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Abstract

Human mobility always had a great influence on the spreading of cultural, social and

technological ideas. Developing realistic models that allow for a better

understanding, prediction and control of such coupled processes has gained a lot of

attention in recent years. However, the modeling of spreading processes that

happened in ancient times faces the additional challenge that available knowledge

and data is often limited and sparse. In this paper, we present a new agent-based

model for the spreading of innovations in the ancient world that is governed by

human movements. Our model considers the diffusion of innovations on a spatial

network that is changing in time, as the agents are changing their positions.

Additionally, we propose a novel stochastic simulation approach to produce

spatio-temporal realizations of the spreading process that are instructive for studying

its dynamical properties and exploring how different influences affect its speed and

spatial evolution.

Keywords: Agent-based model; Diffusion process; Spreading process; Stochastic

simulation algorithm; Human mobility

1 Introduction

Modeling human mobility behavior is a topic of great relevance, since such models can

be used for analyzing and understanding many real-world processes, like migration and

traffic flows [1–4], as well as processes depending on humanmobility and interaction, such

as epidemic spreading [5, 6] and the propagation of information and innovations [7–10].

Inmany cases, observedmobility patterns have been shown to be of crucial importance for

uncovering essential properties of the underlying dynamics, which is needed for effective

prediction, control and optimization of the mobility as well as spreading dynamics [11–

18]. Although mathematical modeling of such systems has been studied since decades

[19–23], in recent years traditional modeling techniques needed to be adapted [24] to the

large amount of newly accessible data and collected observations about people’s locations

and movements, e.g. from social media [25, 26] or mobile phone data [4, 27].

Human mobility behavior in ancient times, however, differs in many aspects from the

mobility dynamics we observe inmodern times, especially in their spatio-temporal scales,
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in the observed patterns and in the motivations for movement. In prehistoric times, due

to the lack of modern transportation, the distances that could be traveled were shorter

and required more effort and time to be traversed. Despite this, people were constantly

migrating, mostly influenced and forced by climate changes, unsuitable environmental

conditions, the search for resources and social conflicts [1, 28, 29]. Human movements of

this type have triggered exchange of various innovations, as people were also spreading

their socio-cultural and technological influences [30]. Thus, the importance of studying

migration flows in ancient times is closely related to the understanding of the origin of

cultural, social and technological ideas in the world nowadays.

Modeling spreading processes that are governed by humanmobility in prehistoric times

faces several additional difficulties compared to spreading processes in modern times.

First, the available data is very sparse, indirect and uncertain [31]. The reason for this is

that there is a limited amount of archaeological traces at hand which may or may not rep-

resent the true, complete data set. Second, besides the limited data resources, we cannot

replicate or observe anymore a process that had happened in prehistoric times in order

to obtain new data. Third, given the level of socio-technological development in ancient

times, the possibility for humans to interact were restricted to close distances. And thus

the produced patterns of the dynamical properties of spreading processes are quite dif-

ferent compared to the ones that can be observed nowadays. For all these reasons, when

modeling mobility and spreading processes in ancient times, we can not directly apply

many of the state-of-the-art modeling approaches, based on data-fitting and validation

[7], data assimilation [25] or methods that assume perfect social mixing [32].

In this paper we will model the spreading of innovations coupled to the mobility of peo-

ple in the ancient world by using an agent-basedmodeling approach [33, 34]. Agent-based

modeling (ABM), also termed individual-based modeling, considers agents, representing

people, organizations or other discrete entities [35], and consists of rules specifying the be-

havior of these agents. Additionally, agents are autonomous, they can learn and adapt their

behavior while interacting with their environment and other agents. We are considering

agents that aremoving diffusively in a region, but preferentially in direction of amore suit-

able environment, considering at the same time how densely populated an area is. In our

model, themotion of agents is described by a stochastic differential equation that includes

random agent movements [36], similar as in the case of Brownian agents [37, 38]. If agents

are close to each other in space, they are able to communicate and can exchange the inno-

vation at a certain rate. These connections between agents form a spatial network that is

evolving in time [39], as the contacts between agents are changing due to theirmovements.

Since the spreading process of the innovation is happening on this time-evolving network,

the two processes, diffusion and spreading, are strongly coupled. Taking this into account,

we are proposing here a joint algorithm for the simulation of the time-continuous diffusion

and the event-based spreading process, building on the Euler–Maruyama scheme [40, 41]

and the Temporal Gillespie algorithm [42–44], respectively. Our new simulation scheme

benefits from a statistically accurate evolution of the spreading process, while being com-

putationally more efficient than equivalent time-discretizations [42, 45].

As a real-world scenario, we will demonstrate the applicability of our model and data-

driven simulation tool to study the emergence and spreading of the wool-bearing sheep

from south-west Asia towards central Europe between 6200 BC and 3000 BC. During this

time period humanmobility and innovation spreading are considered closely related [46].
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Thus, the spreading path of the wool-bearing sheep as an innovation can be assumed to

be linked to migration routes and mobility dynamics. Since the introduction of wool was

an important driving force for the textile production and socio-economic development of

past societies [47, 48] it is a question of interest to infer possible spreading patterns of the

wool-bearing sheep.

The article is organized as follows. Our general model for human migration and the

innovation spreading will be introduced in Sect. 2. In Sect. 3 we will present a new simu-

lation scheme for the combined dynamics. Finally, in Sect. 4 we will apply our modeling

and simulation approach on a real-world example and discuss its results. We will derive

our final conclusions and possible future directions in Sect. 5.

2 Model formulation

Wewill briefly introduce the concept behind agent-basedmodels in Sect. 2.1, before argu-

ing ourmodeling assumptions and the scope of themodel in Sect. 2.2.We aremodeling the

migration of agents in the ancient world, coupled to the spreading of an innovation among

agents. In order to achieve this, we first formulate the migration process in Sect. 2.3 and

the spreading process in 2.4, and then couple the two processes in Sect. 2.5.

