
Human-Mediated Dispersal of Seeds by the Airflow of
Vehicles

Moritz von der Lippe1,2*, James M. Bullock1, Ingo Kowarik2, Tatjana Knopp1,3, Matthias Wichmann1,4

1Centre for Ecology and Hydrology, Wallingford, United Kingdom, 2Department of Ecology, Technische Universität Berlin, Berlin, Germany, 3Department of Animal

Ecology, Universität Potsdam, Potsdam, Germany, 4 Biodiversity and Systematic Botany, Universität Potsdam, Potsdam, Germany

Abstract

Human-mediated dispersal is known as an important driver of long-distance dispersal for plants but underlying mechanisms
have rarely been assessed. Road corridors function as routes of secondary dispersal for many plant species but the extent to
which vehicles support this process remains unclear. In this paper we quantify dispersal distances and seed deposition of
plant species moved over the ground by the slipstream of passing cars. We exposed marked seeds of four species on a
section of road and drove a car along the road at a speed of 48 km/h. By tracking seeds we quantified movement parallel as
well as lateral to the road, resulting dispersal kernels, and the effect of repeated vehicle passes. Median distances travelled
by seeds along the road were about eight meters for species with wind dispersal morphologies and one meter for species
without such adaptations. Airflow created by the car lifted seeds and resulted in longitudinal dispersal. Single seeds reached
our maximum measuring distance of 45 m and for some species exceeded distances under primary dispersal. Mathematical
models were fit to dispersal kernels. The incremental effect of passing vehicles on longitudinal dispersal decreased with
increasing number of passes as seeds accumulated at road verges. We conclude that dispersal by vehicle airflow facilitates
seed movement along roads and accumulation of seeds in roadside habitats. Dispersal by vehicle airflow can aid the spread
of plant species and thus has wide implications for roadside ecology, invasion biology and nature conservation.
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Introduction

Human-mediated dispersal (HMD) is a driver of long-range

spread of plant species and is increasingly gaining attention in

dispersal [1] and invasion ecology [2,3]. Roadsides are particularly

relevant in terms of HMD as some invasive species expand their

ranges rapidly along road networks [4,5]. At the landscape scale,

several studies have demonstrated that the density of human

transportation corridors [6,7] or human use of roads [8] are

related to the frequency or spread rate of non-native plants.

HMD by vehicles has only been studied in a few contexts to

date. Several studies have demonstrated potential dispersal

through attachment to vehicles by finding seeds of many species

in samples of mud from the surface of vehicles [9–13]. Only

recently, the spatial reach of dispersal by seeds attaching to motor

vehicles has been quantified, showing that long-distance dispersal

over more than 256 km is achieved by a sizeable proportion of

seeds that become attached with mud on cars [14]. Second, studies

of seed deposition along roadsides have considered the combined

roles of attachment and airflow by vehicles for dispersal. To

exclude non-traffic-related dispersal, seeds have been collected in

long motorway tunnels [15,16] and seeds of known cultivars of

oilseed rape/canola have been exposed on the roads and their

offspring traced with molecular markers [17]. Gaps remain,

however, in our understanding and in the quantifications of the

mechanisms of vehicle-related seed transport. For example, to our

knowledge, there has been no quantification of the dispersal kernel

of seeds transported by cars (but see [14]), including the

distribution of dispersal distances. In addition, the role of

slipstreams and air turbulence caused by passing vehicles [18]

has been suggested to be important in the spread of roadside plant

populations [17] but this process has not yet been studied.

Turbulent airflow is reported by studies of the aerodynamics of

vehicles [18]. A narrow zone around a passing vehicle is affected

by turbulence, caused by flow separation from the boundary layer

at the surface of the moving vehicle. Although it has a stochastic

nature, the mean direction of this turbulence leads to a

characteristic flow field around the moving vehicle. Besides

turbulent airflow close to the vehicle, it is primarily the slipstream

in the wake of the passing vehicle that affects airflow in the

direction of the traffic movement. This slipstream acts over a

distance which is determined as a multiple of the vehicle height

[19,20]. The airflow in this ‘‘far wake region’’ is caused by a

velocity deficit in the wake of the moving vehicle and tends to be

laminar. Previous studies of seed dispersal by wind [21] suggest

that vehicle’s airflow could influence the dispersal of seeds along

roads.

