This work presents results related to
the use of EMG and EEG signals. The use of EOG signal is
still incipient in the studies we have developed so far.

EMG signals are generated by neuromuscular activity,
with signal levels varying from 100 μV to 90 mV with fre-
quency ranging from DC to 10 kHz. Such signals have a
standard behavior, which is an important feature to take
into account when designing an HMI interface to link an

individual with motor dysfunction and a mechanical
device. Furthermore, the signal level corresponding to
EMG signals is higher when compared to the level corre-
sponding to EEG signals, thus being easier to discriminate
its level. In other words, if the individual using the HMI
generates normal EMG signals, this kind of signal should
be adopted. However, there are some problems inherent
to the use of EMG signals. Considering that the assisting
technology we deal with in this work is also directed to
people with neuromotor disabilities, some muscle
spasms, for example, can take place, which represent a
serious problem (unless the HMI is robust enough to
reject such disturbances) when using EMG signals to con-
trol mechanical devices. Severe neuromotor injuries can
also cause loss of muscle mobility, which makes impossi-
ble to use any kind of EMG-based control to assist individ-
uals with such diseases. Thus, other communication
channels (in this scenario other electro-biological signals)
should be explored to avoid this kind of problem. As pre-
sented in Figure 1, brain signals can be a good solution
when EMG and EOG signals are not available, as when
assisting individuals with muscle spasms or locked in syn-
drome [3].

The EEG signal corresponds to the electrical potential due
to brain (neuron) activity, and can be acquired on the
scalp (signal amplitude usually under 100 μV) or directly
on the cortex (called Electrocorticography – ECoG), the

Signals adopted in different Human-Machine Interfaces, and the corresponding levels of capacityFigure 1
Signals adopted in different Human-Machine Interfaces, and the corresponding levels of capacity.



Journal of NeuroEngineering and Rehabilitation 2008, 5:10 http://www.jneuroengrehab.com/content/5/1/10

Page 3 of 15

(page number not for citation purposes)

surface of the brain (signal having about 1 - 2 mV of
amplitude). The frequency band of normal EEG signals is
usually from a little bit above DC up to 50 Hz (see Figure
2).

Although EEG signals were initially used just in Neurol-
ogy and Psychiatry, mainly to diagnose brain diseases as
epilepsy, sleep disorders and some types of cerebral
tumors, many research groups are now using them as a
communication channel between a person's brain and
electronic machines, in order to develop systems to
improve his life condition. The main point of this idea is
the Human-Machine Interface (HMI), also called a Brain-
Computer Interface (BCI), a system capable to acquire the
EEG signal, to extract features there embedded, to "under-
stand" the intention manifested by the user and to control
electronic devices such as a PC, a robot or a wheelchair.

In addition, if the objective is to develop a portable and
embedded BCI, low cost, small size, small weight and
portability are very important advantages of systems
based on the EEG signal when compared to other ways to
register brain activity [4]. Other advantages of using EEG
signals are: they have good temporal resolution and
allows extracting features enough to control electronic
devices (since appropriate signal processing methods are
used).

A BCI, as a HMI, follows the basic structure presented in
Figure 3, which is composed of two main parts. The first

one is responsible for acquiring the signal and for condi-
tioning it (by filtering and amplifying it). Following, the
analog signal just acquired is converted to a digital one
(A/D converter), which is delivered to a PC. The second
part of the BCI starts with a pre-processing algorithm, nec-
essary to remove undesirable signals, called artifacts, usu-
ally corresponding to signal levels much higher than the
studied ones. After such feature extraction, the system has
information enough to make decisions (classify) and gen-
erate the necessary control actions to be delivered to the
electronic device to be controlled. The user, in such a dia-
gram, closes the bio-feedback link.

The information extracted from EEG signals, in this work,
is related to ERD (Event Related De-synchronization) and
ERS (Event Related Synchronization), which appear in the
alpha band (8 to 13 Hz) of the EEG spectrum. They are
event-related phenomena corresponding to a decrease
(ERD) or an increase (ERS) in the signal power (in the
alpha band of the EEG spectrum). The ERD and ERS pat-
terns are usually associated to a decrease or to an increase,
respectively, in the level of synchrony of the underlying
neuronal populations [5]. The EEG signal, in this case, is

Basic structure of a BCIFigure 3
Basic structure of a BCI.

