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Abstract: Mesenchymal stem cells (MSCs) have been adopted in various preclinical and clinical
studies because of their multipotency and low immunogenicity. However, numerous obstacles
relating to safety issues remain. Therefore, MSC-derived extracellular vesicles (EVs) have been
recently employed. EVs are nano-sized endoplasmic reticulum particles generated and released
in cells that have similar biological functions to their origin cells. EVs act as cargo for bioactive
molecules such as proteins and genetic materials and facilitate tissue regeneration. EVs obtained
from adipose-derived MSC (ADMSC) also have neuroprotective and neurogenesis effects. On the
basis of the versatile effects of EVs, we aimed to enhance the neural differentiation ability of ADMSC-
derived EVs by elucidating the neurogenic-differentiation process. ADMSC-derived EVs isolated
from neurogenesis conditioned media (differentiated EVs, dEVs) increased neurogenic ability by
altering innate microRNA expression and cytokine composition. Consequently, dEVs promoted
neuronal differentiation of neural progenitor cells in vitro, suggesting that dEVs are a prospective
candidate for EV-based neurological disorder regeneration therapy.

Keywords: extracellular vesicle (EV); mesenchymal stem cell; neural progenitor cell; neurogenesis;
microRNA; cytokine

1. Introduction

Mesenchymal stem cells (MSCs) have been widely used for decades in innumerable
tissue engineering studies as candidates for cell-based therapy owing to their outstanding
properties, such as their multipotency and immunomodulatory effects [1–5]. Specifi-
cally, stem cell therapy has been used to restore neurological disorders, including stroke,
Alzheimer′s disease, and Parkinson’s disease. Urrutia et al. reported that adipose-derived
MSCs (ADMSCs) exhibited stronger neural differentiation capacity than skin-derived
MSCs, bone marrow-derived MSCs (BMMSCs), and umbilical cord-derived MSCs (UCM-
SCs) [6]. Recent studies have demonstrated that transplanted stem cells can differentiate
into neuronal cells and glial cells and that substantial functional recovery is mostly due to
paracrine signaling effects provided by grafted stem cells [7–9]. However, several safety
issues, including immunogenic risk, still remain [10].

The extracellular vesicle (EV) is a crucial paracrine molecule of 30–150 nm in size with
a bilayer structure. EVs exhibit tetraspanins CD63, CD81, and CD9 on the surface and
present the endo-lysosomal regulatory transport protein (ALIX) [11,12]. MSC-derived EVs
have been regarded to have a similar therapeutic potency as MSCs without the potential
safety risks [10]. For the regeneration of neurological disorders, EV-based therapy is also
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promising as it is a neuroprotective paracrine cargo containing abundant proteins and
microRNAs [13]. Therefore, Koohsari et al. studied the immunomodulatory effects of MSC-
EVs alleviated by human UCMSC-induced experimental autoimmune encephalomyelitis
(EAE) by reducing pro-inflammatory cytokine expressions (IL-17, TNF-α, and IFN-γ) and
enhancing anti-inflammatory cytokine expression (IL-4 and IL-10) [14].

MicroRNA (miRNA), which are approximately 21 nucleotides long, are single-stranded
RNA molecules originating from 70 to 100 nucleotide hairpin precursors that can regulate
protein expression in recipient cells by binding to an untranslated mRNA region [15–17].
Previous studies validate the regenerative ability of miRNA, particularly their neurogenic
properties [13,18]. For example, Kuang et al. reported that ADMSC-derived EVs containing
miR-25-3p enhanced neuroprotective effects in a mouse stroke model by reducing the
autophagy flux [11]. Upadhya et al. verified the potential therapeutic, anti-inflammatory
and neurogenic properties of eight miRNAs (miR 320a, 320b, 103a-3p, 21-5p, 26a-5p, 30a-3p,
181a-5p, and 191-5p). A well-known miRNA capable of regulating neuronal differenti-
ation is miR Let-7b, which inhibits neural stem-cell proliferation and promotes neural
differentiation [19]. Further, miR 9 and miR 124 are extensively enriched in the brain and
their expression levels can increase throughout the mature nervous system. The miR-9
controls the post-differentiation regulation of embryonic and adult neural stem cells [20].
Existing miR 124 can be a transcriptional repressor of the RE1-silencing transcription factor
that downregulates the expression of neuronal genes in nonneuronal cells [21]. Hence,
overexpressed Let-7b, miR 9, and miR 124 in EVs can effectively enhance the neuronal
differentiation of recipient cells.