A better mechanistic understanding through experimental

quantification has been achieved for some seed dispersal processes

including wind dispersal [21–26] and, to some extent, animal

dispersal [27–31]. While wind and also animals often act as vectors

for primary dispersal, humans, as in our experiment, normally
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trigger secondary dispersal. For HMD, kernels have recently been

quantified experimentally for dispersal on footwear [1,2] and cars

[14]. The results indicate that HMD may follow well defined

mechanisms and that dispersal distances can far exceed primary

dispersal vectors. To expand on earlier results on dispersal by

human activity, we aim in this paper to extend experimental

quantification of HMD to that by airflow of vehicles.

By quantifying dispersal kernels for four species, we determine

the effect of repeated vehicle passes on the parallel and lateral

movements of seeds. We hypothesize that: i) repeated vehicle

passes result in continued secondary dispersal of seeds along the

road; ii) turbulent airflow around passing vehicles causes a lateral

movement of seeds towards the road verge; and iii) the extent of

seed transport by passing vehicles depends on seed traits, such as

morphology. To test these hypotheses we set up an experiment in

which a car was repeatedly driven through lines of marked seeds

comprising four species. Distance and direction of seed movement

was quantified.

Methods

Ethics Statement
The study took place on a private parking ground and was

permitted by Centre of Ecology and Hydrology at Winfrith

Technology Centre, Winfrith, Dorset, UK. No specific permits

and approvals were required, as the speed of car driving during the

experiment did not exceed the maximum speed allowed in the

area. No seeds of protected species were used. Three of our study

species commonly occur in the study area but to avoid any risk of

establishment of the fourth species, we applied a microwave

treatment to the seeds of Ambrosia artemisiifolia to prevent any seeds

lost from the experimental site from germinating.

Experimental Design
Our experimental design focussed on seed dispersal by the

slipstream of a car. Therefore experiments were performed during

dry and still weather conditions to exclude dispersal by water-

aided adhesion or by ambient wind alone. To quantify the effect of

multiple dispersal events caused by a sequence of passing vehicles,

a medium sized estate car (Vauxhall Astra) was driven repeatedly

along a road section where marked seeds were laid out.

We carried out this study on a tarmac surface parking area

(coordinates: 50.68u north, 2.26u west) 120 m in length and 20 m

in width, with a concrete kerb 7 cm in height, and bordered by a

gravelled verge. The length of the parking area was divided into a

60 m acceleration zone, a 45 m distance over which seed dispersal

was measured, and a final 15 m for deceleration and turning. The

acceleration zone was used to achieve a speed of 48 km/h

(30 mph) which was kept constant through the seed dispersal zone.

This equals the maximum speed allowed in urban areas

throughout many European countries.

Longitudinal dispersal was measured using intervals marked

perpendicularly across the traffic lane (Fig. 1). The first 2 m were

marked at 0.5 m intervals, metres 2–10, as well as one meter

before starting line were marked at 1 m intervals, and metres 10–

45 were marked at 5 m intervals. We also divided the lane into five

sections parallel to the direction of car movement to track lateral

movement of seeds (Fig. 1).

Study species and tracking seeds
We used four species known to be common along roads or

whose spread has been linked to vehicle movement (Table 1):

Ailanthus altissima (MILL.) SWINGLE, Ambrosia artemisiifolia L., Brassica

napus L., Clematis vitalba L.. In the following we will refer to these

species by their genus name. These species are invasive at least in

parts of Europe and are assumed to affect biodiversity and/or

human health. The species were also selected to represent different

seed morphologies (with and without appendices for wind

dispersal, Fig. 2) to allow the influence of seed traits on dispersal

by vehicles to be assessed.

All seeds were coloured with a fluorescent paint to allow them to

be tracked during sequential dispersal events. To minimise weight

gain of the seeds, we used fluorescent airbrush colours, applied

with a spraying gun of 0.3 mm needle size (see [32] for details). To

test the influence of colour application on wind-dispersal ability,

the falling velocities of fifteen seeds of each species before and after

colour application were measured using the equipment and

method described in Askew et al. [33]. Paint application had a

significant but small effect on falling velocity (Table 1). Falling

velocity increased on average by 0.9% in Brassica and 1.3% in

Ambrosia. Higher increases were observed for Clematis (7.1%) and

Ailanthus (12.0%). This increase in falling velocities due to seed

weight gain probably reduced dispersal distances, making our

estimates somewhat conservative.

