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1H Nuclear Magnetic Resonance spectroscopy (1H NMR) is increasingly used to measure metabolite
concentrations in sets of biological samples for top-down systems biology and molecular
epidemiology. For such purposes, knowledge of the sources of human variation in metabolite
concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a
resource. In our unique design, identical and non-identical twin pairs donated plasma and urine
samples longitudinally. We acquired 1H NMR spectra on the samples, and statistically decomposed
variation in metabolite concentration into familial (genetic and common-environmental),
individual-environmental, and longitudinally unstable components. We estimate that stable
variation, comprising familial and individual-environmental factors, accounts on average
for 60% (plasma) and 47% (urine) of biological variation in 1H NMR-detectable metabolite
concentrations. Clinically predictive metabolic variation is likely nested within this stable
component, so our results have implications for the effective design of biomarker-discovery
studies. We provide a power-calculation method which reveals that sample sizes of a few thousand
should offer sufficient statistical precision to detect 1H NMR-based biomarkers quantifying
predisposition to disease.
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Introduction

1H Nuclear Magnetic Resonance spectroscopy (1H NMR)-
based metabolic profiling is a discovery-driven experimental
technique that allows high-throughput quantification of small
molecules, metabolites (Nicholson et al, 1999; Wishart et al,
2009), in biological samples. There has been a recent surge in
the application of 1H NMR in biomedical research, with
metabolic profiles being used to characterize, diagnose, and
predict pathological states. The application of 1H NMR
spectroscopy to urine and plasma samples is attractive from
an experimental perspective, as the collection of such samples
is minimally invasive, the sample-assay process is non-
destructive, and 1H NMR-based quantification of metabolites

in urine has been demonstrated to be highly reproducible
(Keun et al, 2002; Dumas et al, 2006; Maher et al, 2007). 1H
NMR metabonomics (Nicholson et al, 2002) has a substantial
history of application in toxicology (Robertson, 2005), and
promises to have an important biomedical role in drug-
response characterization (Le Moyec et al, 2005; Holmes et al,
2006) and personalized medicine (Clayton et al, 2006;
Qiu et al, 2008), as well as in human nutritional research
(Gibney et al, 2005; Stella et al, 2006; Rezzi et al, 2007; Favé
et al, 2009; Heinzmann et al, 2010). Furthermore, 1H NMR-
based metabolic profiling has helped guide the search for
diagnostic biomarkers for a number of diseases (Odunsi et al,
2005; Ala-Korpela, 2008; Saude et al, 2009; Williams et al,
2009; Zhou et al, 2009).
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Metabolome-wide association studies (MWASs) have
emerged as an interesting approach to explore systematically
the statistical relationships between disease risk factors and
metabolite concentrations, patterns, networks, or fluxes in
human biological samples, in order to generate testable
physiological hypotheses on disease aetiology (Nicholson
et al, 2008; Chadeau-Hyam et al, 2010). MWASs provide a ‘top-
down’ perspective on the physiology of complex organisms,
usefully complementing other systems-biology approaches.
The profiling of metabolite concentrations adds value by
summarizing the global physiological impact of interacting
multilevel biological systems (including genetic, epigenetic,
transcriptomic, and proteomic) with environmental and life-
style factors. A particular use of the MWAS is in prospective
biomarker discovery, in which the goal is to find metabolites
whose levels are predictive of disease development several
years beyond the time of sample collection. Prospective
biomarkers are much rarer in the literature than those simply
offering diagnosis or interpretation of pre-existing disease
states. We discuss the impact of our findings on the potential
utility of the 1H NMR metabolome as a medium for biomarker
discovery.

For a biomarker to be useful, its level across a population
must clearly associate with disease risk or progression, while
not varying too much over the short term within an individual,
as that would undermine the predictive association from a
single sample. Nor should it be completely heritable if disease
risk is significantly influenced by environmental factors.
Driven by these considerations, we set out to characterize
systematically the sources of variation underpinning the 1H
NMR metabolome, so as to inform the design and interpreta-
tion of MWASs in the future.

Analysis of a biofluid sample by 1H NMR spectroscopy
provides a richly informative functional datum, a spectrum, in
which the concentration of each detectable hydrogen-contain-
ing metabolite is represented quantitatively by the area under
its specific profile. The full biofluid NMR spectrum is the sum
of the intensities (i.e., a superposition) of the spectra of
individual metabolites; a metabolite’s spectrum is made up of
peaks from each chemically distinct hydrogen atom in the
molecule, with the peaks split into multiplets by inter-proton
coupling interactions. The peak position of a given hydrogen
on the frequency axis is known as a chemical shift and is
quoted in parts per million (p.p.m., often termed a d value)
from that of a reference substance. Our study characterizes the
variation landscape of the 1H NMR metabolome through the
extraction and statistical analysis of a comprehensive set of
526 peaks.

In order to decompose peak-specific population variation
into meaningful subcomponents, we designed a longitudinal
twin study (Neale and Cardon, 1992; Martin et al, 1997); see
also Materials and methods. The study was designed on the
basis of statistical power considerations. Specifically, the ratio
of identical to non-identical twin pairs and the longitudinal
sampling scheme were chosen in such a way as to maximize
information content on the variance parameters of interest,
which are described in the following paragraph.

Familial variation comprised all heritable and common-
environmental effects (i.e., arising from genetics or shared
environment after conception). The current study incorporated

a sufficient number of twin pairs to enable estimation of
familial variation with useful precision, but not sufficient for
the estimation of heritability, which would have required
much larger sample sizes (Supplementary information). The
incorporation of longitudinal sampling into the study design
allowed the decomposition of the remaining non-familial
variation into that which was stable over time (individual
environmental) and that which was temporally dynamic.
The temporally dynamic part of variation was modelled with
two components—individual visit, capturing within-indivi-
dual short-term fluctuations and common visit, allowing
for the fact that each twin pair visited the clinic together.
Finally, extensive technical replication within the current study’s
design allowed estimation and separation of non-biological varia-
tion (i.e., experimental random noise), so that it was not
included in the primary decomposition of biological popu-
lation variation. The current study was thus distinct from
the majority of twin studies in which stable-environmental
variation, short-term dynamic variation, and random experi-
mental error are not separable.