Moreover, new EV isolation methods have been developed to enhance EV regenerative
properties using diverse biophysiological stimulation. For example, in bone regeneration
studies, several studies showed that EV derived from osteogenic differentiation stages
increased the osteogenic effects of EV [22,23].

In this study, we hypothesized that EVs isolated from neurogenesis-conditioned media
can increase the neurogenic ability of EVs (differentiated EVs: dEVs) compared with normal
ADMSC-derived EVs. Additionally, we previously compared innate characteristics of EVs
based on cell culture media, namely the serum containing DMEM/F12 media and serum-
free chemically defined media (CDM). CDM has the inherent advantage of enhancing cell
proliferation and eliminating impurities during EV isolation [10]. A comparative analysis
of EVs isolated from neurogenesis conditioned with serum-supplemented DMEM/F12
media (dEVs-F12) and CDM (dEVs-CDM) suggests a new EV-based therapeutic approach
for neurogenic diseases.

2. Results and Discussion
2.1. dEVs Isolation during Neuronal Differentiation of ADMSCs

During ADMSC neurogenesis, EV properties can change due to altered cell–cell inter-
actions. Therefore, we hypothesized that EVs secreted from neural-differentiated ADMSCs
show neurogenic abilities. To isolate dEVs, FBS-derived redundant EVs were eliminated in
DMEM/F12 media containing serum following a previous study [10]. Cultured media were
collected from ADMSCs under neural differentiation conditions at 0, 7, 14, and 21 days
(Figure 1). Subsequently, the supernatant was isolated using a tangential flow filtration
(TFF) system.

First, to investigate the differentiation behavior of multipotent ADMSCs in neuroge-
nesis media, which are the conditions required for EV isolation, immunocytochemistry
(ICC) analysis was conducted for staining of neuronal cell-specific proteins (Figure 2A).
Differentiated ADMSCs were visualized with Nestin as a neural progenitor cell marker,
glial fibrillary acidic protein (GFAP) (an intermediate filament) as an astrocyte marker, and
microtubule-associated protein 2 (MAP2) as a mature neuron marker [24–29].



Int. J. Mol. Sci. 2022, 23, 7047 3 of 12Int. J. Mol. Sci. 2022, 23, 7047 3 of 12 
 

 

 
Figure 1. Schematic illustration of dEV isolation. For the effects of dEVs on neuronal differentiation 
of neural progenitor cells (NPCs), ADMSC-derived supernatant media were collected under neural 
differentiation conditions at 0, 7, 14, and 21 days. 

First, to investigate the differentiation behavior of multipotent ADMSCs in neuro-
genesis media, which are the conditions required for EV isolation, immunocytochemistry 
(ICC) analysis was conducted for staining of neuronal cell-specific proteins (Figure 2A). 
Differentiated ADMSCs were visualized with Nestin as a neural progenitor cell marker, 
glial fibrillary acidic protein (GFAP) (an intermediate filament) as an astrocyte marker, 
and microtubule-associated protein 2 (MAP2) as a mature neuron marker [24–29]. 

 
Figure 2. Confirmation of neuronal differentiation ability of ADMSCs. (A) Representative immuno-
fluorescence staining images of differentiated ADMSCs labeled with neuronal markers: Nestin 
(green), GFAP (yellow), and MAP2 (red) after 0, 7, 14, and 21 days under neural differentiation 
conditions. DAPI (blue) represents the nuclei of ADMSCs. Scale bars indicate 200 μm. (B) Western 
blot analysis results with neuronal markers: Nestin, GFAP, and MAP2. β-actin served as a loading 
control. 