2.1 What is an agent-basedmodel?

Agent-basedmodeling (ABM) is amodeling technique that captures the behavior patterns

of a large number of interacting agents on the global scale by describing and simulating

the behavior on the local agent-scale. Agents are discrete autonomous entities that be-

have according to simple rules and can learn and adapt their behavior in response to other

agents and changes in their surroundings [33, 34]. For these reasons, ABM is a technique

that is widely applicable and used, especially in scientific disciplines such as sociology,

economics, geography [49, 50], but recently also more data-driven and mathematical for-

mulations of ABM’s appeared in the literature [51–55].

In this paper we want to model the spreading of innovations with an ABM approach,

such that we can couple the spreading of the innovation to the migration of people. By

setting up behavior rules for the individuals we can observe complex patterns that emerge

from social interactions and movements of the population. Additionally, these models are

well suited for incorporating data, for example in order to set unknown parameters or for

validation purposes.

The outcome of an ABM simulation depends on the rules one specifies for the agents.

One challenge is therefore to find a reasonable model formulation. More precisely, one

has to find a compromise between making too simplistic assumptions, which would lead

to a model that is not plausible, and an unnecessarily complicated model, which would be

hard to analyze and test [56, 57].Wewill tackle this issue by emphasizing themathematical

formulation of the model.

2.2 Modeling assumptions

In our agent-based modeling framework, an agent represents a small tribe or group of

people that are able to adopt the innovation in the ancient world.We consider the number

of agents n to be constant and thus population growth and decline are not incorporated

into the model. Each agent k, k = 1, . . . ,n has a position state and an innovation state. The

agents’ positions are restricted to a given domainD ⊂R
2. The innovation state is denoted
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by values in {0, 1}, indicating whether the innovation has been adopted by the agent (state

1) or not (state 0). Thus, the state space of the system is S = {0, 1}n×Dn. Spatialmovements

of agents can induce changes in both the position and the innovation states over time, so

we distinguish between individual states for each agent at a particular point in time. We

denote the state of the kth agent at time t by

Yk(t) =
(

Ik(t),Xk(t)
)

,

where Ik(t) ∈ {0, 1} is the agents’ innovation state and Xk(t) ∈D its position in the domain.

The state of the system at time t for the set of agents is then given by

Y (t) =
(

I(t),X(t)
)

,

where the kth row of the systems’ state corresponds to the state Yk(t) of the kth agent.

Agents in ancient times have a nomadic lifestyle and are able to move and change their

position in the domainD. These movements aremodeled such that agents are attracted to

regions that are suitable for them. Additionally, agents tend to group together in space and

form communities, while keeping a certain distance to avoid spatial overlap with others.

Each agent has limited knowledge about other agents in his neighborhood. Especially, its

movement in space is independent of the innovation states of the other agents. Based on

these assumptions we formulate a model for the spatial migration of agents in Sect. 2.3.

Adopters of the innovation can pass on the innovation to non-adopters at a certain rate

independently of each other if their Euclidean distance is closer than some radius r. We

assume that agents that have adopted the innovation will stay in state 1 for all times, which

leads to the spreading dynamics of the innovation as described in Sect. 2.4.

2.3 Modeling the agent mobility

All agents are following the same rules that describe their mobility and migration. We are

including three factors motivating an agent to change its position: First, agents are taking

into account the suitability of their environment and move in direction of more attrac-

tive areas. Second, agents are considering other agents in their neighborhood and tend to

form loose groupswithout crowding toomuch. Third, we include some randomness in the

agents’ movement to model other unknown incentives for positional changes and to allow

agents to take random choices or make mistakes in their evaluation of the environment.

Having this in mind, the movement for every agent k is described by a diffusion process

dXk(t) = –
(

∇V
(

Xk(t)
)

+∇Uk

(

X(t)
))

dt + σ dWk(t), (1)

where V : R2 → R denotes the suitability landscape, Uk : R2n → R is the kth agents’

attraction–repulsion potential with respect to all other agents’ positions, σ ∈ R is a con-

stant and Wk(t) denotes the standard Brownian motion in R
2. Every agents’ movement

is governed by this diffusion equation, thus we have n equations in total, coupled via the

attraction–repulsion potential. The evolution of the system of agents can be written as

dX(t) = –∇(Ṽ +U)
(

X(t)
)

+ σ dW (t) (2)
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Figure 1 An example of a suitability landscape in form of the double well potential V(x, y) = (x2 – 1)2 + y2 is

shown here. The heat map colours, ranging from dark blue to yellow, indicate low to high values of the

landscape. This landscape is characterized by two attractive areas that are centered at the two local minima

and a barrier between them. We consider n = 35 agents and the interaction radius r = 1. Adopters of the

innovation are represented by red dots, whereas non-adopters are shown as yellow dots

with

Ṽ
(

X(t)
)

=
(

V
(

Xk(t)
))n

k=1
, U

(

X(t)
)

=
(

Uk

(

X(t)
))n

k=1
and W (t) =

(

Wk(t)
)n

k=1
.

The suitability landscape accounts for the attractivity of the environment (e.g. climate,

landscape features) and the availability of resources (e.g. for employing the innovation) in

different parts of the domain. The values of V are higher for a less suitable environment,

which means that valleys of the suitability landscape correspond to attractive regions and

peaks and divides correspond to unsuitable areas that are moreover difficult to surmount.

An example is given in Fig. 1. The most natural way to construct the suitability landscape

is on the basis of data (see for example Sect. 4.2).

The attraction–repulsion potential, on the other hand, drives agents to change their po-

sition due to other agents in their vicinity. Attraction between agents occurs when agents

at long distances are driven towards another, and repulsion appearswhen agents are forced

apart at short distances (e.g. similar to models in Physics such as [58–60]). Thus, intu-

itively, it is the tendency for agents to find a balance between forming clusters of agents

on the one hand and distributing in space on the other hand. In that way communication

and exchangewith other agents is possible but conflict over resources is avoided. An exam-

ple of how such a simple system can be constructed and which patterns can be produced

is shown in Fig. 1.

2.4 Modeling the spreading of innovations

Given the positional movements of agents in the suitability landscape, we can construct a

spatial network between agents that is changing in time, i.e. a time-evolving network [39].