The specifics of our study design were as follows.
We analysed plasma and urine samples collected longitudin-
ally from 154 female, post-menopausal twins. Of the 77 pairs
of twins, 56 were identical (i.e., monozygotic, or MZ, geneti-
cally identical) and 21 were non-identical (i.e., dizygotic, or
DZ, sharing half their genes as do ordinary siblings); 34 of the
MZ twin pairs donated samples twice over the space of several
months. We split each of the 222 samples into two aliquots,
and analysed all aliquots by 1H NMR spectroscopy. We pre-
processed and extracted peaks from each resulting spectrum,
and fitted a robust variance-components model to each peak’s
intensity across spectra.

Our main result was the identification and quantification of
a substantive proportion of stable variation in the 1H NMR
plasma and urine metabolomes, where stable variation is
defined as the sum of familial and individual-environmental
components. The current paper lays out the nature and
relevance of its results in three stages, by (a) summarizing the
estimated variance decomposition across a comprehensive
set of 526 peaks, (b) focusing in on the variability of 66
metabolites, whose peaks we annotated, and (c) demonstrat-
ing the relevance of its findings to study design in MWASs.

Results

Variation landscape of the 1H NMR metabolome

The 1H NMR acquisition process delivered a single, standard
one-dimensional (1D) spectrum for each urine sample.
For plasma samples, acquisition of the standard 1D spectrum
was supplemented with acquisition of two other types of 1D
spectrum, enabling quantification of a range of metabolites,
extending from small molecules such as amino acids (targeted
by the Carr-Purcell-Meiboom-Gill (CPMG) spin-echo pulse
sequence; Nicholson et al, 1995) to large metabolites such as
lipids and lipoproteins (targeted by the diffusion-edited pulse
sequence; Liu et al, 1996). These (biofluid, pulse sequence)
combinations produced four data sets (urine standard 1D,
plasma standard 1D, plasma spin-echo, and plasma diffusion-
edited); each such data set was analysed separately.
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For each of 526 common peaks (a peak was defined to be
common if it was present in 480% of spectra in its
corresponding data set), we quantified its height—as a proxy
for area—in each spectrum in its data set, and fitted a variance-
components model to the resulting data (see Materials and
methods for methodological details; Supplementary Table S1
shows peak-specific variance decompositions for all 526
common peaks). For the urine data, the mean (across all
peaks) of the non-biological variance proportion was 10%
(IQR: 2–13); for the combined plasma data, it was 36% (IQR:
16–53). All common peaks were included, irrespective of
signal-to-noise ratio. The observation of a higher proportion
of non-biological variation in plasma relative to urine was
partially attributable to there being more variation across
spectra in the spectral baseline (caused by a collection of
broad peaks in plasma spectra arising from proteins), as well
as to the presence of less population variation in (homeo-
statically controlled) plasma metabolite concentrations.

Then, after removal of the non-biological variation, the
remaining biological variation was decomposed into two
stable (familiality and individual-environment) and two
unstable (individual-visit and common-visit) components.
These biological variance components are summarized in
Table I. The proportion of familial variation was found to be
substantive in both biofluids, and somewhat higher in plasma
(42% is the mean across all peaks) than in urine (30%).
Finally, we aggregated the familial and individual-environ-
ment effects to estimate the total proportion of biological
variation that was longitudinally stable. We found the
inter-peak average percentage of stable variation to be 60%
(IQR: 51–72) and 47% (IQR: 35–60) for plasma and urine,
respectively.

Variance decomposition for annotated metabolites

We assigned peaks to metabolites in each data set using a
combination of the web-based human metabolome database
(Wishart et al, 2009), an in-house developed database,
statistical total correlation analysis (Cloarec et al, 2005), and
other literature (Nicholson et al, 1995). We annotated a total of
38 metabolites in plasma and 27 in urine. Several metabolites
were represented in the data with a degree of redundancy: a
single metabolite can create multiple peaks within a single
spectrum, and may also be represented in more than one
plasma data set. We used this feature for model validation,
and, with the exception of one metabolite (lactate in plasma),

we were successfully able to verify the consistency of our
findings across multiple peaks of the same metabolite
(Supplementary Figure S1 and Supplementary information).

To summarize the results for each metabolite, a single
representative peak was chosen on the basis of (a) being
present in a high proportion of spectra, (b) having high signal-
to-noise ratio, and (c) exhibiting limited overlap with other
peaks (Supplementary Figure S2 displays these criteria, and
details which peak was selected in each case). For plasma, the
peak was drawn from across the three plasma data sets.
The biological variance decomposition for each such
representative peak is shown in Figure 1 (the underlying
numbers are in a subset of the rows of Supplementary
Table S1). The mean proportion of stable biological variation
across annotated metabolites was 68% (IQR: 60–79) for
plasma and 53% (IQR: 38–67) for urine. There was variation
across metabolites in the statistical precision with which
variance components could be estimated. We quantified this
aspect of the results by providing Bayesian credible intervals
(BCIs) for the variance parameters of each metabolite (Figure 1;
Supplementary Table S1).

Ten metabolites were annotated in both urine and plasma
data sets (acetate, acetoacetate, alanine, citrate, creatine,
creatinine, dimethylamine, glycine, lactate, and dimethylsul-
fone). For each of these, we compared the estimate of each
biological variance proportion across biofluids, finding the
95% BCIs to overlap in all cases but two—dimethylamine
and dimethylsulfone each exhibited higher individual-visit
variance proportion in urine than in plasma (Figure 1;
Supplementary Table S1).

Sample sizes for MWASs

The MWAS has emerged as an interesting ‘top-down’ approach
for the characterization of disease-risk biomarkers (Nicholson
et al, 2008; Chadeau-Hyam et al, 2010). Physiological
concentrations of metabolites reflect both genetic and envir-
onmental risk factors, and can thus offer a relatively
comprehensive and accurate assessment of complex-disease
susceptibility, compared with molecular markers that are
mechanistically closer to the genome (e.g., mRNA-transcript or
protein levels). We examined the implications of our findings
for the effective design of an MWAS in search of such disease-
susceptibility metabolite biomarkers.