The magnitude spectrum of a normal EEG signalFigure 2
The magnitude spectrum of a normal EEG signal.
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captured through electrodes placed in the positions O1

and O2, in the occipital region of the human head, over
the visual cortex, like depicted ahead, in Figure 4.

This work presents a sequence of development for an HMI
that takes into account all the previous considerations,
and in which the degree of difficulty in both signal acqui-
sition and processing is gradually increased. In such a
sequence, in the first stage of the implementation the HMI
developed is based on the signal caused by eye blinks (an
EMG signal). Such a system was used to control a mobile
robot, which was able to navigate in a semi-structured
environment. Next, a module capable to acquire and
process EEG signals was also implemented, which cur-
rently explores the ERS/ERD complex of the EEG signal
acquired by two electrodes placed in the occipital region
of the head of an individual with motor dysfunction (such
a signal is related to visual activity). Such modules have
been used to control a mobile robot and a robotic manip-
ulator, respectively. Experimental results using such mod-
ules are presented in the paper, as well as some discussion
about the future of the research our group is developing is
presented.

Brief review on commanding a mobile robot using EMG 

signals

EMG (ElectroMyoGram) signals are generated by the con-
traction of the human-body muscles. They are currently
being used to command robotic devices like manipulators
(robotic arms and hands) and mobile robots (robotic
wheelchairs). The goal is to develop systems capable to
help people with different motor disabilities.

The systems shown in [6] and [7] allow controlling robot
manipulators through some muscular signals. In [6], spe-
cifically, the left and right Flexor Carpi Radialis muscle (a
muscle near elbow) are used, with the third sensor placed
on the Brachioradialis muscle (a muscle on the forehead),
to generate a series of activations to open/close a gripper,
and to move it to pre-defined positions, thus allowing
people with severe motor disability to execute activities of
daily life.

In [8], EMG signals are acquired from biceps brachii, the
muscle that is the main responsible for the flexion of the
elbow of an individual, to teleoperate a robot arm.
Although the dynamic model of the robot arm is taken
into account, the experimental results there presented
have just shown the robustness of the system when
regarding smooth elbow movements. A similar work is
presented in [9]. However, in this last one, the experi-

The 10–20 International System for placing electrodesFigure 4
The 10–20 International System for placing electrodes.
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ments conducted show the system accuracy and robust-
ness for both slow and fast catching motions. In addition,
experiments with targets being placed in different direc-
tions and distances are also conducted. An EMG-based
command is also used in a dexterous robot hand in [7].
The system reproduces the finger motions when the user
moves his/her fingers, and can be teleoperated as in [8].
The experimental success rate for six different types of fin-
ger motions reached more than 77%.

Some systems use EMG-based signals for commanding
robotic wheelchairs. A robot wheelchair is useful for peo-
ple with motor disabilities in both lower and upper
extremities, due to paralysis or amputation. In [10] three
solutions are presented to set the wheelchair in motion:
an HMI based on EMG signals, face directional gesture,
and voice. The EMG signals are acquired from the elevator
scapulae muscle, and can be generated by voluntary eleva-
tion movements of both left and right shoulder. The
experimental results shown in [10] allowed concluding
that the system can be used by people with motor disabil-
ities, although just indoor experiments have been per-
formed. Another conclusion presented in [10] is that it is
necessary to build an environment map to perform long-
time outdoor navigation.

In [11] and [12] systems very similar to those proposed in
[10] are presented, also using commands based only on
EMG signals. The great advantages of the system proposed
in [11], however, are its low cost and its small size, which
are due to the use of a non-commercial EMG amplifier. In
addition, in [12] it is used a combination of the move-
ments of the muscles of the shoulder and the neck to com-
mand the wheelchair. In the several works which address
the command of robots through systems based on EMG
signals, many types of muscles are used as command sig-
nal generators. In general, the upper extremity muscles, e.
g., the muscles for wrist and elbow flexion, are the most
commonly used. When the individual does not have such
muscles, however, it is common to use the shoulders and/
or neck motion muscles. Sometimes, when the individual
can not move any part of his/her body, but he/she can
blink his/her eyes, the EMG signals can still be useful for
commanding devices. In such cases, as addressed here, the
EMG signal is generated by blinking the eyes.