The innovation is then spreading on this time-evolving network which models possible

interactions and contacts between agents. The network at time t is constructed in the
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following way: the set of nodes represents the set of agents, and an edge exists between

two nodes if the corresponding agents are close in distance. Thus, the edge set of the

network depends on the positions of agents at time t and is defined as

E(t) =
{

{k, l} : k, l = 1, . . .n,k �= l,
∥

∥Xk(t) –Xl(t)
∥

∥ < r
}

,

where ‖ · ‖ refers to the Euclidean distance. The edge set can equivalently be given in form

of an adjacency matrix A(t), where Akl(t) = 1 if two agents k and l are closer than some

distance r in position space at time t, while Akl(t) = 0 otherwise. The diagonal of A(t) will

be zero as we do not consider self-interactions of agents.

We can thenmodel the spreading process of the innovation on the network as aMarkov

jump process with time-dependent transition rates, similar to the SI-model that describes

epidemic spreading processes [35]. Every agent can only be in one of the two discrete

innovation states: 0 (non-adopter) and 1 (adopter of the innovation). In our model, once

an agent adopts the innovation, his innovation state becomes 1 for all times, i.e. he can

never forget the innovation. Generalizations of this assumption are possible by following

for example the SIS- or SIR-modeling approach [20, 35]. We denote by

I(t) =
{

k ∈ {1, . . . ,n} : Ik(t) = 0
}

(3)

the set of agents that have not adopted the innovation until time t. Moreover, each agent

can independently influence other agents in their vicinity to adopt the innovationa with a

fixed influence rate γ . For each agent k we define the adaption rate λk at time t by

λk(t) =
∑

l

Akl(t)Il(t)
(

1 – Ik(t)
)

γ , (4)

which means that the adaption rate λk(t) for a non-adopter agent k ∈ I(t) is proportional

to the number of its neighbors which are in innovation state 1 at time t,b while for agents

that already have adopted the innovation the adaption rate is 0. Since the interaction net-

work and the innovation states change in time, also the adaption rates are time-dependent.

Let (Nk(t))t≥0 be the adaption process counting the number of adaptions for agent k

depending on time. In general, the adaption processes can be expressed in terms of Poisson

processes, see theAppendix. For the specific rate function defined in (4) the adaption event

can happen only once for each agent such that

Nk(t) =

⎧

⎨

⎩

0 if t < τk ,

1 if t ≥ τk ,
(5)

where τk ∈ [0,∞] is the adaption time. The probability for the adaption event to take place

before time t ∈ [0,∞) is given by

P(τk ≤ t) = 1 – exp

(

–

∫ t

0

λk(s)ds

)

.

For agents that know about the innovation from the beginning (i.e. Ik(0) = 1) it holds

λk(t) = 0 for all t, such that τk = ∞ almost surely and Nk(t) = 0 for all t by definition.
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Therefore, the innovation state of any agent k can be written as

Ik(t) = Ik(0) +Nk(t).

Combining the jump processes for all agents, we can write for the system innovation state

I(t) = I(0) +
∑

k

Nk(t)vk ,

with the initial innovation state I(0) ∈ {0, 1}n and the state-change vector vk = (vk,i)
n
i=1 ∈

{0, 1}n with vk,i = δki.

2.5 Joint model: movements of the agents and spreading of the innovation

We now combine the two dynamics, the spreading process and the diffusion process, into

one equation that describes the complete process Y (t) = (I(t),X(t)). To this end we define

the function

f
(

Y (t)
)

=
(

0,–∇(Ṽ +U)
(

X(t)
))

and a Brownian motion

B(t) =
(

0,W (t)
)

for the agent migration. The joint equation for the evolution of the system is then given

by

Y (t) = Y (0) +

∫ t

0

f
(

Y (s)
)

ds +

∫ t

0

σ dB(s) +
∑

k

Nk(t)ṽk ,

where ṽk = (vk , 0).

3 Simulation approaches

In this section we will present a new technique for simulating the introduced ABM, where

agents aremoving diffusively in a suitability landscape, while interacting with other agents

and passing on the innovation. These two processes are coupled: the spreading process of

the innovation takes place on the time-evolving network that is given by the positional

movements of the agents. Additionally, the diffusion process, which affects the network

changes, and the spreading process are evolving on similar time scale orders, whichmakes

an accurate discretization of both processes an essential requirement in order to produce

precise results.

Since our model is continuous in time and space we need to find a good approximation

scheme that, on the one hand side minimizes the error we make in the simulations and,

that is computationally efficient on the other hand. This is essential for real-world models

in which we often deal with a large number of agents and due to the stochasticity in the

model we need to repeat the simulations many times to get a reasonable prediction for

the outcome. For simulating the movements of the agents we will discretize the diffusion

process bymeans of the Euler–Maruyama [40, 41] scheme, see Sect. 3.1. However, in order
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to simulate the whole system, we need to adapt and combine simulations for the joint

process i.e. for the diffusion aswell as the spreading process. To this end, in Sect. 3.2 wewill

present a time-discrete synchronous updating scheme and in Sect. 3.3 we will introduce

the new event-based scheme. Last, we will illustrate the simulation approaches on two toy

examples in Sects. 3.4 and 3.5.

3.1 Simulating the migration of agents

Movements of the agents can be appropriately simulated by using the well known Euler–

Maruyama scheme [40, 41] to discretize Equation (2). Then, in every time step the posi-

tions of the agents are updated according to

X(t +�t) = X(t) –∇(Ṽ +U)
(

X(t)
)

�t + σξ
√

�t, (6)

where ξ is drawn from a standard normal distribution in R
2n. For the Euler–Maruyama

scheme to be consistent, the time step �t needs to be chosen sufficiently small, keeping

at the same time the computational cost in the feasible limits. Additionally, because of ξ ,

every new simulation of the diffusion process will be different from the previous ones and

one needs to run sufficiently manyMonte Carlo simulations for obtaining reliable results.