Let x denote a metabolite’s concentration and y denote a
quantitative disease-related phenotype. Consider, for example,

Table I Percentage decomposition of biological population variation—summary of results

Plasma standard 1D
(87 peaks)

Plasma spin-echo
(87 peaks)

Plasma diffusion-edited
(24 peaks)

Plasma all
(198 peaks)

Urine standard 1D
(328 peaks)

(A) Familiality 38a (28–48)b 43 (33–56) 49 (45–56) 42 (32–52) 30 (17–39)
(B) Individual environment 17 (9–22) 20 (10–26) 22 (14–25) 19 (10–25) 18 (9–25)
(C) Individual visit 35 (24–47) 27 (14–39) 20 (12–28) 30 (17–39) 45 (34–55)
(D) Common visit 10 (4–15) 10 (4–13) 9 (5–13) 10 (4–14) 8 (4–10)
(A+B) Stable total 55 (42–69) 63 (54–73) 71 (63–79) 60 (51–72) 47 (35–60)
(C+D) Unstable total 45 (31–58) 37 (27–46) 29 (21–37) 40 (28–49) 53 (40–65)

aMean of estimates, across peaks.
bInterquartile range of estimates, across peaks.
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a prospective MWAS, in which x is a subject’s blood
low-density lipoprotein cholesterol concentration (LDL) 10
years ago, and y quantifies the subject’s cardiovascular disease
status (CV) at the present time. Short-term variations in
LDL are unlikely to provide useful predictive information
about long-term CV risk, so CV-predictive variation in LDL is
more likely to be nested within LDL’s longitudinally stable
component. This motivates a model under which the
longitudinally stable variation in x contributes to the (x, y)
association.

Suppose variation that is shared by x and y contributes a
proportion p of the variance of x, and a proportion q of the
variance of y (in the example, the biological processes
underlying the association between LDL and CV explain
a proportion p of variation in LDL and a proportion q
of variation in CV). The underlying absolute correla-
tion between x and y in such a scenario is rj j ¼ ffiffiffiffiffiffi

pq
p

. We
calculated the sample size of bivariate Gaussian observations�

x
y

�
� MVN

h� m1

m2

�
;
� 1

ffiffiffiffiffiffi
pq
p

ffiffiffiffiffiffi
pq
p

1

�i
required to detect the (x, y)

association with high power, as a function of p and q
(Figure 2A). It is likely in practice that q will be small
(explaining o10% of disease risk), while p is bounded above
by the proportion of stable variation in the metabolite, which

can be large (e.g., exceeding 50%), as the current study has
demonstrated.

We created a distribution for p that quantified the stabi-
lity of common 1H NMR-detectable urine metabolites. The
probability distribution on p was constructed using (for upper
bounds) the current paper’s estimates of the stable proportion
of variation for peaks in the urine data. Specifically, we defined
the distribution on p to be a non-weighted mixture of the set of
uniform densities {Uniform(0, pi): i¼1,y,328}, where pi

denotes the estimate of the stable proportion of total
phenotypic variance for the ith peak. We combined this
distribution on p with various fixed values of the explained
proportion of disease risk, q, to give corresponding distribu-
tions on underlying correlations, via rj j ¼ ffiffiffiffiffiffi

pq
p

(Figure 2B,
bottom panel). We then translated this uncertainty in the
underlying correlation into uncertainty in the sample size
required to detect the effect (Figure 2B, left-hand panel). The
plot indicates that a sample size of 5000 would be sufficient to
detect associations explaining 10% of disease risk (q¼0.1),
should they exist, but would be insufficient to detect most
associations explaining just 1%. Supplementary Figure S3 is
the corresponding plot based on the plasma data, showing that
estimated sample sizes for plasma are similar to, but very
slightly higher than, those for urine.
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It is important to note that the underlying result shown
in Figure 2A is applicable to other metabolic phenotypes (e.g.,
metabolite concentrations measurable by mass spectrome-
try—MS), and also to other ‘omics’ platforms (e.g., transcrip-
tomic and proteomic). Figure 2B and Supplementary Figure S3
are specific to the 1H NMR urine and plasma metabolomes,
respectively; they depend on the stability of the constituent
metabolites’ concentrations and the precision of the measure-
ments. The sample-size calculations are applicable to mole-
cular epidemiological studies (not necessarily involving twins)
in which the underlying disease model is assumed to be one
where persistent overexpression or underexpression of an
individual’s baseline molecular level, relative to that of the
general population, is associated with an increase or decrease
in disease susceptibility relative to the background disease
prevalence. We further assume that each participant donates a
sample at a single time point. In this situation, variation due to
longitudinal instability will reduce the precision in the
estimate of the true baseline level and hence affect power to
detect systematic differences between baseline measurements
in cases versus controls. Studies with repeated longitudinal
sampling of individuals could estimate the within-individual
baseline level with greater precision, by averaging over the
longitudinal variation. Such studies could thereby increase
power to detect disease associations by increasing the
numbers of samples and assays, without increasing the
number of participants.

Discussion

Our study has substantively extended pre-existing knowledge
of the sources of variation in the human 1H NMR metabolome.

We extracted peak heights to quantify concentrations of 1H
NMR-detectable metabolites in human urine and plasma. We
decomposed population variation in the concentration of
common metabolites—those found to be present in 480% of
samples. Rare metabolites, such as exogenous medications,
were intentionally excluded, and this should be a considera-
tion in the interpretation of our results. We employed a
longitudinal twin-based design, allowing a relatively detailed
decomposition of variation. Pre-existing research into meta-
bolomic variation had focused on the heritability, or the
longitudinal fluctuation, or the experimental variation, of a
metabolite’s concentration. The current study simultaneously
estimated familial, individual-environmental, short-term dynamic
(visit), and non-biological variation.