Dispersal experiments
In a first experiment, we placed 300 seeds each of Ambrosia and

Brassica and 200 seeds each of Ailanthus and Clematis at the start line

(0 m) of the 45 m dispersal zone. Seeds were spread evenly across

the driving lane over a narrow strip extending 30 cm in front of

the starting line.

The car was then driven repeatedly along the driving lane in a

sequence of up to 80 ‘‘passes’’ in one direction. The car left the

parking area to return to the starting point to avoid disturbing the

seeds. Five sequences with different numbers of passes were

tested—1, 10, 20, 40 or 80—with the lower numbers serving as the

basis for the next sequence (i.e., to reach 10 passes, we recorded

the seed distribution after 1 pass and then did another 9 passes).

Each set of sequences was replicated 10 times on different days.

At the end of each sequence (1; 10; 20; 40; 80), seed distribution

over the grid formed by the perpendicular and parallel sections

(see Fig. 1) was recorded. We searched for and located seeds using

a strong LED-UV lamp [32] and so the experiment was

performed at dusk, night and dawn. If any seed movement by

the ambient wind was observed during seed searching, the trial

was terminated and the data for this entire replicate discarded. We

visually checked the car but never found any attached seeds. To

get a better understanding of the trajectories of seeds in the airflow

of the car, we filmed the first pass of the vehicle several times with

a digital video camera at 30 frames/s.

In a second experiment we focussed on the lateral movement of

the seeds using only two species of different seed morphology.

Seeds of Ailanthus and Brassica were coloured with five different

colours; each colour group of seeds was laid out in a different

parallel road section (Fig. 1). At the 0 m line we placed 50 seeds in

the driving lane and 25 in each of the other sections for Ailanthus,

and 100 and 50 seeds respectively for Brassica. After a single pass,

the positions of all seeds in the parallel and perpendicular sections

were recorded and the seeds were collected. Any possibly

remaining seeds were removed by cleaning the road with a

professional vacuum cleaner. This procedure was replicated 50

times for each species.

Data analysis
To standardise the frequencies across the differently sized

perpendicular sections, we divided the frequencies of the 5 m

sections by 5 and multiplied those of the 0.5 m sections by 2; i.e.

all frequencies were standardised in terms of the 1 m sections. We

Seed Dispersal by Vehicles Airflow
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fitted empirical dispersal models to the probability distributions of

seeds along the road transect. Distance was represented as the

longitudinal distance between the starting line and the end of each

section. We chose three functions that are frequently used to

model wind dispersal of seeds [34,35]: the Weibull, the Lognormal

and the inverse Gaussian (Wald) functions. These functions were

fitted to the probability data by generalised non-linear regression

using the Proc NLMIXED function in SAS 9.2. This uses a

maximum likelihood fitting procedure and is able to deal with

non-normal errors; in this case a binomial distribution was used.

The equations used were those supplied by Jongejans et al. [35]:

1) Wald: f (r)~
b

2pr3

� �1=2

exp
{b½r{a�2

2a2r

 !

2) Lognormal: f (r)~
1

br(2p)1=2
exp

{½log r{a�2

2b2

 !

3) Weibull: f (r)~abrb{1exp {arb
� �

Where f (r) is the probability that a seed is dispersed to a specific

distance r, a is the scale parameter and b the shape parameter of

the probability density functions (note that a and b have different

values in each equation). We used Akaike’s Information Criterion

(AIC) to compare the fits of the different functions.

For the experiment on the lateral movement of seeds, we

calculated the probability of reaching a certain section of the study

road separately for the seed groups of each starting section.

Probabilities were averaged over the 50 replicates and were

displayed in a grid plot using the function ‘image’ (package

‘graphics’) of the statistical and programming environment R 2.10

[36].

Videos of the trajectories of seeds in the wake of the car were

analysed by slow motion and single frame playback. We visually

estimated the height of seed lift above the ground by relating it to

the height of different parts of the vehicle.

Figure 1. Sections of the study road. The car remained within the driving lane, making this the section most directly impacted by the passing
vehicle. The adjoining sections (left and right) were not driven over, but would have been strongly affected by the vehicle’s airflow. Seed settlement is
considered to occur in the verge, which provides the most immediate establishment opportunity for seeds. The opposite lane represents the area
beyond the midpoint of the lane, where, on a real road, the seed would be in the path of oncoming traffic.
doi:10.1371/journal.pone.0052733.g001

Table 1. Characteristics of the study species.