In our model, since the interaction network depends on the positions, we will also need

to update the interaction network, which influences the spreading process directly. Thus,

for simulating the whole system, we need to introduce a joint simulation technique which

will take into account properties of both processes.

3.2 Joint simulation: synchronous time-discrete updating

For time-discrete simulations a time step-size �t has to be chosen and the state of the

system can change only at every discrete time step tm =m�t, where the agent movements

are calculated from (6).

The time-continuous spreading process, see (5), is then adjusted to discrete time steps,

i.e. instead of adaption events happening at certain rates, they happen in each time step

with a certain probability. More precisely, the probability for agent k at time tm to adopt

the innovation within the next time interval [tm, tm +�t) is set to be

pk(tm) = 1 – exp
(

–λk(tm)�t
)

.

Clearly, if λk(tm) = 0, then this probability is zero. The adaption to time-dependent spread-

ing rates is already included in this discretization. As we are checking the probability of

events at every discrete time step, when rates are changing with time, the probabilities will

be automatically updated as well.

It is important to note that this simulation scheme gives a good approximation of the

true time-continuous and space-continuous process only for �t approaching zero [45].

However, checking every possible adaption event at every small time step is computation-

ally inefficient, as many events will not happen and will be rejected. On the other hand,

for large values of �t interactions of agents may be missed.

Another byproduct of such time-discrete simulations is that adaption events can hap-

pen synchronously, i.e. in the same time step, and the effect of simultaneously happening

events on each other is ignored. In time-continuous models this is rarely the case, since
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agents most likely update their innovation state at different times, and thus immediately

affect the other agents’ rates.

In order to circumvent these problems, we will present our new event-based simulation

algorithm, which allows for adaption events to happen continuously in time.

3.3 Joint simulation: event-based approach

An efficient approach for simulating time-continuous stochastic processes is by using

the Gillespie algorithm [62], also often referred to as the stochastic simulation algorithm

(SSA). Time-continuous simulations that are based on the Gillespie algorithm are statisti-

cally exact and they can be faster to simulate than time-discrete simulations [45]. This al-

gorithmwas originally developed for simulating chemical reactions, and it got generalized

for different systems among which is simulating spreading processes on static networks

[63, 64].

In the language of innovation spreading, theGillespie algorithm consists of the following

two steps:

(i) determining the waiting time τ until the next adaption event,

(ii) determining which agent will adopt the innovation next.

Thewaiting time τ between two events is drawn from an exponential distribution with the

total adaption rate 	(t) =
∑

k∈I(t) λk(t). An agent l is randomly chosen with probability
λl(t)
	(t)

for the adaption event. Following this scheme, the Gillespie algorithm produces a

statistically correct evolution of events in continuous time without rejecting some events.

In this classical setting, it is assumed that the interaction network itself does not change

between events, but that only the states of the agents can change, i.e. the adaption rates

are time-dependent but only changing when an adaption happens. More precisely, if the

last event happened at time t∗, then 	(t) = c0 for t ∈ [t∗, t∗∗), where t∗∗ is the time when

the next event happens given by t∗∗ = t∗ + τ , with τ ∼ Exp(c0). Alternatively one can use

α ∼ Exp(1) on a normalized timescale and derive τ by solving α =
∫ t∗∗

t∗ 	(t)dt which here

reduces to the simple equation α = τc0.

However, in our model the positions of agents are changing continuously in time and so

the interaction network is as well. Thus, the adaption rates can change bothwhen adaption

events happen, but additionally also in betweenwhen the interaction network evolves. The

problem then again consists of finding the time t∗∗ of the next event from α =
∫ t∗∗

t∗ 	(t)dt

given α ∼ Exp(1). But for rates that are not constant between the adaption events, the

integral equation is more complex to solve. In our algorithm this is done iteratively, as

proposed in the Temporal Gillespie approach [42], with parallels also to adaptive simula-

tion methods considered in other fields of research, see e.g. [65].

In order to capture both the diffusion and the spreading processes, our new simulation

tool is combining (i) an Euler–Maruyama discretization of the migration process with (ii)

a Gillespie algorithm for time-continuous spreading of the innovation, see Fig. 2. More

precisely, we choose again a time step size �t and set the initial time to t∗ = 0, starting the

simulation with the initial innovation states given by I(0). We draw a random number α ∼
Exp(1). Then, until the first adaption event happens, the interaction network and resulting

adaption rates are updated every �t. The first event happens at the first time t∗∗ when the

total adaption rate integrates to α. We immediately update the positions of agents at time

t∗∗ by (5) and the following network updates are at times t∗∗ + �t, t∗∗ + 2�t etc. until

another adaption event takes place.



Djurdjevac Conrad et al. EPJ Data Science  ( 2018)  7:24 Page 10 of 22

Figure 2 Toy example of an innovation spreading

among four agents that are changing their positions

in the suitability landscape continuously in time.

Agents that adopted the innovation are colored in

red and non-adopters are shown in yellow. We start

with an updated network at time t∗ with one agent

knowing about the innovation. Then, the interaction

network and resulting adaption rates are updated

every �t, until the next adaption event happens at

time t∗∗ = t∗ + τ , i.e. when the total adaption rate

integrates to α ∼ Exp(1). The network and rates are updated at time t∗∗ . Similarly, between t∗∗ and the next

adaption event, fixed updates for the adaption rates and network are done at times t∗∗ +�t, t∗∗ + 2�t etc.