The current study included the first systematic quantifica-
tion of the familiality and stability of urine metabolite levels in
humans. Previous work had identified some examples of
instability in the urine 1H NMR metabolome (Saude et al,
2007), raising concerns that urine metabolites might have
limited utility as predictive biomarkers. Here, we have
quantified the relative contributions of stable and unstable
sources to population variation in urine metabolite concentra-
tion, and identified a substantive average level of stability
(47%). We have demonstrated the important implications of
this finding on the design of MWASs. We identified higher
levels of stability in the plasma 1H NMR metabolome (60%)
than in urine (47%), consistent with plasma homeostasis
being largely controlled through urinary excretion (Simpson,
1983). We further contextualize our findings around pre-existing
work later in Discussion.

1H NMR and MS measure different subsets of the meta-
bolome. 1H NMR spectroscopy quantifies the most abundant
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effect detection (both on logarithmic scale). Left panel (annotated ‘Sample Size for 80% Power’): Probability distribution on sample size (on logarithmic scale) required for
effect detection, mapped from the correlation distributions in the bottom panel.
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50–100 metabolites in a biofluid, typically those above 10
micromolar in concentration. 1H NMR covers many important
substances involved in major biochemical functions and key
intermediary processes. In contrast to 1H NMR, MS-based
methods can detect molecules at lower concentrations, but are
hindered by additional experimental variability, since they
typically rely on a preliminary chromatographic separation
stage. Furthermore, different chromatographic methods have
to be used for different classes of compounds, and so MS
approaches are usually applied in a more targeted manner
(e.g., to specifically quantify bile acids or phospholipids). The
two approaches can be considered complementary, but 1H
NMR is typically used before MS to provide an extensive
overview of the metabolic profile. Furthermore, the majority of
publications in mammalian metabonomics use NMR rather
than MS. Thus, in our 1H NMR-based study, we have addressed
an important, representative, and interesting subset of the
human metabolome (Lindon and Nicholson, 2008).

We incorporated a number of safeguards into our analysis to
prevent our findings being influenced by the use of con-
comitant medications by members of our study group (see
Materials and methods for full details). We explicitly removed
peaks that we annotated as exogenous metabolites. We only
retained peaks that were present in at least 80% of spectra,
thus eliminating peaks arising directly from rare exogenous
metabolites. Finally, we implemented a robust variance-
components model that automatically down-weighted anom-
alous observations (such as might be induced indirectly in
peaks adjoining the peak of an exogenous metabolite).

We addressed longitudinal variation by sampling indivi-
duals twice, with the two visits separated by several months.
This provided a decomposition of population phenotypic
diversity into variation that persisted for at least several
months and variation that did not. The rationale for this study
design was that stability over long time scales implied stability
over shorter time scales: variation that persisted for several
months also persisted over days or weeks (with the caveat that
the current study’s design did not address the dynamics of
those metabolites that varied diurnally about a relatively
stable baseline). While the current study’s design did not
directly address long-term stability beyond B4 months, it is
reasonable to expect a gradual, smooth decay in stable
behaviour as the time scale increases from months to years.
The rate and nature of the decay in metabolic stability is an
interesting topic for further research, and will be facilitated as
biobanks mature, fuelling cohort studies capable of character-
izing very long-term molecular variation.

Several aspects of longitudinal variation in metabolic
profiles have been characterized previously (Lenz et al,
2003; Bollard et al, 2005; Saude et al, 2007; Slupsky et al,
2007; Assfalg et al, 2008; Lewis et al, 2010). This previous work
has focused on low-dimensional subspaces of the metabolome
defined by pattern recognition methods (Lenz et al, 2003;
Bollard et al, 2005), or on a restricted subset of metabolites, as
did Saude et al (2007), who measured daily concentrations of
10 urine metabolites in 6 subjects over 30 days. Saude et al
reported results for 6 randomly selected metabolites (they
omitted results for 4 of the 10 metabolites). Of these, 5 are
annotated and analysed in the current study—alanine (54%),
citrate (76%), creatine (70%), hippurate (57%), and lactate

(35%); parenthesized percentages are our estimates of the
stable proportion of biological variation. We are unable to
make a direct quantitative comparison between our results
and those of Saude et al due to fundamental differences
between the two studies in design and data analysis. Instead,
we describe how our results develop knowledge of long-
itudinal stability of urine metabolites against the background
of Saude et al’s study. Saude et al reported some instances of
within-individual longitudinal fluctuations (specifically, for
citrate and tyrosine in a subset of individuals) that were of the
same magnitude as one to two times the inter-individual
standard deviation (i.e., the standard deviation, across
individuals in the population, of the within-individual baseline
mean concentration). They thereby demonstrated the exis-
tence of substantive within-individual longitudinal variation
(relative to population variation) in the concentrations of some
urine metabolites in some individuals. Against this back-
ground created by the results of Saude et al, an important next
goal was to quantify the relative contributions of stable and
unstable variation to population variation in urine metabolite
concentrations. Our research has done this, providing a formal
and comprehensive treatment of longitudinal variation in the
urine and plasma 1H NMR metabolomes. In contrast to
previous work, we have explicitly modelled and estimated
the proportional contribution of longitudinally fluctuating
variation to population variance in metabolite concentration.
We have demonstrated the importance of such results to the
design and interpretation of MWASs.

The most extensive prior work on the heritability of
metabolite levels in human plasma was conducted by Shah
et al (2009) using MS. They estimated heritabilities for 460
targeted metabolites using samples from families at increased
risk of premature cardiovascular disease. Some of the
metabolites in our study overlapped with those examined by
Shah et al, and hence we were able to check the consistency of
a number of our findings against pre-existing work. To this
end, we compared our plasma familiality estimates with Shah
et al’s heritability estimates for the subset of metabolites
appearing in both studies (i.e., for alanine, glutamine/gluta-
mate, glycine, leucine/isoleucine, tyrosine, and valine). Shah
et al’s heritability estimates all fell within our corresponding
95% credible intervals for familiality, with the exception of
their glutamate/glutamine heritability estimate, which, while
consistent with our familiality estimate for glutamate (59%),
was higher than our estimate for glutamine (24%); these
metabolites are discussed in greater detail below. It is
reassuring that our plasma familiality findings are consistent
with previous work.