Species Seed morphology Falling velocity (m/s) Association to transport corridors

Ailanthus altissima Winged 0.84 (0.75) Rapid range expansion along transport
corridors in the introduced range and
negative impacts on adjacent habitats [50]

Clematis vitalba Plumed 0.91 (0.85) Rapid range expansion along transport
corridors in native and introduced range,
negative impacts on native forests [51]

Brassica napus Smooth 3.8 (3.8) Spread along roads, risk of escape of
genetically modified lineages [46,48]

Ambrosia artemisiifolia Hooked 3.7 (3.7) Severe allergenicity to humans, rapidly
spreading along roads in Europe [45]

Seed morphology, mean falling velocity of painted seeds (10 replicates, in brackets: unpainted seeds) and association to transport corridors of the four study species.
doi:10.1371/journal.pone.0052733.t001
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Results

Dispersal distances and kernels
Mean recapture rates (61SD) of viable diaspores after one

vehicle pass were 94.5% (64.9) for Ailanthus, 93.2% (63.2) for

Clematis, 93.8 (61.4) for Brassica and 90.6% (64.4) for Ambrosia.

Losses were mainly due to seeds being crushed by tyres. Recapture

rates decreased with increasing numbers of vehicle passes to 84.5%

(66.7) for Ailanthus, 84.6% (611.4) for Clematis, 80.7% (66.8) for

Brassica and 72.0% (65.8) for Ambrosia after 80 rounds.

As the number of car passes increased, mean, median and 99%

percentile of the dispersal distance of recaptured seeds increased

but the relative effect diminished (Table 2). Probability distribu-

tions and mean dispersal distances were markedly similar for

Ailanthus and Clematis, and for Brassica and Ambrosia (Figs. 2, 3;

Table 2).The probability distributions of both Ailanthus and Clematis

after 80 vehicle passes describe humped curves with the modes at

approximately 5 m and a long tail extending over the entire 45 m

section (Fig. 2a, b). As a measure of long distance dispersal, the

99% percentile of the probability distributions increased strongly

from the first to ten passes in these species and remained constant

at 40 m for 20 passes and more. In contrast, probability

distributions for Brassica and Ambrosia after 80 passes peaked at

the starting line (0 m) and then declined sharply up to a maximum

distance of 30 m (Fig. 2c, d). We observed that both of these

species were predominantly dispersed in the two narrow strips

where the tyres passed. The 99% percentiles of both species

reached 10 m (Ambrosia) and 15 m (Brassica) after 80 passes.

At the road verge, the seed densities for Ailanthus and Clematis

after 80 passes followed a similarly shaped distribution as for all

parallel sections combined, but were about an order of magnitude

lower (Fig. 2). For Brassica and Ambrosia, dispersal to the road verge

occurred only occasionally, and within the first 10 m.

In the video analysis (see supporting information, Video S1),

only trajectories of seeds of Ailanthus and Clematis were clearly

visible. While the car was passing, a small proportion of the seeds

were blown to both sides of the road. As soon as the car had

completely passed the line of seeds, a strong linear movement of

seeds in the driving direction was seen. Most seeds that were

picked up by the slipstream were briefly lifted approximately

50 cm and then fell back to the ground, where they tumbled after

the car.

Probability distributions were best fit by the Wald and the

Lognormal function. This result was similar across all four species

despite the very different seed distributions along the road.

However, differences in AIC were generally low between all the

dispersal functions tested. For Ailanthus and Clematis the Wald

Figure 2. Probability distributions of seeds along the study road after 80 vehicle passes. (A) Ailanthus altissima (B) Clematis vitalba, (C)
Ambrosia artemisiifolia and (D) Brassica napus. Filled circles represent the mean (695% CI) probabilities of 10 replicates. The grey lines show the fitted
dispersal functions. Open triangles show mean probabilities for seeds to reach the road verge at that distance along the line of travel. The y-axis is on
a log scale and 0.0001 was added to all probabilities to show zero values. Note that this is not a total dispersal kernel but solely shows secondary
dispersal by car’s airflow.
doi:10.1371/journal.pone.0052733.g002

Seed Dispersal by Vehicles Airflow
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function resulted in a marginally lower AIC, whereas the

Lognormal function better described the dispersal tails (Fig. 2).