Algorithm 1: Joint event-based simulation

1 initialize time t = 0 and states Y (0) = (I(0),X(0)) for n agents;

2 choose a time step �t and time horizon T ;

3 draw α ∼ Exp(1) # exponentially distributed with rate 1;

4 while t < T and I(t) �= ∅ do

5 update I(t) # cf. (3);

6 for agent k = 1, . . . ,n compute the adaption rate λk(t) # cf. (4);

7 calculate total adaption rate 	(t) =
∑

k∈I(t) λk(t);

8 if 	(t) �t > α then

9 # adaption event;

10 choose one agent l to adopt the innovation with probability
λl(t)
	(t)

;

11 Il(t +
α

	(t)
) = 1;

12 # position update;

13 ξ ∼N (0, Id) # 2n-dimensional normal distribution;

14 X(t + α
	(t)

) = X(t) –∇(Ṽ +U)(X(t)) α
	(t)

+ σ
√

α
	(t)

ξ ;

15 t = t + α
	(t)

;

16 draw new α ∼ Exp(1);

17 else

18 # position update;

19 ξ ∼N (0, Id) # 2n-dimensional normal distribution;

20 X(t +�t) = X(t) –∇(Ṽ +U)(X(t))�t + σ
√

�tξ ;

21 # system advanced �t forwards without adaption event;

22 t = t +�t;

23 α = α –	(t) �t;

24 end

25 end

Result: (Y (t))t≤T

The pseudo-code for our joint algorithm then reads as Algorithm 1.

As discussed above, our joint algorithm builds on the Temporal Gillespie approach [42],

but it also allows for network updates in smaller time steps, i.e. directly after a spreading

event, taking into account the current situation for the further evolution of the system.

This adaption ismore accurate for ourmodel, where the network is changing continuously
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in time, as more network updates are done. Moreover, by the immediate network update

after every adaption event, the algorithm is also suitable for systems where the innovation

spreading influences the movement of the agents. For example, more connections could

be formed with agents who adopted the innovation. Such systems, where both the net-

work and the spreading processes can influence each other, are often seen in real-world

examples and they are modeled by the so-called adaptive networks [66].

3.4 Numerical example: single well suitability landscape

For illustration and comparison of the two simulation approaches, we consider a simple

model example with n = 20 agents moving in a single well given by

V (x, y) = 10
(

x2 + y2
)

.

The landscape contains one minimum at (0, 0), which for the agents corresponds to the

most attractive point of the suitability landscape. For simplicity the attraction–repulsion

potential is neglected, i.e. Uk = 0 for all agents k. The diffusion process will then result in

the agents’ positions to be clustered around the minimum. In order to study the spreading

of an innovation among the agents, one randomly chosen agent receives the innovation at

time t = 0. With rate γ = 10 the innovation spreads to other agents along the edges of the

time-evolving contact network.

Next, we compare the two joint simulation approaches, i.e. the synchronous updating

and the event-based simulation. Due to the stochastic nature of our model, we need to

simulate repeatedly in order to give meaningful statements, here we average over 2000

realizations. By varying the �t for the Euler–Maruyama time steps, we are also chang-

ing the fixed time intervals at which the network is updated. In this example, the network

needs to be updated at least every �t = 0.002, in order to obtain a reasonable approxima-

tion of the agents’ movement and the resulting time-evolving network. Given the time-

evolving network, for any �t, the event-based simulation approach provides statistically

exact event times, whereas the synchronous updating scheme is a good approximation of

the spreading process only for small �t [45]. Thus, in order to compare the two combined

approaches, we use the synchronous updating scheme with �t = 0.0001 as a benchmark.

From the plot in Fig. 3, one can see that the event-based simulationwith�t = 0.002 indeed

agrees with our benchmark. The synchronous updating for larger time steps �t = 0.002

deviates from the benchmark and on average the spreading is slower.

Figure 3 We consider the coupled process for 20

agents in a single well suitability landscape given

by V(x, y) = 10(x2 + y2) with spreading rate γ = 10.

As an initial condition at t = 0 one randomly chosen

agent is in state 1. For an ensemble of 2000

realizations, we plot the mean proportion of

adopters of the innovation depending on time and

compare the results for the synchronous updating

scheme (for �t = 0.0001 and �t = 0.002) as well as

for the event-based simulation scheme (for

�t = 0.002). The synchronous updating simulation

with larger time steps is deviating from the

simulation with the small time step size, while the event based simulation is still accurate even for �t = 0.002
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In this example case, we have confirmed that the event-based approach is more accu-

rate than the synchronous updating scheme for the same step-size, but also in other cases

this holds [42, 45] due to the immediate response of the simulation algorithm to adaption

events in the event-based approach. Besides the accuracy of the event-based scheme, we

can also consider computational costs. In general, the simulation time for the discretiza-

tion of the diffusion process is the same for both simulation approaches as long as the same

time step sizes are chosen. However, if we consider the network updates as given, then the

simulation time for the event-based simulation of the spreading process has been shown

to be a few orders of magnitude faster than for the synchronous updating scheme [42].

Especially in the case of large systems with many agents and in the case of sparse connec-

tions between agents, the computational gain is high. This is also the regime in which our

real world example in Sect. 4 is given.

3.5 Numerical example: double well suitability landscape

To give a second example for illustration of the interesting dynamical patterns, we are

considering again the suitability landscape, shown in Fig. 1, given by

V (x, y) =
(

x2 – 1
)2
+ y2.

This landscape consists of two attractive areas that are centered around the two local min-

ima (–1, 0) and (1, 0) and a barrier between them. The agent diffusion process in this land-

scape exhibits a metastable behavior, i.e. agents stay for a long time near the center of one

of the wells, while rarely transitioning to the other well.

Equipped with this suitability landscape, we can study a system of n = 30 agents that

spread the innovation with rate γ = 10 when getting closer than r = 1. For simplicity the

attraction–repulsion potential is neglected. As an initial condition at time t = 0, one ran-

domly chosen agent will receive the innovation, while all other agents are in innovation

state 0. As simulation time advances, more and more agents will adopt the innovation,

see Fig. 4 for several temporal snapshots of the coupled process. Agents are attracted to

the centers of the two wells and thus their positions will be clustered near the two wells.

Connections between agents will mostly exist for agents in the same well. Therefore the

spreading of the innovation inside the well of the initial adopter will be fast, since mixing

of the agents inside the wells happens on a small timescale. The transition of an agent from

one well to the other is a rare event with an exponential waiting time on a larger timescale,

so the spreading of the innovation between wells will be slower. Thus, the metastability of

the diffusion process induces a metastability in the spreading process, where the system

stays for a long time in the state that all agents in one well have adopted the innovation

while there are no adopters in the other well. In total, the innovation will takemuch longer

to spread to all agents compared to the single well example.