Brief review on commanding a robot using EEG signals

The electrical potential caused by the neuronal activity,
recorded from the scalp (a non-invasive way) or directly
from the brain cortex (ECoG), can be used to control
robots and other electronic devices. In the sequence, some
meaningful works dealing with such subject are com-
mented, in order to provide a brief overview about brain-
actuated devices.

Example of ECoG recording can be found in [13]. The
electrical activity acquired on the brain cortex surface is
not attenuated as the signal captured on the scalp (after
crossing the cranium), thus presenting a better quality.
The objective is to map the data corresponding to the
multi-channel neural spikes of a monkey to the 3D posi-
tions of its arm positions. The predicted position of the
hand of the monkey is used to control a robot arm.

A brain-actuated control of a mobile robot is reported in
[2]. Two individuals were able to control a small Khepera
mobile robot navigating through a house-like environ-
ment after a few days of training. EEG potentials were
recorded through eight electrodes placed on standard
fronto-centro-pariental positions, in a non-invasive way.
Spatial filtering, Welch periodogram algorithm and a sta-
tistical classifier were used to recognize mental tasks, such
as "relax", imagination of "left" and "right" hand (or arm)
movements, "cube rotation", "subtraction", and "word
association", which were used by a finite state automata
for controlling the robot. An asynchronous BCI was
adopted, which avoids the waiting for external cues,
unlike a synchronous one. A meaningful rate of correct
recognition (above 60%), associated to an error rate
below 5%, was obtained with such a BCI, which resulted
in a brain-actuated control of the robot demanding no
more than 35% of the time spent for manually controlling
the robot, for both individuals. A similar work is reported
in [14], in which a virtual keyboard and a mobile robot
are controlled by using an asynchronous BCI, which was
tested by 15 individuals.

Most recent studies have shown that dissatisfaction of
individuals can be used to correct machine errors. When
an individual sends a command to a device and gets a
non-expected response, the awareness of erroneous
responses, even when the error is not made by the individ-
ual himself, can be recognized in the brain signal cap-
tured. This is done through error-related potentials (ErrP)
and is used to improve the performance of the BCI [15].

Several works reporting the use of the signal caused by
brain activity to command devices have been published.
However, the Human-Machine Interfaces or Brain-Com-
puter Interfaces used are still too much expensive. In some
cases, they are even more expensive than the robot, the
wheelchair or other device being commanded. Regarding
this topic, the HMIs proposed in this work are attempts to
get a good compromise between effectiveness for the
application and cost.

Methods
Experiments based on muscular and cerebral activities are
here accomplished in order to verify that a human opera-
tor is capable to command robots through Human-
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Machine Interfaces. Two HMIs, based on different electro-
biological signals were developed, namely an EMG-based
HMI and an EEG-based HMI. The first one allows a person
to command devices through the signal generated by
blinking his own eyes [16]. The other one allows decoding
brain commands as well as controlling devices like robots
[17]. In this section a brief introduction to such systems is
presented.

An EMG-based human-machine interface

Figure 5 shows the structure of the EMG-based HMI devel-
oped to allow controlling a mobile robot. It is composed
of a signal acquisition and a signal processing subsystems.
No complex preparation is required when an individual is
asked to use such HMI to control a device. He is supposed
to use a commercial cap (just for convenience) with the
electrodes correctly placed, according to the 10–20 Inter-
national System (see Figure 4). The head positions to be
used should be clean, not being necessary to shave the
hair. On the other hand, it is necessary to apply a gel
between the electrodes and the scalp, in order to match
the contact impedances. A reference electrode should be
connected to the left or the right ear.

After being correctly dressed, the cap should be connected
to the signal filtering and amplification subsystem. The
amplification board embeds a power source that is
designed to reduce any spurious interference at the same
frequency of the electric appliances or interference coming
from other external electronic equipments, such as switch-
ing mode power supplies, on the acquisition system.

Then, the signal filtering and amplification subsystem is
connected to the A/D conversion subsystem. Four analog
channels are available in such A/D conversion subsystem,
which allow expanding the signal acquisition capacity
through cascade connections, thus increasing the number
of channels being processed. After establishing such con-
nections, the digital data delivered by the A/D converter is
sent to a desktop computer, through a DB9 serial cable.