The Wald function slightly overestimated the tails of the kernels

while the Weibull clearly underestimated them, despite having a

relatively low AIC. Estimated shape parameters for all functions

were very similar for Ailanthus and Clematis (Table 3). For Ambrosia

and Brassica, Lognormal functions fitted dispersal kernels only at a

slightly smaller AIC than the Wald function. All functions predict

very low probabilities for both species to disperse more than 20 m.

(For more details see supporting information, Table S1)

The shape of the dispersal kernels changed with increasing

vehicle passes. At higher numbers of passes, the fitted kernels for

Ailanthus and Clematis show similar modes, but a fatter tail (Fig. 3).

For Ambrosia and Brassica the decline in the dispersal kernels was

less steep at higher numbers of passes and reached a probability of

zero at a distance approximately 5 m further from the starting

point compared to the first vehicle pass. The change in the shape

of the dispersal kernel for all species was most pronounced

between 1 and 20 rounds while the changes between 20 and 80

rounds were less pronounced.

Lateral movement of seeds
In the first experiment, we observed considerable lateral

transport of seeds to the verge in Ailanthus and Clematis, but not

in the other species (Fig. 2 a, b). There was a rapid accumulation

of seeds at both sides of the driving lane (Fig. 4). After 10 vehicle

passes, only a small proportion (,4%) of Ailanthus seeds remained

in the driving lane (Fig. 4a; similar results were found for Clematis

and are not shown). Seeds accumulated rapidly in the opposite

lane, in the left lane along the kerb, and in the road verge, but the

right lane showed negligible accumulation. Accumulation of seeds

in the road verge increased asymptotically with the number of

vehicle passes, reaching a plateau of about 20% of seeds after 40

passes (Fig. 4b).

The second experiment clarified the lateral transport of seeds of

Ailanthus that were laid out at different starting sections of the study

road (Fig. 5). Seeds placed at the road verge moved only slightly,

whereas the seeds placed in the driving lane were transported

farthest across the road and reached all other parallel sections with

high probabilities. Seeds put into the left or right section adjoining

the driving lane travelled only to the immediately neighbouring

sections and were transported over much shorter distances.

In contrast to Ailanthus and Clematis, seeds of Brassica and

Ambrosia largely remained in the driving lane (Fig. 2). Even after 80

rounds of vehicle passes, fewer than 10% of seeds of either species

were transported to the side lanes and only a negligible proportion

(,1%) reached the road verge or the opposite lane (Fig. 2c, d).

The second experiment confirmed very low lateral transport for

seeds of Brassica.

Discussion

Previous research has revealed that vehicles serve as agents of

long-distance dispersal either in terms of long-lasting attachment

of seeds [10,13,15] or through spillage during transport of goods

[37,38]. Our results add the mechanism of repeated stepwise

dispersal of seeds over road surfaces by the airflow of passing

vehicles. Dispersal by airflow may interact with other dispersal

vectors, traffic related as well as wind [39] and animals, which has

considerable implications for long distance dispersal. The high

rates of recaptured seeds on the ground demonstrate that under

dry weather conditions attachment of seeds to vehicles is low. Our

video analysis revealed that the majority of seeds from species with

morphological adaptations to wind dispersal were indeed trans-

ported with the slipstream of the passing car.

Dispersal distances
The distances we observed for secondary dispersal by vehicle

airflow are on a scale similar to the primary dispersal distances

Table 2. Dispersal distances for the study species after different numbers of vehicle passes.

# vehicle passes 1 10 20 40 80

Ailanthus altissima

Mean 5.1463.07 9.8567.97 9.9567.84 10.3367.96 10.8368.11

Median 5 8 8 8 8

99th percentile 15 40 40 40 40

Clematis vitalba

Mean 4.9563.43 9.1967.52 9.9467.93 10.0868.03 10.4668.00

Median 4 7 8 8 8

99th percentile 15 35 40 40 40

Brassica napus

Mean 0.9861.12 1.2661.88 1.6062.62 1.5962.66 1.7162.87

Median 0.5 0.5 0.5 0.5 1

99th percentile 4 8 12 10 15

Ambrosia artemisiifolia

Mean 1.0461.07 1.3861.85 1.5161.92 1.6462.03 1.5962.05

Median 0.5 0.5 1 1 1

99th percentile 5 9 9 9 10

Note our recapture rates given under ‘results’. Also note that movement along the road decreased considerably for multiple vehicle passes but resulted in increased
lateral transport. Dispersal distances might change greatly when dispersal by car’s airflow interacts with other forms of dispersal (e.g. wind) transporting seeds back to
the driving lane.
doi:10.1371/journal.pone.0052733.t002
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reported for our study species. Soons and Ozinga [40] modelled a