Figure 1. Schematic illustration of dEV isolation. For the effects of dEVs on neuronal differentiation
of neural progenitor cells (NPCs), ADMSC-derived supernatant media were collected under neural
differentiation conditions at 0, 7, 14, and 21 days.
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Figure 2. Confirmation of neuronal differentiation ability of ADMSCs. (A) Representative immunoflu-
orescence staining images of differentiated ADMSCs labeled with neuronal markers: Nestin (green),
GFAP (yellow), and MAP2 (red) after 0, 7, 14, and 21 days under neural differentiation conditions.
DAPI (blue) represents the nuclei of ADMSCs. Scale bars indicate 200 µm. (B) Western blot analysis
results with neuronal markers: Nestin, GFAP, and MAP2. β-actin served as a loading control.

After 14 days of differentiation, Nestin and GFAP expression were observed in both
DMEM/F12 and CDM media groups. Interestingly, in the DMEM/F12 group, MAP2
was also expressed. For DMEM/F12 D21, we explored the highest MAP2 expression.
Similarly, neuronal cell-related protein expressions were investigated using Western blot
analysis (Figure 2B). Further, MAP2 expression of differentiated ADMSCs increased in the
DMEM/F12 D21 group more than in the CDM D21 group.

Based on the differentiation results from ADMSCs, the neurogenesis of ADMSC with
DMEM/F12 was enhanced for differentiation into mature neurons. However, CDM-based
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differentiation showed a tendency to dominate differentiated astrocyte-positive cells instead
of neurons.

2.2. Characterization of Neuronal Differentiated ADMSC-Derived dEVs

EV-specific protein expression and EV morphology were demonstrated following the
guidelines of MISEV2018 to verify the characteristics of dEVs-F12 and dEVs-CDM [30].
Based on nanoparticle tracking analysis (NTA) results using Zetaview QUATT®, the size
distributions of dEVs showed heterogeneity within a widely accepted range (diameter
50–300 nm) given the complexity of varying sizes and compositions [8,31]. There was no
significant difference in particle numbers between dEVs-F12 and dEVs-CDM media groups.
Average particle numbers were 2.1 × 1010 for dEVs-F12 and 1.97 × 1010 for dEVs-CDM
(Figure 3A).
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Figure 3. Characterization of neuronal differentiated ADMSC-derived dEVs. (A) Confirmation of
the average number and size distributions of dEVs using Zetaview. (B) Representative images of
transmission electron microscopy (TEM) of isolated dEVs. Scale bars indicate 100 nm. (C) Western
blot analysis showing expression of EV-specific surface markers (CD63, CD81, and CD9) in dEVs.

The bilayered spherical structure of dEVs was confirmed using transmission electron
microscopy (TEM) to determine whether the shape was maintained following separation
and concentration by TFF. In addition, average dEVs-F12 size was 215, 214, 249, and 223 nm
(D0, 7, 14, and 21, respectively) based on TEM images (Figure 3B). Similarly, average
dEVs-CDM sizes were 149, 173, 261, and 215 nm (D0, 7, 14, and 21, respectively).

Tetraspanin molecules, including CD63, CD81, and CD9, are the most common surface
protein markers of EVs [32] and play an essential role in numerous biological processes
for cell–cell interactions, such as cell adhesion, membrane fusion, signal transduction, and
protein trafficking [32]. We performed Western blot analysis to determine the expression
of surface markers on dEVs (Figure 3C) and demonstrated that there were no relevant
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changes in neither production yield nor intrinsic surface properties of ADMSC-derived
EVs, dEVs-F12, or dEVs-CDM during neuronal differentiation.

2.3. Enhancing Neurogenesis of NPCs Using dEVs

NPCs are characterized by their ability to expand and generate the majority of differ-
entiated cell types in the central nervous system: neurons, astrocytes, and oligodendrocytes
under specific environments [33]. Therefore, the differentiation ability of dEVs was ana-
lyzed using neurogenesis-induced NPCs. Quantitative reverse transcription-polymerase
chain reaction (RT-qPCR) was performed on NPCs differentiated for 7 days with each
dEV treatment (Figure 4A). Nestin mRNA expression levels in dEVs exhibited negligible
differences compared with controls. The dEV-treated NPC group notably increased GFAP
expression by approximately 1.24–1.35-fold in dEVs-F12 D14 and D21 compared with
controls. Further, GFAP expression of dEVs-CDM D21 treated NPCs was significantly
upregulated by 2.76-fold compared with controls (p < 0.0001). Most importantly, the ex-
pression of the mature neuron marker MAP2 was remarkably accelerated in dEVs-F12 D21
treated NPCs (2.73-fold more than controls, p < 0.0001).
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Figure 4. Enhanced neuronal differentiation effects of dEVs using NPCs under neural differentiation
conditions after 7 days. (A) Neurogenesis-related gene expressions of dEV treated NPCs using RT-
qPCR. (B) Representative images of immunofluorescence staining of differentiated NPCs labeled with
neuronal markers (a) Tuj1 (green) and MAP2 (red). DAPI (blue) represents the nuclei of NPCs. Scale
bars indicate 100 µm. Quantifying neurite length (b) and Tuj-1/MAP2 copositive cell numbers (c).
**** p < 0.0001 and ns = no significant. One-way ANOVA was followed by Tukey’s test. Error bars
represent standard deviation (SD).

