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Abstract

After the emergence of the H1N1 influenza in 2009, some countries responded with travel-related controls during the early
stage of the outbreak in an attempt to contain or slow down its international spread. These controls along with self-
imposed travel limitations contributed to a decline of about 40% in international air traffic to/from Mexico following the
international alert. However, no containment was achieved by such restrictions and the virus was able to reach pandemic
proportions in a short time. When gauging the value and efficacy of mobility and travel restrictions it is crucial to rely on
epidemic models that integrate the wide range of features characterizing human mobility and the many options available
to public health organizations for responding to a pandemic. Here we present a comprehensive computational and
theoretical study of the role of travel restrictions in halting and delaying pandemics by using a model that explicitly
integrates air travel and short-range mobility data with high-resolution demographic data across the world and that is
validated by the accumulation of data from the 2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1
pandemic by assessing the potential impact of mobility restrictions that vary with respect to their magnitude and their
position in the pandemic timeline. We provide a quantitative discussion of the delay obtained by different mobility
restrictions and the likelihood of containing outbreaks of infectious diseases at their source, confirming the limited value
and feasibility of international travel restrictions. These results are rationalized in the theoretical framework characterizing
the invasion dynamics of the epidemics at the metapopulation level.
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Introduction

The human mobility flows that determine the spreading of

infectious diseases and the control measures based on limiting or

constraining human mobility are considered in the contingency

planning of several countries [1]. The target of these control

measures is the decrease of travel to/from the areas affected by the

epidemic outbreak and the corresponding decline of infected

individuals reaching countries not yet affected by the epidemic.

While the effects of slowing down the international propagation of

an epidemic can be statistically evaluated based on available data

and bootstrap techniques [2], the impossibility of disentangling the

role played by travel from other contributing factors in the spread

of an epidemic [3] has generated discussion about the appropriate

strategy for mobility restrictions. In this context the only way to

systematically gauge uncertainty and the effectiveness of compet-

ing control strategies is through data-driven modeling efforts [4–

9]. Unfortunately, most previous works have focused on synthetic

pandemic influenza scenarios and only a few empirical examples

are available to validate models and evaluate the effectiveness of

travel restrictions in general [10–12].

In the recent 2009 H1N1 pandemic (H1N1pdm), control

measures included travel bans to/from Mexico, the screening of

travelers on entry into airports, and travel advisories against non-

essential travel to Mexico [1]. The aggregation of data on the

H1N1pdm therefore represents an unprecedented opportunity to

calibrate and validate a modeling approach to the global spread of

epidemics that integrates detailed information on human mobility

and travel. In the present work, we use the Global Epidemic and

Mobility model (GLEaM) [13] that, fully integrating high resolution

demographic and mobility data, allows the calibration to the

H1N1pdm data of the invasion during the early stage of the

epidemic and the exploration of hypothetical scenarios in which

reductions in the international travel to/from Mexico with different
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timing and magnitude are considered. Interventions acting on

mobility are found to be scarcely efficient in delaying the invasion

process of the pandemic. This computational evidence can be

explained within a simplified theoretical framework in terms of a

phase transition between invasion and non-invasion dynamics of the

metapopulation system, where the critical value is crucially affected

by the topological fluctuations of the mobility network.

Methods

Model description
The Global Epidemic and Mobility model is based on a

metapopulation scheme [4,8,9,14–20] in which the world is

divided into geographical regions defining a subpopulation

network where connections among subpopulations represent the

individual fluxes due to the transportation and mobility infra-

structure. GLEaM is composed of three different layers [13]: (i) the

population layer that integrates census areas for a total of 3,362

subpopulations around major transportation hubs in 220 countries

of the world with a resolution up to Ju6Ju [21]; (ii) the human

mobility layer that integrates both commuting flows collected from

various sources in more than 30 countries and airline traffic flows

provided by the International Air Transport Association (IATA)

database [22]; and (iii) the disease dynamics layer that implements

a refined SEIR-like model [23] taking into account the specific

etiology of the H1N1pdm [18].