median distance of 10.1 m and a 99th percentile of 100 m for wind

dispersal of Clematis. Matlack [41] observed a maximum distance

of 112 m for wind dispersal of Ailanthus. Whereas the median

distance is comparable, these values are approximately double

those for secondary dispersal by a vehicle after 80 passes. Colbach

et al. [42] found a mean primary dispersal distance of 0.5 m and a

99th percentile of 1.6 m for Brassica, which amounts to approx-

imately half to one tenth the respective values for secondary

dispersal observed in this study. Our results give experimental

evidence that distances of seed dispersal by car’s airflow can be

equal and even higher compared to natural dispersal.

Dispersal by means of seeds attaching to the surface of vehicles

is affected by seed size and seed mass [10,13]. In this study, falling

velocity triggered by morphological adaptations for wind dispersal

appeared to be important. Species with plumes (Clematis) or wings

(Ailanthus) were moved over much greater mean distances than

species without such adaptations (Table 1). Figure 2 demonstrates

strikingly congruent dispersal kernels for the species with wind

dispersal morphologies, and also for the two species without such

morphologies. This coincides with similar falling velocities of

Ailanthus and Clematis, and of Brassica and Ambrosia, respectively

suggesting that falling velocity influences secondary dispersal by

vehicle airflow as it does for primary wind dispersal [33].

For Brassica and Ambrosia our observation of a higher degree of

seed movement in the areas traversed by tyres might suggest short

contact with tyres rather than airflow accounts for dispersal.

Although we cannot separate the effect of tyre contact and airflow

Table 3. Parameter estimates and AIC for different dispersal
functions.

Species Model a b AIC

Ailanthus altissima

Weibull 1.858 0.008 44.0

Lognormal 0.724 2.307 43.2

Wald 20.456 12.952 43.1

Clematis vitalba

Weibull 1.779 0.011 46.3

Lognormal 0.724 2.229 45.5

Wald 18.366 12.275 45.4

Brassica napus

Weibull 0.852 0.975 40.7

Lognormal 0.697 20.260 34.7

Wald 1.621 1.089 35.2

Ambrosia artemisiifolia

Weibull 0.976 0.847 39.9

Lognormal 0.791 0.211 39.6

Wald 1.270 1.357 39.7

Models were fit to the probability distributions for the four study species after
80 vehicle passes. The model with the lowest AIC for each species is in bold.
doi:10.1371/journal.pone.0052733.t003

Figure 3. Effect of the number of vehicle passes on the shape of the fitted dispersal kernel (Lognormal function). (A) Ailanthus
altissima, (B) Clematis vitalba, (C) Ambrosia artemisiifolia, and (D) Brassica napus. The y-axis is on a log scale and 0.0001 was added to all probabilities
to show zero values. Inset tables show parameter estimates (a= scale parameter, b= shape parameter) for the different numbers of vehicle passes.
doi:10.1371/journal.pone.0052733.g003

Seed Dispersal by Vehicles Airflow
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in this experiment, the different shapes of the dispersal kernels for

Ailanthus and Clematis versus Brassica and Ambrosia suggest different

processes with the former two species being more influenced by

the airflow.

Airflow dispersal of species with morphological
adaptation to wind dispersal
For Ailanthus and Clematis the shape of the dispersal kernel and

the strong lateral movement of seeds even from sections adjoining

the driving lane indicate a dominant effect of vehicle airflow on the

dispersal process. Solazzo et al. [20] found a sizeable effect of

vehicle airflow on the distribution of particulate matter along

roads, primarily caused by the slipstream of passing cars. Likewise,

the slipstream of the car appeared to move the seeds in our

experiment almost exclusively in the direction of traffic. As a

second process, sideward eddies near the ground [18] and

sideways components of the airflow [19] are likely to cause a

simultaneous strong lateral dispersal to each side of the driving

lane. This lateral movement takes seeds away from the influence of

subsequent vehicles. Although this process greatly decreases

Figure 4. Lateral movement of seeds of Ailanthus altissima in relation to the number of vehicle passes. (A) Mean probabilities of seed
deposition of Ailanthus altissima in the parallel road sections in relation to the number of vehicle passes. (B) Proportion (695% CI) of seeds of
Ailanthus altissima accumulating at the verge in relation to the number of vehicle passes. At the start of experiment seeds were laid out only on the
driving lane.
doi:10.1371/journal.pone.0052733.g004