To further investigate the neurogenesis capacity of dEV, we assessed neuronal skeletal
markers (neuron-specific class III beta-tubulin, Tuj1) and mature neuron markers (MAP2)
using ICC analysis. In Figure 4(Ba), based on representative images of differentiated
NPCs, the dEVs-F12 D21 group demonstrated outstanding promotional effects on neuronal
differentiation. Further, the length of neurite labeled with Tuj1 indicates elongated axons
and multiple neurite outgrowth. The dEVs-F12 D21 group displayed the most significant
elongation effect on neurite length following an 89.8% increase compared with the NPC.
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Figure 4(Bc) shows a differentiated NPCs population, stained double-positive for Tuj1 and
MAP2, displayed the largest in the dEVs-F12 D21 group (607% higher than controls). In
other words, dEVs-F12 D21 encouraged NPC neurogenesis not only for normal ADMSC-
derived EV (dEVs-F12 D0), but also for other dEVs.

2.4. dEVs-F12 Promotes Neuronal Differentiation of NPCs by Altering Innate miRNA and Protein
Composition

The paracrine effect of EVs on cells occurs via the transport of genetic material, mRNA,
or miRNA [34,35]. As mentioned above, miRNAs (Let-7b, miR 9, and miR 124) are single-
stranded noncoding RNAs expressed during the neuronal differentiation process [20,21].
Specifically, Let-7b and miR 9 inhibit the proliferation of neural stem cells and enhance
the neuronal differentiation ability of NPCs by targeting the stem cell regulators TLX and
TRIP6 and the cell cycle regulator cyclin D1 [36,37]. Furthermore, Kapsimali et al. described
that in mammalian neurons, miR 124 induces neurogenesis and presents widespread in
most CNS neurons [38].

Therefore, to demonstrate changes inside dEV molecules, miRNA expression levels
related to neural differentiation were evaluated [39]. RT-qPCR was performed to determine
miRNA expression in dEVs (Figure 5A). Expression of miR 9 increased 2-fold in dEVs-F12
and 1.4-fold in dEVs-CDM compared with controls. Let-7b expressions elevated 4.31-fold in
dEVs-F12 and 3.24-fold in dEVs-CDM. Further, miR 124 levels in both dEVs-F12 and dEVs-
CDM upregulated 1.6-fold. All miRNAs were compared with control-differentiated NPCs.
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Representative images of cytokine array membranes (a) and quantification as a fold change (b).
**** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05, and ns = no significant. One-way ANOVA was
followed by Tukey’s test. Error bars represent standard deviation (SD).



Int. J. Mol. Sci. 2022, 23, 7047 7 of 12

To further assess the paracrine effects of dEVs, EV lysate was characterized using
a cytokine array (Figure 5B). Cytokine arrays were executed to investigate proteins that
functioned in NPC differentiation along with miRNAs. Cytokines highly expressed in dEVs-
F12 included pentraxin 3 (PTX3), fibroblast growth factor-Basic (bFGF), hepatocyte growth
factor (HGF), interleukin 8 (IL-8), and Kallikrein 3 (KLK3) that were markedly expressed
to 218-, 98-, 198-, 159-, and 96-fold compared with controls, respectively. All cytokines
can improve neuron survival and proliferation. Specifically, PTX3, an activator of the A2
astrocytes, mediates neurogenesis and helps restore nerve function via angiogenesis [40,41].
bFGF supports the growth of nerve cells and neural stem cells and can protect nerves [42],
whereas HGF can prevent neuronal cell death [43]. Furthermore, KLK3 can promote neurite
outgrowth [44], and IL-8 increases neuronal survival [45]. Taken together, dEVs-F12 D21
enhanced the differentiation of NPCs by changing internal bioactive molecules related to
neurogenesis.