This example landscape is very simple compared to the real-world example in Sect. 4

which has a suitability landscape that containsmanywells and barriers, but themetastable

behavior of fast spreading inside attractive areas and slow spreading between areas also

applies there.

4 Data-drivenmodeling and simulation: spreading of wool-bearing sheep

We will now apply our ABM framework and simulation tools proposed in the previous

section on a real-world example. In particular we will model the spreading of the wool-
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Figure 4 We are considering a model example with n = 30 agents, where the suitability landscape is given by

the double well potential V(x, y) = (x2 – 1)2 + y2 and the interaction radius is r = 1. In the first row, temporal

snapshots of one realization of the process highlight its metastability. Due to the fast mixing in the well of the

initial adopter, the innovation spreads quickly in the first well. In contrast, the transitioning between the two

wells is a rare event, resulting in a large time gap for the innovation to spread from one well to the other. Then

again, when the innovation has reached the second well, it will spread fast. The metastability of the spreading

process is also confirmed in the plot of the evolution of the proportion of adopters. The 50 realizations

(plotted in gray) out of an ensemble of 2000 simulations with the event-based approach for �t = 0.002 show

the fast spreading inside the wells and the exponential waiting time for the innovation to jump from one well

to another

bearing sheep (as an innovation) among groups of herders (represented by agents) in the

ancient world. Between 6200 BC and 3000 BC, the wool-bearing sheep appeared and

spread in the area spanned from the ZagrosMountains in the south-east to the Carpathian

Basin in the north-west. Prior to the appearance of the wool-bearing sheep, herders were

already keeping other domestic animals, among them the hairy sheep [67]. The exact

spreading path of the wool-bearing sheep is a question of interest in the archaeological

research community [47, 68]. Here, we will make the assumption that the origin of the

wool-bearing sheep in 6200 BC is Tell Sabi Abyad [69] and use forward-modeling to in-

fer possible spreading scenarios. People at that time had a nomadic life-style and it has

been shown that migration and technological change were strongly related [46]. There-

fore, it is a reasonable approach to model the spreading of the innovation via migration

and exchange between herders.

4.1 Data sources

Archaeological data from ancient times is sparse, uncertain and indirect [31]. In this ex-

ample, the archaeological data provides information on sheep herding during prehistoric

times, but unfortunately direct evidences of the wool-bearing sheep are missing and indi-

rect evidences are limited to certain parts of the study area and to restricted time periods.



Djurdjevac Conrad et al. EPJ Data Science  ( 2018)  7:24 Page 14 of 22

Therefore, instead of fitting our model to limited and uncertain data available, we will use

modern-day environmental data to construct the suitability landscape which will reflect

how suitable an area is for herding the wool-bearing sheep.

The environmental data consists of: (1) elevation data derived from the Shuttle Radar

Topography Mission with resolution 500 m × 500 m (SRTM 500) [70], (2) topographic

compound index (TCI) [71], (3) terrestrial landforms [72, 73] and (4) data on the soil tex-

ture [74], see Fig. 5(a)–(d). The TCI represents the tendency of water to accumulate at

any point in the catchment and the tendency for gravitational forces to move the water

downslope. These factors influence the suitability of an area for grazing sheep and thus

will be used to construct the mobility model. The environmental data covers the whole

area of interest with a resolution of 500 m × 500 m and is constant for the simulated time

period.

Figure 5 For each of the environmental factors discussed in Sect. 4, the Figures (a)–(d) show the suitability of

the geographical areas for herding the wool-bearing sheep, i.e. yellow color corresponds to very suitable areas

and blue tones to less suitable areas. In Figure (e) the suitability landscape for the innovation spreading of the

wool-bearing sheep is plotted, the landscape is constructed by combining influences from different types of

environmental data (a)–(d). The assumed origin of the woolly sheep Tell Sabi Abyad is marked by a red circle
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4.2 Constructing the mobility model

The mobility model consists of two components: the suitability landscape and the

attraction–repulsion potential.

The suitability landscapeV encodes the attractiveness of each point in space for an agent

to herd sheep. Available environmental data accounts for the four main environmental

factors that influence sheep-keeping: (1) elevation, (2) water availability (TCI), (3) different

geomorphological landforms (such as ridges, flat plains) and (4) soil texture [36, 75]. We

construct the suitability landscape V (see Fig. 5) by using an evaluation of the suitability

Si :R→R for keeping sheep depending on each factor fi :D→ R, i = 1, . . . , 4, at each point

in our domain (x, y) ∈D and summing them up to get

V :D →R by (x, y) �→
∑

i

Si
(

fi(x, y)
)

.

The suitability functions Si are chosen such that higher values correspond to less suitable

conditions, so for increasing values of V (x, y), the suitability decreases. The gradient of V ,

which is needed for the Euler–Maruyama discretization, is estimated by a first order finite

difference approximation.

Another way to construct the suitability landscape is considered in [36]. Additionally,

if the environmental factors are changing in time or their suitability changes in time

(for example seasonally [75]), then one can consider a time-evolving suitability landscape

V (t,x, y) instead.

In order tomodel the positional interactions between agentswe use a potential similar to

interatomic potentials between atoms and molecules. The attraction–repulsion potential

for agent k is of the form

Uk

(

X(t)
)

=

n
∑

j=1,j �=k
–CA exp

(

–
‖Xk(t) –Xj(t)‖

lA

)

+CR exp

(

–
‖Xk(t) –Xj(t)‖

lR

)

,

where CA is the attraction potential constant, CR is the repulsion potential constant and

lA, lR are the respective decay rate constants [58]. The constants are chosen such that

CR > CA > 0 and lA > lR > 0, which leads to the repulsion dominating at short ranges while

the attraction is the dominating term when the distance between two agents is larger.

4.3 Simulation details

Weconstruct the suitability landscape and the attraction–repulsion potential as described

in the previous section. For the construction of the suitability functions Si we assume all

influences to be equally important and the suitability evaluations of the different envi-

ronmental factors are based on [75]. We choose the attraction and repulsion constants

CA = 20, CR = 20.5 and decay rate constants lA = 1.5 and lR = 1, such that the optimal

distance between two agents is 650 m.