Figure 5. Influence of the starting section on parallel and lateral movement of seeds by a passing car. Dispersal patterns of Ailanthus
altissima seeds after one vehicle pass for seeds initially placed in the verge (left panel), the left side (second panel from left) the driving lane (centre
panel), the right side (second panel from right) and the opposite lane (right panel). Probabilities of reaching the different sections of the study road
are indicated by different grey shading. Probabilities are averaged over 50 replicates.
doi:10.1371/journal.pone.0052733.g005

Seed Dispersal by Vehicles Airflow
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longitudinal dispersal distances, it effectively transports seeds from

the road surface to potentially suitable establishment sites at the

road verge. This suggests a strong effect of vehicle airflow on

realised dispersal, i.e. the proportion of dispersed seeds that can

germinate and establish successfully. However, secondary dispersal

by ambient wind [39] may move some seeds back onto the road

where they are available for further dispersal by airflow, again.

The mechanisms behind the strong lateral movement are

partially revealed by our additional experiment for Ailanthus. Seeds

placed in the driving lane showed a wide lateral dispersion after

the vehicle passed, while seeds placed in the adjoining sections

showed shorter transport distances and lower overall probabilities

of lateral transport (Fig. 4, 5). Repeated passes by vehicles will

therefore result in a higher lateral transport from the driving lane

to adjoining sections rather than towards the driving lane. This is

in accordance with the low lateral reach of the slipstream effect in

the wake of a moving vehicle in contrast with the significant

airflow behind, which extends over a distance of 40 times the

vehicle height [19]. While most commonly seeds might be starting

at the road verge they are least likely to travel long distance by

car’s airflow. Conversely the highest probabilities of long distance

dispersal have those seeds exposed on the driving lane. Yet, the

number of these seeds strongly depends on primary and secondary

dispersal by other vectors.

A mechanistic model for wind dispersal over the ground has

been introduced and successfully validated with experimental data

[25]. This model describes dispersal distances over a given time

span as a function of wind drag and friction of the surface that a

seed is experiencing. The airflow caused by passing vehicles has

also been successfully modelled by computational fluid dynamics

[20]. Thus, if the horizontal wind vector of a vehicle in motion and

the friction of the road surface are analysed, a fully mechanistic

description of vehicle dispersal might be obtained. However, as

indicated by the video analysis (see supporting information, Video

S1), tumble dispersal over the ground is only part of the process for

wind dispersed species. Another is in-air wind dispersal once the

seeds have been lifted by the turbulence caused by the passing car.

Turbulence and updrafts caused by ambient wind have been

shown to be important in long-distance primary dispersal by wind

[22,24,43,44]. Updrafts are probably caused by the turbulences

close to the passing car where several upward and sideward eddies

occur [18]. Seeds elevated by turbulence are subjected to the

slipstream of the vehicle which may greatly extend dispersal

distances compared to tumble dispersal. In addition, this process

could interact with dispersal over sealed surfaces of transport

corridors by the ambient wind [39].

Airflow dispersal of species without adaptation to wind
dispersal
Our results expand upon previous experiments on vehicle-aided

dispersal of Brassica and Ambrosia. Both species have seeds without

obvious morphological adaptations to enhance wind dispersal and

accordingly our study found low dispersal distances. Limited

dispersal with a maximum distance of 21.5 m was also found for

seeds of Brassica that were placed on a rural road [17]. Seed

transport of Ambrosia by vehicles from dense roadside populations

resulted in a low density seed rain within the first 25 m of the seed

trap transect [45]. Still both species have spread conspicuously

along roads [46,47] and several studies found a strong association

of roadside populations of Brassica with the direction of traffic flow,

e.g. in the direction of processing plants [37,47,48]. Hence,

dispersal mechanisms other than the slipstream of vehicles appear

to enhance long-distance dispersal in these species. In previous

experiments we found that spillage of Brassica seeds during crop

transport [38], might explain distributional patterns at the

landscape scale. Also, transport of seeds by mowing vehicles has

been shown to be an effective means of Ambrosia dispersal along

road corridors [45].