Then, the system is now operating: the user's electro-bio-
logical signal is acquired by electrodes that send it to the
signal filtering and amplification subsystem. Afterwards,
this signal is sent to another board to be converted to dig-
ital data. Finally, such signal is transmitted to a desktop
computer, where it is processed to generate (or not) a spe-
cific command for controlling a mobile robot. The user of
the HMI closes the control loop, providing the necessary
biological feedback.

The interface for the user-machine communication is pro-
grammed in the desktop computer, as well as the signal
processing software that sends the control commands to
the mobile robot. These commands are transmitted to the
robot through an Ethernet Radio.

The experiments here reported were carried out using a
Pioneer 2-DX nonholonomic wheeled mobile robot. This
robot has a microcontroller for low level instructions, and
an embedded PC (Intel Pentium MMX 266 MHz, 128 MB
RAM) for high level tasks like sensing and/or navigation.

The structure of the proposed HMIFigure 5
The structure of the proposed HMI.
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For generating a command, the user should be able to
blink his/her eyes. From the eye-blinks a command is
decoded and transmitted to the mobile robot, which is
commanded to go from a site to another site in its work-
ing environment. To help the user in the task of guiding
the robot through its working environment, an electronic
board with automatic scanning was implemented (in the
desktop microcomputer). Such a board represents the
area of the robot working environment, divided in cells,
like it is depicted in Figure 6. This way, when the cell the
user wishes to command the robot to go to is swept, he
blinks a determined eye and the corresponding EMG sig-
nal is captured and processed by the signal acquisition
and processing subsystems.

Since the EMG signals due to eye blinks have a well-
defined standard behavior, like it is presented in Figure 7,
the necessary processing system is relatively simple. It
works as follows: firstly, a threshold is experimentally
established for each user, based on the changes observed
in a signal interval that contains a set of eye blinks (train-
ing stage). During the system run, whenever the signal
generated by an eye blink goes above such a threshold, a
counter starts counting the number of samples received
ever since. When the signal falls below the threshold, the
number of samples counted is compared with a prede-
fined one: if it is greater than the pre-defined number, the
HMI detects an eye blink. Otherwise, the HMI detects that
there was not an eye blink. This means that only eye-

blinks whose time-duration is greater than a certain
number of sampling intervals is considered as effective
eye-blinks. After that, the counter is reset, and a new cycle
starts.

EEG-based human-machine interface

Looking into the alpha frequency-band, for an EEG signal
captured over the occipital region of the user's scalp, any
increase and decrease of signal power can be detected. The
occipital region is responsible for processing visual infor-
mation, in such a way that in the presence of a visual stim-
ulus (eyes opened) the signal power in the alpha band
decreases, characterizing an ERD. On the other hand, if
the eyes are closed, the human operator has his/her visual
area relaxed, with a few or even none visual stimulus,
characterizing a high signal power, which corresponds to
an ERS. As presented in Figure 8, the power of an ERS can
be many times the power of an ERD. A threshold (5 to 10
times the value of an ERD) can be established to detect an
ERS. Figure 9 shows the energy increase associated to an
ERS. It is important to mention that EEG levels change
constantly, thus requiring a calibration step to detect the
basic ERD level before starting the analysis. These two
states (power increase and power decrease) can be associ-
ated to actions such as "select the current symbol of the
table". In order to validate this idea, experiments with
robots were accomplished, and the results are reported
here.

Additional attention should be given to artifacts. Eye
blink, cardiac rhythms, noise coming from the 50–60 Hz
power line and body movement are examples of artifacts.
They can mask the studied signal and should be avoided
and removed. The frequency band explored here is from 8
to 13 Hz, and with a bandpass filter it is possible to
remove artifacts due to eye blinks, which usually occurs
between 0.1 and 5 Hz, as well as the noise of 50–60 Hz
coming from the power line [18,19].

The eye-blink detection schemeFigure 7
The eye-blink detection scheme.

The electronic board used to represent the robot working spaceFigure 6
The electronic board used to represent the robot 
working space.
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The BCI adopted here to extract information on the occur-
rence of the ERS/ERD events is relatively easy to use. As in
the EMG-based case, shaving the operator's head or other
special preparation is not necessary. However, a gel is used
to improve the contact between the electrodes and the
skin. The electrodes are placed in the positions O1 and O2,
like illustrated in Figure 4, with the reference connected to
an ear lobe (according to the 10–20 international system
of electrodes positioning).