The model simulates short-range mobility between subpopula-

tions with a time scale separation approach that defines the

effective force of infections in connected subpopulations

[13,18,24,25]. The airline mobility from one subpopulation to

another is modeled by an individual based stochastic procedure in

which the number of passengers of each compartment traveling

from a subpopulation j to a subpopulation l is an integer random

variable defined by the actual data from the airline transportation

database [8]. The infection dynamics takes place within each

subpopulation. We adopt a SEIR-like model [23] in which we

consider separate compartments for symptomatic traveling and

not traveling, as well as asymptomatic individuals in each

subpopulation. More in detail, a susceptible individual in contact

with a symptomatic or asymptomatic infectious person contracts

the infection at rate b or rbb [26,27], respectively, and enters the

latent compartment where he is infected but not yet infectious.

After an average latency period e21, each latent individual

becomes infectious, entering the symptomatic compartments with

probability 12pa or becoming asymptomatic with probability pa

[26,27]. The symptomatic cases are further divided between those

who are allowed to travel (with probability pt) and those who

would stop traveling when ill (with probability 12pt) [26].

Infectious individuals recover permanently with rate m. A

schematic representation of the compartmental structure is

reported in Figure 1. All transitions defining infection dynamics

and mobility processes are modeled through binomial and

multinomial stochastic variables to mimic the discrete and

stochastic nature of the epidemic spreading [8,13] that is

extremely relevant especially at the start of the outbreak (see the

SI for details). The time resolution of both mobility and infection

dynamics is of one day. Seasonal effects are taken into account by

applying a sinusoidal rescaling of the reproductive number

according to the time of the year and the hemisphere of location

of the subpopulation [4]. In particular, the scaling factor ranges

from amin during the summer season to amax during the winter

season. Here we consider amax = 1.1, whereas amin assumes the

best estimate value obtained from the calibration of the model to

the H1N1pdm invasion data (see next Subsection) [18].

Model calibration
The model is calibrated on the H1N1pdm data. The initial

conditions of the epidemic are set near La Gloria, Mexico, on 18

February 2009 in agreement with the information published in

official reports and with previous works [18,28,29]. Infection

parameters describing the transmission potential and the duration

of the stages of the disease are obtained through a maximum

likelihood procedure based on the empirical data of the H1N1

international seeding events (see Figure 1A). In particular, we use

the reproductive number R0 = 1.75 with the generation interval set

to 3.6 days (average latency period e21 = 1.1 days and average

infectious period m21 = 2.5 days). Through a maximum likelihood

approach, the above estimates are obtained that best reproduce

the actual chronology of newly infected countries (additional

details can be found in Ref. [18]). The estimation method is

computationally intensive as it involves a Monte Carlo generation

of the distribution of arrival time of the infection in each country

based on the analysis of 1 Million worldwide simulations of the

pandemic evolution with the GLEaM model. The best estimate of

the reproductive number refers to the reference value that has to

be rescaled by the seasonality scaling function. The minimum

scaling factor amin determines the strength of the seasonality effect

on the disease transmission. Here we consider amin in the range

[0.6–0.7], that is the best estimate obtained in Ref. [18] from the

correlation analysis on the chronology of 93 countries seeded

before June 18. The calibration of the model also takes into

account the effects obtained by the control sanitary measures

adopted in Mexico during the early stage of the epidemic [18,30].

A thorough sensitivity analysis of the model calibration with

respect to the disease natural history, initial conditions and other

uncertainties in the data is reported in Ref. [18].