An estimate of heritability or familiality draws on variation
from a potentially large number of genetic loci. Contrastingly,
Illig et al (2010) searched for single-locus genetic drivers of
metabolite levels. They quantified the strength of association
in a human population between serum metabolite concentra-
tion and genetic variation at each of many single-nucleotide
polymorphisms spanning the genome (see also Gieger et al,
2008). They reported nine loci, each of which exhibited a
significant, replicable association either with a metabolite’s
concentration or with a concentration ratio (i.e., the ratio of
one metabolite’s concentration to another’s), with the loci
explaining between 5.6 and 36.3% of the observed variance
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in concentration ratios. The MS-based Biocrates platform used
by these authors was largely non-overlapping with 1H NMR in
the subset of the metabolome it targeted (it targeted mostly
amino acids and lipids). Some of the strongly familial 1H NMR-
detectable metabolites of our study may also be driven
substantively by single-locus variation.

Our sample of individuals comprised only post-menopausal
females, and so our results are not immediately transferable to
males and younger females. Some studies have reported
association of metabolite concentrations with age or gender
(Bollard et al, 2005; Kochhar et al, 2006; Saude et al, 2007;
Slupsky et al, 2007). We note, though, that inter-gender
differences in the mean concentration of a metabolite do not
imply inter-gender differences in variance components (in-
cluding longitudinal stability). We are unaware of work
comparing longitudinal stability across genders or other strata,
and so further research will be necessary to determine the
extent of transferability of our findings to other contexts.

Analyses of 1H NMR metabolic profiles between and within
heterogeneous populations have revealed striking systematic
differences in metabolite concentration between geographic
regions (Holmes et al, 2008; Yap et al, 2010). Our study design
takes the opposite sampling approach, drawing its subjects
from a single, homogeneous population. We observe a stable
component of metabolite variation arising from the genetic
and environmental diversity within our Northern European
panel. A multipopulation cohort with greater genetic and/or
environmental heterogeneity than ours would exhibit a
correspondingly greater proportion of stable variation than
we observe (assuming levels of intra-individual longitudinal
variation are consistent with those observed in our study). An
interesting question, beyond the scope of our study, but
potentially addressable in broader cohorts, is: ‘What are the
relative contributions of genetics and environment to world-
wide metabolic diversity?’ Initial studies suggest that environ-
mental influences may have the major role (Holmes et al,
2008; Yap et al, 2010).

We have performed a separate variance decomposition on
each metabolite’s concentration. An interesting extension to
our work is to analyse the data in such a way as to
acknowledge the biological relationships between metabolites
(Wheelock et al, 2009; Pontoizeau et al, 2011). We mapped 36
of the annotated metabolites in our study to KEGG compound
identifiers, and then to KEGG pathways (Xia et al, 2009); the
mapping is shown in Supplementary Table S2. We performed a
hyper-geometric test for overrepresentation of highly familial
(450% familiality) or highly stable (460% stability) meta-
bolites within each KEGG pathway (Xia et al, 2009). After
correction for multiple testing, we discovered no instances of
significant overrepresentation. An alternative, empirical
approach is to develop network models of partial correlation
that are appropriate in the current longitudinal, twin-based
data setting. Of particular interest would be models that allow
inter-metabolite correlations to be driven by separately
parameterized genetic, environmental, and short-term
dynamic influences. Though beyond the scope of the current
paper, we identify this as an interesting avenue of future
research.

The variability results for a number of annotated meta-
bolites are worthy of particular discussion in their own right.

Glutamate is a major excitatory neurotransmitter, but also has
an important role as an inter-organ carrier of nitrogen. Most
dietary ammonia is converted to urea in periportal hepato-
cytes, but some escapes detoxification and is converted to
glutamine in perivenous hepatocytes. This residual glutamine
is converted to urea on the next visit to the periportal cells after
conversion to glutamate by glutaminase. This has been termed
the ‘Intercellular Glutamine Cycle,’ and is under regulation by
factors which increase glutaminase activity, such as plasma
ammonia concentration, plasma pH, and hormones (McGi-
van, 1998). Phosphate-dependent glutaminase is responsible
for 90% of the glutamine hydrolyzing activity of the liver
(Horowitz and Knox, 1968), and this enzyme is also found in
blood platelets (Sahai, 1983). A previous twin study, (Sahai
and Vogel, 1983), found the activity of this enzyme to be highly
heritable, with an intra-class correlation of 0.96 for MZ twins,
compared with 0.53 for DZ twins. Thus, our finding of high
familiality for glutamate but not glutamine may be suggestive
of mediation by glutaminase.

The plasma metabolite with the highest familiality was
creatinine (77%). Formed from muscle creatine at a steady rate
of B2% per day, creatinine production is dependent on total
muscle mass, while its clearance is determined by the
glomerular filtration rate (Perrone et al, 1992). The high
stability of plasma creatinine in our cohort of healthy
individuals was consistent with the well-established clinical
utility of blood creatinine levels as a measure of renal function.
Blood creatine, however, had a much lower familiality (37%),
and high visit effect (40%). Biosynthesis of creatine takes
place in the liver, but it can also be absorbed from the gut after
ingestion of creatine-rich foods (Wyss and Kaddurah-Daouk,
2000); thus, the high visit effect of blood creatine levels was
likely due to variations in dietary consumption before
collection. We found that urinary creatinine had a familiality
of 58%, within the heritability confidence intervals previously
estimated in a study of older female twins (Bathum et al,
2004).

3-hydroxybutyrate (3-HB) is a ketone body produced by the
liver as metabolic fuel for peripheral tissues, including heart
and skeletal muscle, and is elevated during starvation to
provide additional fuel for the brain (Voet and Voet, 1995).
In our study, plasma 3-HB had a moderate familiality (41%)
but a high visit effect (51%). This probably reflected variations
in total fasting time before collection of samples. Since this
molecule is used as a marker in metabonomic studies of
diabetes (Griffin, 2006), caution should be exercised in
interpreting changes in plasma 3-HB levels, as fasting time
might have a strong influence on levels of this biomarker.