For the joint simulation of the spreading of the woolly sheep we use the event-based

Algorithm 1, which produces accurate realizations of the agent diffusion and the inno-

vation spreading process. The time step size �t = 1
365

is chosen such that one time step

represents one simulated day. The suitability landscape and the random noise are scaled

such that the average distance an agent is moving in a time step is 1 km. Since an agent
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represents a small group of 10–30 people, the position change of an agent can be under-

stood as changing the location of the camp of the group or as the daily activities. We set

the interaction distance between two agents to r = 10 km and the spreading rate to γ = 8.

The number of agents is set to be n = 4000, which corresponds to a population of 40,000

to 100,000 herders. Not much is known about the population density between 6000 BC to

3000 BC, but simulations suggest [76] that the population density in today’s Greece was

2–5 people per square kilometer during that time period, therefore the chosen number of

herders seems reasonable.

Since the suitability landscape is not given in terms of an analytical function, the initial

distribution of the agents is achieved by starting with a uniform distribution of agents and

letting the dynamics run for 400 simulation years in order to approximate the equilibrium

distribution. The initial innovation state of all agents is 0, except for agents with a position

in a 125 km radius of the assumed origin of the woolly sheep at Tell Sabi Abyad in northern

Syria [69], who start with innovation state 1. Since it is assumed that the spreading of the

woolly sheep started around 6200 BC, this will also be the starting time of our simulation.

We stop the simulation when 95% of agents have adopted the innovation, which in our

example simulation is the case after 3200 simulation years at 3000 BC. The reason for this

criterion is that our domain contains many islands and the modeling approach does not

consider sea travel, thus agents that are on the island will never get in contact with the

innovation and therefore we will never reach 100% of agents in state 1.

4.4 Analysis and simulation results

We run the simulation using the settings from Sect. 4.3. At the beginning of the simulation

at 6200 simulated BC, see Fig. 6(a), the spreading is very fast since the agents are mixing

well in the regions close to the origin. The spreading slows down around 6000 simulated

BC, as soon as all agents in the suitable areas around the origin have fully adopted the inno-

vation. The reason is that, at this point an agent has to make a transition via an unsuitable

area to interact with other agents that are not yet adopters. This behavior of the innova-

tion process, where the innovation is stuck for a very long time in one suitable area before

it quickly enters another suitable area where it spreads fast, is called metastability. As we

discussed above, in this example, metastability of the spreading process is caused directly

by the metastability of the human mobility process. Metastability of the adaption process

can be seen in Fig. 6(b), which plots the change of the proportion of adopters in time. We

see that whenever a rare transition happens, the number of adopters rapidly increases.

After the innovation has fully spread in a new region, the adaption speed slows down and

the system is again in a metastable state. This pattern continues until the innovation of

the wool-bearing sheep has spread among 95% of agents.

Next, we study how properties of different geographical regions influence humanmobil-

ity and human interactions over time. To this end, we consider a partition of our domain

into 23 major landscape units [36]. For each of these 23 regions we can measure the first

arrival time of the innovation, i.e. the first time an agent with innovation state 1 enters

the region, see Fig. 6(c). From the color-scheme of the plot one can deduce the spreading

path resulting from our simulation: starting from red, the darker the color becomes the

further away the innovation is from the origin, blue being the furthest point. Additionally,

this figure reflects the rare transition between the two main metastable sets Asia (in red

tones) and Europe (in blue tones), i.e. the intercontinental transition through the Bosporus

around 5200 simulated BC in the example simulation.
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Figure 6 (a) Snapshot of one realization of the wool-bearing sheep innovation spreading, where blue dots

indicate agents that have not adopted the innovation and red dots give agents that have adopted the

innovation. (b) Proportion of adopters over time, indicating metastability of the innovation process is

presented. (c) The first hitting times of the 23 landscape regions for the example simulation

Ourmodel shows how themetastability of the spreading process reflects themetastabil-

ity of the human mobility process. This is achieved by evaluating the area of interest and

finding the most attractive regions to adopt and use the innovation. The largest limita-

tion of the spreading process is then the human mobility process which is biased towards

attractive parts of the domain given by the suitability landscape.

Here we have presented one realization of the modeled spreading process and it has

been shown [36] that even though every realization of themodeled process (with the same

parameters) is slightly different due to stochasticity, the overall emergent spreading path

is the same. Nonetheless, our model is not intended to reproduce the true prehistorical

spreading process in all details, but the simulated spreading path can lead to a better un-

derstanding of how different factors might have influenced the prehistorical spreading
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path. The speed of the simulated innovation spreading gives insights into model compo-

nents that might have accelerated the prehistorical spreading process. In order to under-

stand the model factors, we will discuss the sensitivity of the model to its key parameters

by looking at the global trend in the outcome of a number of independent simulations.

Increasing the innovation influence rate γ doesn’t affect the spreading path but acceler-

ates the speed of innovation spreading [36], small changes in γ lead to small changes in the

spreading speed. Similarly, increasing the number of agents n will accelerate the innova-

tion spreading into different regions since the exit events from the metastable regions will

be more frequent. If the interaction distance r between agents is chosen in a reasonable

range, i.e. large enough such that agents can sometimes interact, and small enough such

that agents cannot interact over barriers of the suitability landscape, themodel is robust to

this distance r and small variations in the interaction distance only lead to small changes

in the speed of the simulated process. The suitability landscape is the most important in-

fluence for the migration of agents and thus for a different suitability landscape, both the

speed and spreading path will change.

In summary, small perturbations of our model parameters do not change considerably

the trend of the global emergent spreading path. However, changes in the metastability of

humanmigration can lead to big changes in the spreading dynamics. The main reason for

this is that the innovation spreading process is strongly governed by the human mobility.