3. Materials and Methods
3.1. Neuronal Differentiation of ADMSCs into Neural Lineage Cells

The ADMSCs (passage 5, CEFOBIO, Seoul, Korea) were confirmed by flow cytometry
(CytoFLEX; Beckman Coulter, CA, USA). The representative surface expression markers of
hMSCs, CD73(130-097-943, BD Biosciences, New Jersey, USA) and CD105 (562408, BD Bio-
sciences, New Jersey, USA), and the non-expression marker, CD34 (555822, BD Biosciences,
New Jersey, USA) were used for analysis. ADMSCs were cultured in 150 mm TC-treated
culture dishes (430599, Corning, New York, USA) with a density of 1 × 106 cells/mL. ADM-
SCs were cultured in DMEM, low glucose (LM00111, Welgene, Gyeongsangbuk-do, Korea),
100× Antibiotic-Antimycotic 1% (AA, 15240062, Gibco, New York, USA), and Premium
Fetal Bovine Serum 5% (FBS, 35015CV, Corning, New York, USA) to reach 60% confluency,
then neural differentiation was induced by two types of media, existing DMEM/F-12, no
phenol red (21041025, Gibco, New York, USA) and a new type of CellCor™ CD MSC (CDM,
XCELL Therapeutics, Seoul, Korea). Both media contained N-2 Supplement 1× (17502048,
Gibco, New York, USA), B-27 Supplement 1× (12587010, Gibco, New York, USA), Recom-
binant Human FGF-basic 20 ng/mL (100-18b, Peprotech, New Jersey, USA), Animal-Free
Recombinant Human EGF 20 ng/mL (AF-100-15, Peprotech, New Jersey, USA), AA 1%
(15240062, Gibco, New York, USA), and retinoic acid 1 µM (R2625, Sigma Aldrich, MI,
USA). Additionally, DMEM/F-12, no phenol red medium contains 5% ultracentrifugation
FBS. The medium was changed every 2–3 days.

3.2. Neuronal Differentiation of NPCs

Neural progenitor cells (NPCs) were cultured with N-2 Supplement 1× (Thermo
Fisher Scientific, Massachusetts, USA), B-27 Supplement 1× (Thermo Fisher Scientific,
Massachusetts, USA), epidermal growth factor (EGF, 20 ng/mL, Peprotech, New Jersey,
USA), basic fibroblast growth factor (bFGF, 20 ng/mL, Peprotech, New Jersey, USA) in
DMEM/F12 media. NPCs were seeded in 24-well cell culture plates coated with Matrigel
(354234, 1/200, Corning, New York, USA). Cells were cultured in an incubator at 5% CO2
and 37 ◦C. Cells were subcultured every 4–5 days, and the medium was changed daily.

For neuronal differentiation, NPCs were changed with DMEM/F12 medium contain-
ing N-2 Supplement 1×, B-27 Supplement 1×, brain-derived neurotrophic factor (BDNF,
10 ng/mL, Peprotech, New Jersey, USA), glial cell-derived neurotrophic factor (GDNF),
10 ng/mL, Peprotech, New Jersey, USA), nerve growth factor (NGF, 10 ng/mL, Peprotech,
New Jersey, USA), and 0.1 mM L-Ascorbic acid (Sigma Aldrich, Missouri, USA) with
5 × 107 particles/mL of dEVs. The medium was changed daily, and the cells were cultured
for 7 days.