In conclusion, we have designed and conducted a study of
human variation in 1H NMR-based metabolic profiles. We
collected plasma and urine samples longitudinally from
healthy, post-menopausal twins, and analysed each sample
using 1H NMR spectroscopy. From each resulting spectrum, we
extracted a comprehensive set of peaks, arising from common
metabolites, and robustly decomposed the population varia-
tion underlying each peak. Our results show that a human’s
genetic and long-term environmental background exerts a
stable and pervasive influence on the concentration of 1H
NMR-detectable metabolites. Predictive biomarkers are likely
to be nested within this stable component of variation, so our
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analysis maps out a substantial biomarker-harbouring zone
within the 1H NMR metabolome. Our results will act as a
resource to aid the future design and interpretation of 1H NMR-
based epidemiological studies.

Materials and methods

Recruitment and sample collection

A total of 154 twins, comprising 21 DZ and 56 MZ pairs, were
ascertained from the Twins UK database at St Thomas Hospital (http://
www.twinsUK.ac.uk) and recruited to participate in this study. Eligible
volunteers were healthy, Caucasian, post-menopausal females of
Northern European descent, aged between 45 and 76 years old.

Eligible twins were sent an information sheet containing details of
the study, as well as two consent forms. After they had returned a
completed consent form, twins were contacted by letter and phone to
book their appointment.

Fasting blood and urine samples were collected at all visits of each
twin. Twins who visited in the morning (scheduled at 1000 h) fasted
overnight from midnight. Twins who visited in the afternoon
(scheduled at 1400 h) fasted from 0600 h on the day of the visit. Spot
urine samples from the twin volunteers were centrifuged (16 060 g) at
41C for 10 min before being stored at�801C. Fresh blood was collected
in a 9-ml heparin tube from each twin through venepuncture. The
blood samples were kept on ice for 20 min before centrifugation
(16 060 g) at 41C for 10 min, and subsequent storage at �801C.

Thirty-four of the MZ twin pairs donated samples twice; the median
inter-visit time across all such pairs was 118 days (IQR: 96–134). Both
twins in a pair always visited on the same day, and each visit was
scheduled at either 1000 or 1400 h (with repeated visits of each
individual not necessarily scheduled at the same time of day). The
study was approved by St Thomas’ Hospital Research Ethics
Committee (EC04/015 Twins UK).

Sample preparation and 1H NMR data acquisition

Thawed samples were centrifuged at 16 060 g for 10 min. Samples were
aliquotted into two technical replicates before sample preparation.
Plasma was diluted 1:4 in physiological saline prepared in 20% D2O
supplemented with 0.1% (w/v) sodium azide as a bacteriostatic agent
and 1.5 mM sodium formate as a chemical-shift reference (d8.452).
Urine was diluted 2:1 in phosphate buffer (20% D2O, pH 7.4)
supplemented with 1 mM trimethylsilyl-2,2,3,3-tetradeuteropropionic
acid (TSP; d0.00) and 0.1% (w/v) sodium azide. Sample aliquots were
allocated to 96-well plates (and wells thereon) in a randomized design.

Each spectrum was acquired on a Bruker advanced DRX 600 MHz
spectrometer (Rheinstetten, Germany) operating at 600 MHz (for 1H)
using a 5-mm TXI flow-injection probe equipped with a z-gradient coil,
at 300 K, at a spectral width of 12 019 Hz, with 96 transients being
collected with 8 dummy scans using 64k time domain data points. For
both plasma and urine samples, a standard 1D spectrum (RD–901–
3ms–901–tm–901–acquire) with selective irradiation of the water
resonance during the relaxation delay (RD, 2 s) and during the mixing
time (tm, 0.1 s) was acquired. Additionally, for the plasma samples, a
spin-echo (CPMG) spectrum (RD–901–(t/2–1801–t/2)n–acquire) with
a total echo time of 608 ms (n¼304, t¼2000ms) and a diffusion-edited
spectrum made using a bipolar pulse-pair longitudinal eddy current
delay pulse sequence with spoil gradients immediately following the
901 pulses after the bipolar gradient pulse pairs were acquired.
Continuous wave irradiation was applied during the relaxation delay at
the frequency of the water (or HOD) resonance. Eddy current recovery
time (Te) was 5 ms, and the time interval between the bipolar gradients
was 0.5 ms. Further details may be found in Nicholson et al (1983,
1984, 1995).

Pre-processing and feature extraction

Each of four data sets was passed independently through a semi-
automated pre-processing pipeline: phasing, alignment, denoising,

baseline correction, manual bin selection, normalization, quality control,
peak extraction, and logarithmic transformation.

Spectra were phased using in-house software (NMRProc, Doctors
Tim Ebbels and Hector Keun, Imperial College London). All other data
analysis was performed in R (R Development Core Team, 2010).
Spectra were zero-filled to 216 points. Urine spectra were aligned to
TSP; plasma spectra to formate (peak centres were defined by the
position of the local maximum).

The spectra were denoised in the frequency domain using wavelet-
based methodology similar to that described by Johnstone and
Silverman (2005). For baseline correction, we initially fitted a constant
baseline to each spectrum; however, visual inspection revealed that,
for a number of spectra, the fit was better on one side of the water peak
than on the other; imperfect phasing might contribute such an effect.
Hence, a two-piece piecewise-constant baseline was fitted to and
subtracted from each spectrum; specifically, the baseline on each side
of the water peak was estimated by the fifth percentile of the spectral
points in the corresponding interval (a robust estimator of baseline
location).

We plotted each peak, and for those that visually displayed
consistent presence across spectra, we manually created a bin, and
that bin was used to extract the peak’s data across all spectra. The
datum extracted from a bin was the intensity of the highest local
maximum, or was coded as a missing value if no local maximum was
present. This approach used peak height as a proxy for peak area. We
note that if the width (at half height) of a peak varies substantially
across spectra then peak height may be less precise than area at
quantifying concentration. Plots of peaks did not reveal substantial
peak-width variation in our data sets (Supplementary Figure S2).