Such a BCI was tested by a group of 25 individuals (from
20 to 50 years old), some of which had suffered cases of
meningitis or epilepsy. Three stages of experimentation
were accomplished: in the first one, the operator uses an
event detector that recognizes the states of high and low
energy of the acquired signal; in the second one, the oper-

ator is invited to command the robot in a simulation envi-
ronment, and, in the last one the operator applies what he
learnt in the two previous stages to command a real robot
[1].

An operator is considered capable of having full control of
the BCI if he succeeds in the first and second stages, what
means if he showed to be able to command the robot in a
simulation environment using the BCI.

Two experiments were carried out to validate the BCI and
the control scheme as a whole. In the first one, the opera-
tor used the BCI to guide a mobile robot in an indoor
structured environment, thus emulating a wheelchair tak-
ing the operator to the rooms of a house or office, for
example. In the second one, the operator uses the BCI to

ERD and ERS observed in alpha bandFigure 8
ERD and ERS observed in alpha band.
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command a manipulator, emulating a prothesis or an
orthosis, including the teleoperation via a TCP/IP chan-
nel.

First experiment: commanding the mobile robot

The BCI so far discussed was used to operate a mobile
robot Pioneer 2DX in a simulated environment (Figure
10) and in a real one (Figure 11). The analysis of the signal
power in the alpha frequency band was used to change the
states of a Finite State Machine, generating commands
such as go ahead, turn right, turn left and go back to the
mobile robot.

Second experiment: commanding the manipulator

Figure 12 illustrates the experiment accomplished. In the
case of operating a manipulator (BOSCH SR800 – Figure
13) via TCP/IP, it is presented to the operator the manip-
ulator's workspace divided in cells. The application scans

all cells and the analysis of the signal power of the user's
EEG signal in the alpha frequency band is used to select
one of them. The selection is done when an ERS pattern is
recognized. When it is done, the coordinates of this cell
are sent, through a TCP/IP channel, to a remote computer
in charge of controlling the manipulator, moving its end
effector towards the desired position. At the same time,
the data incoming from encoders are sent back to the
user's PC (the local computer) in order to update the
screen with the current positions of the manipulator. Fig-
ure 14 presents the graphical interface used by the opera-
tor to select the desired position.

It is important to remember that in both cases a calibra-
tion process is necessary before starting the experiments.
This procedure consists of acquiring about 10 seconds of
EEG data to analyze the ERD level. Based on this informa-
tion, the threshold used to detect an ERS is set to 5 up to

Energy increase during an ERSFigure 9
Energy increase during an ERS.
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10 times the level corresponding to an ERD. This is very
important because these levels change constantly in time
and from an individual to another.

Results and discussion
Both HMIs have been used to command robotic devices
by individuals previously trained to operate them. The
EMG-based HMI was used to command a mobile robot,
while the EEG-based HMI was used to command a mobile
robot and a robotic manipulator as well. In this section,
the results of each test accomplished are reported and dis-
cussed.

EMG
Firstly, eight volunteers were asked to accomplish ten eye
blinks with each eye, in order to test the eye blink identi-

fication algorithm. The results of these experiments are
shown in Table 1, just for the volunteers who were able to
blink both eyes.

The main result obtained is a rate of positive identification
of the eye blinks about 95.71% of the cases of volunteers
with the ability to blink both eyes, which allowed con-
cluding the viability of using the system to command
devices.

One out of the eight volunteers that presented a good per-
formance in the experiment with the eye blinks-based sys-
tem was asked to determine a destination point on the
electronic board. After the volunteer selected a destination
point through eye blinks, the control software started to
guide the robot to such point, following the path deter-

Simulated environment in which the mobile robot navigatesFigure 10
Simulated environment in which the mobile robot navigates.
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mined by a path planning algorithm [16], which is based
on the Dijkstra's Algorithm, that determines a secure path
(more distant of walls and obstacles).

Figure 15 shows the map of a navigating environment and
the path generated by the system to go from an initial
position to a destination position selected by the user.
That path is transmitted to the mobile robot, which
knows its navigating environment. Figure 16 shows the
result of the navigation executed by the robot during such
an experiment.