3.3. Characterization of Differentiation ADMSC-EVs

After 0, 7, 14, and 21 days of neuronal differentiation, dEVs were isolated from ADM-
SCs cultured media for every 48 h. The dEVs were concentrated using the tangential flow
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filtration (TFF, Repligen, Massachusetts, USA) system with a 500 kDa fiber membrane (KR2i
TFF system, Repligen, Massachusetts, USA), and the isolated dEVs were concentrated with
Amicon Ultra-2 10 K (Merck Millipore, Massachusetts, USA) as previously described [46].
The morphology of the dEVs was observed with transmission electron microscopy (TEM,
H-7600, Hitachi, Japan). For TEM analysis, the EV solution was diluted and dropped
on the copper grid with 200 mesh carbon support film (CF200-CU, Electron Microscopy
Sciences, Pennsylvania, USA). Representative TEM images of dEV were obtained using
a FEI Tecnai Spirit G2 (FEI Company, Oregon, USA). The particle concentration and size
distribution were analyzed by nanoparticle tracking analysis (NTA) using a Nanosight
NS300 (Malvern Instruments, Worcestershire, UK) and Zetaview QUATT (Particle Metrix,
Inning am Ammersee, Germany) was used to identify the number of EV particles with
scatter mode. The instrument settings were set to a sensitivity of 75 and a shutter speed of
100 for all samples.

3.4. Immunocytochemistry

Cells were fixed in 4% paraformaldehyde (Biosesang, Korea) for 15 min at room
temperature (RT) and permeabilized for 15 min with 0.2% Triton X-100 (Sigma-Aldrich,
Missouri, USA) in phosphate-buffered saline (PBS) solution, followed by being blocked
with diluted 1% ready probe normal horse serum (R37625, Invitrogen, Massachusetts,
USA) in 1% BSA solution. After cells were incubated with primary antibodies; Anti-MAP2
antibody (ab5392, 1:500, Abcam, Cambridge, UK), Recombinant anti-Nestin antibody
(ab105389, 1:200, Abcam, Cambridge, UK), Anti-beta III Tubulin antibody (ab18207, 1:500,
Abcam, Cambridge, UK), and mouse anti-GFAP (556327, 1:500, BD Biosciences, New Jersey,
USA) at 4 ◦C overnight. The next day, cells were stained with secondary antibodies in
serum-BSA for 1 h at RT and incubated with 1 µg/mL of Hoechst dye (33342, Invitrogen,
Massachusetts, USA) for 15 min at RT. Cells were washed three times with PBS solution in
all steps. Confocal images were acquired using a confocal laser microscope (LSM880, Carl
Zeiss, Germany). To quantify the neurite length and Tuj1/MAP2 copositive cells, ImageJ
software was utilized.

3.5. Western Blot Analysis

dEVs and differentiated ADMSCs were incubated with radioimmunoprecipitation
assay (RIPA) Buffer 1× (9806S, Cell Signaling, Massachusetts, USA) for 30 min, and cen-
trifuged for 10 min. Proteins were measured by The PierceTM BCA Protein Assay Kit
(Pierce, Illinois, USA). dEVs were separated on 10% SDS-PAGE gel and cell proteins were
separated on 8%. Subsequently, the gels were transferred onto nitrocellulose membranes.
The membranes were blocked with 5% skim milk dissolved Tris-buffered saline with Tween
(TBS-T) solution for 1 h at RT. Each membrane was sequentially incubated with the primary
antibody of Anti-CD9 antibody (1:200, Santa Cruz Biotechnology, Texas, USA), Anti-CD63
antibody (1:500, Abcam, Cambridge, UK), Anti-CD81 (1:200, Santa Cruz Biotechnology,
Texas, USA), Anti-MAP2 antibody (ab5392, 1:500, Abcam, Cambridge, UK), Recombinant
Anti-Nestin Antibody (ab105389, 1:200, Abcam, Cambridge, UK), and Mouse anti-GFAP
(556327, 1:500, BD Biosciences, New Jersey, USA) at 4 ◦C overnight. The next day, anti-
Mouse IgG, HRP-linked secondary antibody (1:5000, Cell Signaling, Massachusetts, USA)
and anti-Rabbit IgG, HRP-linked Antibody (1:5000, Cell Signaling, Massachusetts, USA)
were incubated for 1 h. The expressions were detected using Chemi DocTM XRS and Image
Lab software (Bio-Rad, California, USA).