Only common peaks (present in at least 80% of spectra in their
corresponding data set) were included in downstream statistical
analysis, and only a peak’s non-missing data were included in the
variance decomposition of that peak. Before fitting the variance-
components model, we discarded any peaks that were annotated to an
exogenous metabolite (ibuprofen or acetaminophen), to a spike-in
compound (TSP in urine and formate in plasma), or to urea. Across the
three plasma data sets, 104 peaks were annotated to glucose. In order
to prevent the analysis of the plasma data from being dominated by a
single metabolite, we retained just one representative glucose peak in
each plasma data set (the parts of the analysis to which the glucose
peak-omission is relevant are the normalization of each of the three
plasma data sets; the summary of variance-decomposition results for
all metabolite peaks in Table I; and the calculation of sample sizes for
biomarker discovery presented in Supplementary Figure S3).

The spectra were normalized using probabilistic quotient normal-
ization (Dieterle et al, 2006). The normalization was performed using
data from the retained peaks only; spectra were normalized to a
reference spectrum comprising median peak heights; missing values
were excluded from the calculation of medians. After quality control,
each of the four data sets comprised spectra from a total of 152 twins.

A logarithmic transformation was applied to make the peak height
distributions more symmetric—the entire spectrum-wide set of peak
heights were collectively shifted and scaled to lie between 0 and 100
and then transformed y / log(1þ y).

The data have been uploaded to an FTP server, from which they can
be freely downloaded (host: svilpaste.mii.lu.lv; login: Moltwin_NMR;
password: Moltwin_NMR1; path: /home/George/MSB_NMR_data).
For each of the four data sets analysed in the current paper, the
following data formats are available for download: (a) raw frequency
domain spectral data; (b) pre-processed spectral data (denoised,
baseline corrected, and normalized); (c) extracted peak heights
(logarithmically transformed, as described above). Sample metadata
are also available.

Statistical model for twin data

The analysis of twin data typically proceeds by estimation of
(functions of) the additive-genetic, dominant-genetic, common-
environment, and individual-environment variance components—
t2

a; t
2
d; t

2
c ; t

2
e , respectively. The structural-equation model (SEM) for

the classical twin study (e.g., Rijsdijk and Sham, 2002) provides a
model for the covariance structure in phenotypic data obtained from
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MZ and DZ twin pairs. The covariance matrix of the phenotype
measurements, x1 and x2, from a pair of MZ twins is

Var
x1

x2

� �
¼ t2

a þ t2
d þ t2

c þ t2
e t2

a þ t2
d þ t2

c

t2
a þ t2

d þ t2
c t2

a þ t2
d þ t2

c þ t2
e

� �
; ð1Þ

while the corresponding matrix for a pair of DZ twins is

Var
x1

x2

� �
¼ t2

a þ t2
d þ t2

c þ t2
e t2

a=2þ t2
d=4þ t2

c

t2
a=2þ t2

d=4þ t2
c t2

a þ t2
d þ t2

c þ t2
e

� �
: ð2Þ

A common approach to fitting an SEM proceeds by assuming a
multivariate Gaussian model for the phenotype data, and finding
maximum likelihood estimates of the variance parameters (Neale,
2001; Rijsdijk and Sham, 2002).

It is not possible within the standard twin-study design to estimate
all of t2

a; t
2
d; t

2
c ; t

2
e identifiably. One approach that is commonly taken

to address this non-identifiability issue is to constrain to zero either the
dominant-genetic variance (t2

d ¼ 0, giving the ACE model) or the
common-environment variance (t2

c ¼ 0, giving the ADE model), and
then to estimate the remaining unconstrained parameters (Neale,
2001; Posthuma et al, 2003).

The mixed-effects model of the current paper creates the same
covariance structure (and hence the same likelihood) as the SEM-
induced covariance described in Equations (1) and (2). We addressed
non-identifiability by re-parameterizing the four non-identifiable
variance parameters, t2

a; t
2
d; t

2
c ; t

2
e , in terms of three identifiable

parameters: s2
d � t2

a=2þ t2
d=4þ t2

c ; s
2
m � t2

a=2þ 3t2
d=4 ands2

e � t2
e .

Visscher et al (2004) used an analogous parameterization under
the ACE model. By direct substitution into Equations (1) and (2),
it can be seen that, for MZ twins, the covariance structure of the
s2-parameterized model is

Var
x1

x2

� �
¼ s2

d þ s2
m þ s2

e s2
d þ s2

m

s2
d þ s2

m s2
d þ s2

m þ s2
e

� �
; ð3Þ

while for DZ twins it is

Var
x1

x2

� �
¼ s2

d þ s2
m þ s2

e s2
d

s2
d s2

d þ s2
m þ s2

e

� �
: ð4Þ

The three parameters sd
2, sm

2 , se
2 are all identifiable in the standard

twin design, though relatively large sample sizes are required to
separate sd

2 from sm
2 . In the current paper, the familial variance (i.e.,

sd
2þsm

2 �ta
2þ td

2þ tc
2) is estimated, but is not further decomposed into

genetic and non-genetic components, because our study’s sample size
is insufficient for this purpose (see ‘Sample Size for Heritability
Estimation’ section in Supplementary information, and Supplemen-
tary Figure S4).

The current paper’s parameterization approach to non-identifia-
bility was preferable to the use of the ACE or ADE model in the current
context in which the familial variance (i.e., sd

2þsm
2 �ta

2þ td
2þ tc

2) was
estimated, but was not further decomposed. This was because
our parameterization provided direct estimates of the familial vari-
ance under the full, ‘true’ model defined by Equations (1) and (2).
In contrast, the ACE or ADE approach would have first approximated
this model (by setting td

2¼0 or tc
2¼0 for the ACE and ADE models,

respectively). Hence, for example, under the ACE parameterization the
resulting estimates of ta

2, tc
2, te

2 can no longer be interpreted as
estimates of additive-genetic, common-environment, and individual-
environment variance components, since these estimates are condi-
tional on td

2 being zero, and therefore will be biased if the unknown
true dominant-genetic effect, td

2, is non-zero. In contrast, the s2

parameterization used in the current paper provides interpretable
estimates of familial and individual-environment variance compo-
nents irrespective of the unknown actual values of ta

2, td
2, tc

2, te
2.