4.5 Interpretation in the historical context

One could speculate whether or not the true prehistorical spreading path is correlated

with the outcome of our simulation. The main reason we can not validate our model is

that available archaeological data is very sparse and obscure. This data consists of ovi-

caprid bone findings from 401 sparsely distributed archaeological sites and spindle whorls

from 23 sites located only in Panonian basin [77, 78]. Moreover, the ovicaprid bone data

provides only an evidence for sheep (Ovis from scientific Latin) and goats (Capra from

scientific Latin) in general, but does not confirm the presence of wool-bearing sheep in

particular. Finally, here we can not generate new data to reproduce the true dynamics in

order to validate our results. For all these reasons amodel validation in the common sense

of natural science appears impossible to us. The simulated spreading path can be under-

stood as a spreading path hypothesis which has to be discussed and evaluated with the

help of additional expert knowledge. For a discussion of the simulated spreading process

of the wool-bearing sheep, we refer the interested reader to [75].

5 Conclusions and future outlook

In this paper we presented a general framework for modeling the spreading of an innova-

tion among human individuals in prehistoric times. We introduced an agent-based model

which combines the spatial movement of individuals with a time-evolving network for

possible social interactions. Our model considers data-driven dynamics of human move-

ments, i.e. available data is used for building a suitability landscape which governs the

diffusion of individuals. The innovation spreading between individuals that are close in

distance is modeled by a spatial network that is changing in time, as people are changing

their positions. Additionally, a novel simulation algorithmhas been proposed, allowing for

network updates at flexible time points that are adjusted to the random times of the inno-

vation adaption events. This simulation approach accounts for a faster and more accurate
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simulation of the spreading process than synchronous time-discrete updating schemes

that are usually considered. Especially for settings where the spreading dynamics affect

the spatial movement, the accuracy of our simulation approach is increased by this ad-

justment.

We applied our modeling and simulation approaches to the spreading of the wool-

bearing sheep among herders in the south-west Asia and central Europe between 6200

BC and 3000 BC. At this stage it is important to note that, given the complexity of the

observed system and very limited available data, we do not claim that ourmethods can re-

produce the exact historical spreading process itself. In this application, our methods can

be used to study how different influences can affect the migration and spreading process.

In a broader sense, this paper offers a generalized technique for modeling and simulation

of spreading processes in the ancient world that are coupled to human migration.

Several extensions of our modeling framework would be interesting to consider in fu-

ture investigations. For example, one could include competing innovations or consider

different type of spreading processes where the adaption process is reversible, such that

adopters of the innovation can become non-adopters again or loose interest in the inno-

vation with some fixed rate (SIS or SIR model respectively). The diffusion dynamics could

be generalized by considering time-evolving suitability landscapes, where external factors

affect the change of the landscape, e.g. seasonal changes or climate influences [28]. Re-

cent publications include extensive research on using genomic data for inferring human

migration patterns in ancient times [29, 79]. Such an extensive data-set could be used for

comparison and further calibration of the model.

Furthermore, we believe that in some cases taking into account different dynamical

properties of the spreading process could be of interest for reducing themodel complexity.

More precisely, in our real-world example we have observed metastability induced by the

fast spreading dynamics between agents located in the same well of the suitability land-

scape and very slow spreading dynamics between agents located in different wells. This

suggests further coarse-graining of the system by splitting the domain into metastable

areas within which agents are assumed to quickly mix, such that detailed spatial infor-

mation becomes redundant. Combining the well-mixed spreading dynamics within the

metastable areaswith diffusive transitions between them leads to a description by a spatio-

temporal master equation, a coarse-grained model for the effective dynamics which is

shown to be more efficient to simulate in other applications [80]. Developing this idea for

systems of our interest needs further investigation and will be the topic of future research.

Appendix: Presentation in terms of Poisson processes

In the considered time-evolving network the adaption event can happen not more than

once for each agent. In other settings, the interaction events can happen several times, e.g.

if several innovations can be adopted successively or the adaption is reversible meaning

that it can disappear and reappear in the course of time. Then, the counting processes

(Nk(t))t≥0, k = 1, . . . ,K , are in general not bounded but monotonically increasing in time.

Each of it can be expressed in terms of a Poisson process by setting

Nk(t) :=Pk

(∫ t

0

λk(s)ds

)
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where Pk(t), k = 1, . . . ,n, denote independent unit-rate Poisson processes [81]. The event

times are determined by the jump times of the Poisson processes. This general repre-

sentation also applies in the considered setting with the rate function defined in (4). The

adaption time τk ∈ [0,∞] for agent k is then indirectly defined by

τk := min

{

t :Pk

(∫ t

0

λk(s)ds

)

= 1

}

with min∅ :=∞. With the rate λk(t) becoming zero after the adaption event, the counting

process Nk(t) will not exceed the value 1.

Acknowledgements

The authors would like to thank Martin Park and Brigitta Schütt for providing the data and valuable insights about the

model; Ana Grabundžija for her input on historical information and Marcus Weber for fruitful discussions about the

modeling approach.

Funding

This research has been partially funded by the Excellence Cluster TOPOI (The Formation and Transformation of Space and

Knowledge in Ancient Civilizations), ECMath (Einstein Center for Mathematics Berlin) and Deutsche

Forschungsgemeinschaft (DFG) through grant CRC 1114.

Abbreviations

Agent-based model (ABM). Shuttle Radar Topography Mission with resolution 500 m × 500 m (SRTM 500). Topographic

compound index (TCI).

Availability of data andmaterials

The SRTM 500 data is available at the website http://srtm.csi.cgiar.org. Additional data is obtained by using methods from

[36]. For more information, please contact the corresponding author.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

NDC, SW and CS designed and supervised the study. LH, JZ, SW and NDC performed research. JZ and LH did simulation

experiments. LH, JZ, SW and NDC wrote the manuscript. All authors read and approved the final manuscript.

Author details
1Zuse Institute Berlin, Berlin, Germany. 2 Institut für Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany.

Endnotes
a

In other fields the jump from one state to another models an infection event by a virus or a chemical reaction event
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For a more general model, the adaption rate could have the general form λk (t) =	k (A(t), I(t)). Moreover, here we
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