EEG

All the 25 individuals invited to test the system learnt how
to use the BCI in just one training session. The statistical
results presented in Figure 17 show the average training
time necessary to use the BCI and to learn how to manage
the mental states associated to concentration and relaxa-
tion of the visual area of the brain. As it can be seen, most
of the individuals learnt how to use the BCI in less than
15 minutes with just one experiment. The minimum and
maximum training times observed were 3 and 50 min-
utes, respectively. Even though some of the individuals
that carried out the experiments had suffered cases of
meningitis and epilepsy, the BCI has not been tested by
people with severe neuromotor problems so far. These
tests are very important, taking into account that these are
the individuals supposed to use this technology. The
results presented here show the versatility of the BCI when
used to control robotic systems. The short training time
required to operate it and its low cost are other meaning-
ful features.

Although for the applications here addressed the EEG-
based BCI so far discussed have run and performed very
well, more natural mental states, such as thinking about
moving a right hand in order to move the robot to right,
for example, should be more interesting. More mental
states provides more flexibility when connecting them, or
a combination of them, to actions to be performed by
mechanical devices. These topics are currently being
addressed by our research group.

Nevertheless, an analysis of the experiments so far accom-
plished, namely guiding a mobile robot and controlling
the positioning of the end effector of a manipulator,
shows that the BCI so far adopted has proven to be effec-
tive to command robotic systems, including remotely.

Conclusion
Two different HMIs were here developed to allow an oper-
ator to control a robot without using his hands. He used

Illustrating the whole systemFigure 12
Illustrating the whole system.

Pioneer 2-DX robot operated through EEG signalsFigure 11
Pioneer 2-DX robot operated through EEG signals.



Journal of NeuroEngineering and Rehabilitation 2008, 5:10 http://www.jneuroengrehab.com/content/5/1/10

Page 12 of 15

(page number not for citation purposes)

only the EMG signal generated by blinking his eyes, or the
EEG signal generated by intercalating states of concentra-
tion and relaxation of the visual cortex of his brain (visual
stimuli). In both cases, the HMIs have proven to be of
simple implementation and of low cost, besides exhibit-
ing good performance. The EMG signal was chosen as
electro-biological signal due to the fact that it is a well
behaved signal easily acquired and processed, in compar-
ison to other electro-biological signals, as the EEG signal,
for instance. The results demonstrate that such a HMI is
easy to handle by users who can blink their eyes according
their wishes. This HMI was tested in controlling a mobile
robot: an experiment in which a user should select a final
destination to which the robot is supposed to go to,
through a suitable sequence of eye blinks, which should
be reached by the robot. In all tests, the mobile robot
effectively reached the destination selected by the user.

The EEG-based HMI can be seen as an evolution of the
EMG-based HMI due to the increase in the degree of diffi-
culty of both the acquisition and processing subsystems.
It has been used the so-called ERS/ERD complex, which

The manipulator Bosch SR-800Figure 13
The manipulator Bosch SR-800.

The local Graphical InterfaceFigure 14
The local Graphical Interface.
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can be identified in a relatively easy way, which provided,
in two cases presented (a mobile robot guidance example
and a robotic manipulator control example), a simple and
low cost solution. In both cases presented, the desired
commands were effectively executed by the robotic
devices.

The work so far reported are the beginning of the develop-
ment of a system intended to assist people suffering of
neuromotor diseases, including people with severe dys-
functions. The next steps are to convert a commercial
wheelchair in an autonomous mobile vehicle; to imple-
ment the HMI on board such autonomous wheelchair to
assist people with motor diseases; to explore more charac-
teristics of the EEG signal, in order to make the Brain-
Computer Interface (BCI) more robust and faster, thus
allowing its secure use by people with severe motor dys-
functions.
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Table 1: Success rates blinking the right and left eyes

Volunteer Right Eye Left Eye

1 8 9

2 10 10

3 10 8

4 10 10

5 10 9

6 10 10

7 10 10

The path generated by the systemFigure 15
The path generated by the system.
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Result of the experiment with unpredicted obstacle distant of the robot's navigation pathFigure 16
Result of the experiment with unpredicted obstacle distant of the robot's navigation path.

Number of individuals that managed to learn how to use the BCI versus the training time required (in minutes)Figure 17
Number of individuals that managed to learn how to use the BCI versus the training time required (in min-
utes).
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