The current study was complex in its design, in that it included
multiple longitudinal measurements on participants, and also in-
corporated technical replication. Within this relatively complex twin-
study design, the standard SEM approach would still have employed
the identical likelihood to the current paper’s mixed-model approach,
and would have differed only in the aforementioned approach to
parameterization. An additional, practical, reason for our use of mixed
models rather than SEMs was that it was considerably simpler to
specify and fit the complex covariance structure directly in R, than it
was to do so using SEM software such as Mx.

Full variance-components model

At each metabolite peak, we fitted the linear mixed-effects model
(Searle et al, 2006):

yijkl ¼ bbði;j;k;lÞ þ ttði; kÞ þ di þmzði;jÞ þ eij þwik þ vijk þ eijkl: ð5Þ

The ‘fixed-effect’ parameters {bb: b¼1,y,5} controlled for experimental
inter-plate effects—b( � ) maps spectra to plates. The ‘fixed-effect’
coefficient t was included to control for sampling time-related
effects—t( � ) maps visits to sample-collection times in 24-h format,
with times being mostly 10 or 14. The other terms on the right-hand
side of the equation are ‘random effects’ that model the covariance
structure across observations induced by familial (d, m), individual-
environmental (e), temporally dynamic (w, v), and non-biological (e)
effects. In the formula, iA{1,y,77} indexes twin pairs, jA{1,2}
indexes twins within a pair, kA{1,2} indexes the visits of a twin pair,
and lA{1,2} indexes the two aliquots of a sample. The variances of the
‘random effects’ (d, m, e, w, v, e) are, respectively, represented by the
elements of (sd

2, sm
2 , se

2, sw
2 , sv

2, se
2)0�s2.

The subscript in the mz(i,j) term on the right-hand side of Equation
(5) was defined conditionally on the zygosity of pair i. Specifically,
z(i, j)¼i if i was an MZ pair, and z(i, j)¼(i, j) if i was a DZ pair (Visscher
et al, 2004). This allocated one such term (mi) to each MZ pair, and two
such terms (mi1, mi2) to each DZ pair. The terms diþmz(i,j)þ eij on the
right-hand side of Equation (5) thereby created the covariance
structure described in Equations (3) and (4).

The familial variance (sd
2þsm

2 ) represented the combined effects of
genetics and common environment. The individual-environmental
variance (se

2) captured non-familial variation that was stable over time
within an individual. The longitudinal design of our study allowed
short-term (temporal) phenotypic variation to be quantified—the
common-visit (sw

2 ) and individual-visit (sv
2) variance terms captured

inter-visit variation that was (respectively) shared and non-shared by
twins in a pair. The residual or non-biological variance component (se

2)
represented variation that could not be explained by the biological
model, and which corresponded to variation between pairs of aliquots
of the same biological sample. Table II relates the mathematical
notation used for variance parameters (and functions thereof) to the
descriptions used in the text. Supplementary Table S3 relates variance
components to real-world sources of variation.

Table II Variance parameters—textual description and mathematical notation

Familial variance sd
2+sm

2

Individual-environment variance se
2

Common-visit variance sw
2

Individual-visit variance sv
2

Non-biological (residual) variance se
2

Total phenotypic variance sd
2+sm

2 +se
2+sw

2 +sv
2+se

2

Total biological variance sd
2+sm

2 +se
2+sw

2 +sv
2

Non-biological proportion of total
phenotypic variance s2

e

s2
d þ s2

m þ s2
e þ s2

w þ s2
v þ s2

e

Familiality (familial proportion of
biological variance) s2

d þ s2
m

s2
d þ s2

m þ s2
e þ s2

w þ s2
v

Stable proportion of biological variance
s2

d þ s2
m þ s2

e

s2
d þ s2

m þ s2
e þ s2

w þ s2
v

Unstable proportion of biological
variance s2

w þ s2
v

s2
d þ s2

m þ s2
e þ s2

w þ s2
v
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Robust Bayesian implementation

Under the model described in Equation (5), we estimated s2 within a
Bayesian hierarchical framework, in which the conventional Gaussian
distribution on the ‘random effects’ was replaced by a heavy-tailed
distribution, in order to prevent extreme observations from exerting
undue influence on inference. Specifically, we defined the heavy-tailed
probability density function (pdf) q( � ) to be a Gauss–Student mixture:

qðxjm;s2; n; dÞ � d�tnðxjm;s2Þ þ ð1� dÞ�Nðxjm;s2Þ;

where d defines the mixture proportions, tv( � |m, s2) is the pdf of
Student’s t-distribution with v degrees of freedom, and N( � |m, s2) is
the pdf of a Gaussian distribution (in both cases with mean m and scale
parameter s). The conditional density function of each random effect
(denoted by u), conditional on the corresponding variance parameter
(denoted by su

2), was defined to be:

pðujs2
uÞ � qðujm ¼ 0;s2 ¼ s2

u; n ¼ 1; d ¼ 0:1Þ:

Independent Uniform priors were placed on the standard deviation
parameters (Gelman, 2006), p(s)BUniform(s|0, 10� sy), where sy

denotes the sample standard deviation of the data, y. The prior on the
‘fixed effects’ vector, a�(b0, t)0, was a diffuse multivariate Gaussian
distribution, with mean at the least-squares estimates, â, and diagonal
covariance matrix with entries ð100�½maxðyÞ �minðyÞ�Þ2. Samples
were drawn from the posterior distribution of a and s2, that is p(a,
s2|y), using Gibbs sampling, with a burn-in of 10 000 updates followed
by the collection of 50 000 samples from the joint posterior.

To check the qualitative robustness of our findings to the statistical
method used, we compared the results of the robust Bayesian analysis
with the results obtained by a distinct but parallel non-Bayesian
approach (Supplementary Figure S5; Supplementary information).
There was a high level of consistency across the two approaches.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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