Generality of the experimental results
As the secondary dispersal distances observed in this experiment

are on a comparable scale to the primary dispersal distances of our

species, secondary HMD by vehicles enhances the spread of these

species with a special focus along road corridors. The combination

of different processes under field conditions could further increase

dispersal distances. Seeds transported by attachment to vehicles

could – after detachment - be picked up by the airflow of

subsequent vehicles. By causing lateral transport towards suitable

germination sites at the road verge, the airflow of vehicles could

allow such long distance dispersal to end successfully. Further-

more, other processes such as wind related dispersal [25,39] or

lateral dispersal by vehicles in the opposite driving lane (Fig. 5)

could bring seeds back on the driving lane and under the influence

of vehicle airflow which would allow repeated dispersal events in

the same direction. As speed, mass and shape of vehicles influence

their airflow [18], we would expect the effect of vehicles travelling

on motorways to be much greater than recorded here. However,

seed mortality due to crushing by tyres might also be enhanced by

higher volumes of traffic. For a vector-specific analysis of dispersal,

these losses could be looked at as the cost of this dispersal process

[49].

The observations at our study road were limited to a

longitudinal distance of 45 m (and no seeds were found in the

turning zone beyond 45 m). While the mode of the dispersal

kernel and its decline to this distance could be reliably estimated,

the scale of the experiment did not allow for the detection of

dispersal events that reach beyond this distance. Further distances

could be expected for the wind-dispersed species as most replicates

in our experiment recorded seeds in the farthest sections.

In our experiment we used only one car and therefore the time

between passes was rather long (.1 minute). In reality traffic is

often dense, time intervals are shorter and seeds, especially those

with low falling velocities, could be kept in the air for a long time

by the flow of traffic. Therefore our experiment could underes-

timate the dispersal distances compared to the same number of

passes by consecutive vehicles.

Finally, the weather conditions may affect the relative impor-

tance of different dispersal processes. In our experiment, which

was always conducted under dry conditions, a large proportion of

the seeds of Brassica and Ambrosia remained in the lane even after

80 passes. It remains unclear whether such low lateral transport

under wet conditions may offer an advantage for long-distance

dispersal via attachment to car’s surface.

Conclusions
Human-mediated dispersal has often been characterized as a

highly stochastic process that is difficult to quantify, but that has a

large effect on long-distance dispersal. Our study contributes to a

better understanding of one HMD process, both quantitatively

and mechanistically.

Dispersal processes along roads, both anthropogenic and

natural, are manifold and include long and short term

attachment to car (body versus tyres), vehicle airflow along roads

as well as lateral transport, wind dispersal (airborne and sealed

surfaces) and tumble dispersal. All these dispersal mechanisms

may result in complex interactions considerably enhancing

dispersal distances. A better understanding of these interacting

dispersal processes may help to increase the accuracy of models of
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range expansion of invasive species. The high volume of traffic

(more than 25 million cars on British roads by 1997 [10])

illustrates the quantitative relevance and potential impact of this

dispersal vector within urban areas and beyond. Therefore,

HMD in general [1,3,14,15] and vehicle airflow in particular play

an important role in understanding and managing invasive

species in particular and in conservation ecology in more general.

For example, our results on the strong lateral movement of seeds

in the slipstream of passing cars might stimulate a changed design

of road edges that then hampers lateral movement of seeds from

road surface to verge.

Supporting Information

Video S1 Video of the study car moving along the study

road. The car was filmed after new seeds of all species were laid

out in front of the zero line. The markings indicating the sections

parallel and perpendicular to the direction of traffic (Fig. 1) are

visible.

(AVI)

Table S1 Parameter estimates and AIC of the Lognor-

mal and Wald function for dispersal at three different

numbers of vehicles passes.

(DOC)
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Biological invasions: Towards a synthesis. pp. 53–60.

46. Essl F, Dullinger S, Kleinbauer I (2009) Changes in the spatio-temporal patterns

and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria.

Preslia 81: 119–133.

47. Knispel AL, McLachlan SM (2010) Landscape-scale distribution and persistence

of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada.

Environ Sci Pollut Res Int 17: 13–25.

Seed Dispersal by Vehicles Airflow

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e52733



48. Kawata M, Murakami K, Ishikawa T (2009) Dispersal and persistence of
genetically modified oilseed rape around Japanese harbors. Environ Sci Pollut
Res Int 16: 120–126.

49. Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, et al. (2012) Costs of
dispersal. Biol Rev Camb Philos Soc 87: 290–312.
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