3.6. RT-qPCR Analysis

Differentiated ADMSCs and NPCs were isolated using an AccuPrep Universal RNA
Extraction Kit (Bioneer, Gyeonggi-do, Korea). The Prime Script RT Reagent Kit (Takara
Biotechnology, Shiga, Japan) was used for complementary DNA (cDNA) synthesis and
quantitative reverse transcription PCR (RT-qPCR) process. RT-qPCR was performed us-
ing a Power SYBR green PCR master mix (Applied Biosystems, Massachusetts, USA).
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All data were normalized against the 18 s rRNA. Forward and reverse primer sequences
were designed for Nestin, GFAP, MAP2, and 18S rRNA as follows: Nestin (forward: 5′-
TGCGGGCTACTGAAAAGTTC-3′; reverse: 5′-AGGCTGAGGGACATCTTGAG-3′), GFAP
(forward: 5′-CAGGTCCATGTGGAGCTTGAC-3′; reverse: 5′-CATTGCCTCATACTGCG
TGC-3′), MAP2 (forward: 5′-TGTACCTGGAGGTGGTAATGTC-3′; reverse: 5′-TGGCAAGC
TGAGGAGATTCGAGC-3′), and 18S (forward: 5′-CCTGGATACCGCAGCTAGGA-3′; re-
verse: 5′-GCGGCGCAATACGAATGCCCC-3′). miRNAs were extracted from dEVs by
the miRNeasy Kits (Qiagen, Shanghai, China). For the analysis of miRNAs (mir 9, 124,
137-3, and 138, let-7b) expression, based on the manufacturer’s instructions, Mir-X miRNA
RT-qPCR SYBR Kit (Clontech, California, USA) was used for cDNA synthesis and RT-qPCR
process. U6 snRNA was used as a control for quantification. All data were calculated by the
2−∆∆Ct method and obtained on a QuantStudio3 real-time PCR system (Applied Biosystems,
Massachusetts, USA). Primer sequences were designed for hsa-miR-9-5p, hsa-miR-124-3p, and
let-7b as follows: hsa-miR-9-5p (5′-TCTTTGGTTATCTAGCTGTATG-3′), hsa-miR-124-3p (5′-
TAAGGCACGCGGTGAATGCCAA-3′), and let-7b (5′-TGAGGTAGTAGGTTGTGTGGTT-3′).

3.7. Cytokine Array

dEVs were lysed in RIPA Buffer 1× (9806S, Cell Signaling, Massachusetts, USA) and
the 100 µg of dEVs protein was analyzed by a Proteome Profiler Human XL Cytokine Array
Kit (ARY022B, R&D Systems, Minnesota, USA) according to the manufacturer’s protocol.
Each cytokine was revealed in duplicate on the array plate, and the average of spots was
taken for the analysis of each factor expression. The fold change of cytokine productions
was calculated over the background using densitometry as measured by ImageJ software.

3.8. Statistical Analysis

All experiments were repeated at least three times. The quantitative results were
presented as means ± standard deviation (SD). # p < 0.0001, *** p < 0.001, ** p < 0.01, and
* p < 0.05 indicate statistically difference, respectively. Statistically significant differences
were evaluated by one-way analysis of variance (ANOVA) following Tukey’s method in
GraphPad Prism 7.0 software (GraphPad Software Inc., California, USA).

4. Conclusions

In the field of tissue engineering and regenerative medicine, particularly with respect
to neurodegenerative diseases, numerous approaches have been studied to develop ef-
fective cell-free therapeutic methods using MSC-derived EVs [1,11,13,47]. As mentioned
previously, to eliminate the effect of FBS-derived EVs and enhance the inherent effects
of EVs in cells of interest, we applied serum-free CDM. Although CDM has several ad-
vantages, such as maintaining cell proliferation, enhancing angiogenesis, and reducing
impurities for EV isolation [10], DMEM/F12 still showed promising results in neuronal
differentiation of ADMSCs. In future studies, component modification of CDM for neuronal
differentiation will leverage these results.

However, ultimately, dEVs-F12 promotes neuronal differentiation of NPCs by altering
the innate miRNA composition (Let-7b, miR 9, and miR 124) in EVs. Furthermore, inherent
cytokines in dEVs-F12 promote neurogenesis, protect neurons, and enhance proliferation.
Our findings offer insight into the future therapeutic use of EVs for neuronal disorders in
the fields of tissue engineering and regenerative medicine.
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ADMSC Adipose-derived mesenchymal stem cells
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dEV Neuronal differentiated ADMSC-derived extracellular vesicle (Differentiated EV)
NTA Nanoparticle tracking analysis
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