Travel-related interventions and simulated scenarios
During the early stage of the outbreak, several countries

implemented a variety of travel-related interventions (see Text S1

for country-specific measures and implementation details). Such

measures, in addition to a spontaneous reaction of individuals to

the health emergency, led to a reduction in the international traffic

to/from Mexico of about 40% observed during the month of May,

followed by smaller reductions in the following months, and

resulting in a slow return to normality in about 3 months [31] (see

Text S1). Here we consider as a reference scenario the one produced

by the best estimates able to reproduce the initial chronology of

newly infected countries (i.e. the baseline scenario), where in addition

we take into account the empirically observed drop in air traffic,

following the data reported in Table 2 of Text S1. The reference

scenario is then compared to a set of hypothetical scenarios in

which increasingly larger restrictions in individual mobility are

considered, as well as different starting dates for the implemen-

tation of such restrictions. In addition, we also test scenarios in

which country-specific air travel bans are applied, and scenarios in

which ground mobility along the border between Mexico and the

US is restricted (see Text S1).

It is important to stress that, contrary to previous approaches

based on samples of airline mobility data [4,9], GLEaM

simulations take into account the full air travel database and the

role of intra-country mobility as well as border commuting flows

(e.g. across the US-Mexico border [18]). GLEaM allows for the

detailed simulation of the time evolution of the spreading pattern

by reproducing the infection dynamics and computing the number

of travelers in each compartment. It is therefore possible to track

the movement of H1N1 cases and analyze the statistics associated

with arrival times, case importation, and local transmission based

on many realizations that incorporate the relevant stochastic

H1N1 Pandemic and Travel Restrictions
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effects. The efficacy of travel-related measures is therefore

measured on the timing of seeding events and resulting delays.

Results and Discussion

Reference scenario
Figure 2 summarizes the simulation’s accurate reproduction of

the observed relative magnitude of imported cases in the local

epidemics of newly-affected countries that validate the model.

Panels A, B show cases in the United Kingdom and Germany,

respectively, during the early phase of the outbreak when case-

based surveillance was deployed in order to detect imported H1N1

cases and monitor local H1N1 transmission [32,33]. Computer

simulations also allow us to explore the level of stochasticity

associated with the importation of infectious individuals. We keep

track for each time step of each realization of the contribution of

imported cases to the total prevalence in the country defined as the

ratio Q of imported cases versus the total number of infectious

individuals in the country. Since at the early stage of the epidemic

there are usually large fluctuations in the number of imported local

transmission cases, we measure the probability in time of observing

a given ratio Q by averaging over 2,000 realization of the global

simulation. Panels 2C, 2D show the time behavior of the

probability distribution P(Q) clearly illustrating that the importa-

tion of cases dominates the initial phase of the epidemic in each

country, which is soon followed by a sustained local transmission.

The contribution of imported cases is observed at 100% with a

finite probability only during the months of April-May, after which

the probability distribution progressively shrinks around small

values of Q, showing how the local H1N1 transmission starts to

dominate the epidemic.

Travel restrictions and the H1N1pdm spatial spread
The good agreement of the model with the actual data from the

H1N1pdm allows us to assess the effect of the observed decline in

travel flows to/from Mexico by comparing the results obtained in

the reference scenario with a version of the model in which no

travel reduction is considered. Compartmentalization permits

tracking of the arrival of detectable (i.e. symptomatic) and non-

detectable (i.e. latent or asymptomatic) infected individuals in a

given country. By defining the arrival time as the date the first

symptomatic case arrives in the country under study, it is possible

to quantify the delay in the spreading of the epidemic. It is quite

impressive to notice that the 40% drop in travel flows observed in

Figure 1. Modeling the 2009 H1N1 pandemic spread with GLEaM. A, Illustration of the global invasion of the 2009 H1N1 pandemic during
the early stage of the outbreak. The arrows represent the seeding of unaffected countries due to infected individuals traveling from Mexico. The color
code indicates the time of the seeding. The map shows the layer of the worldwide air transportation network, which is incorporated into GLEaM. B,
Compartmental structure in each subpopulation of GLEaM. Each individual is classified by one of the following discrete states: susceptible, latent,
symptomatic infectious who can travel, symptomatic infectious who are hampered in their travels by the severity of the illness, asymptomatic
infectious, and permanently recovered/removed [23,26]. We assume that the latency period is equivalent to the incubation period and that no
secondary transmissions occur during the incubation period. In addition, the asymptomatic individuals are assumed to be less infectious with respect
to the symptomatic ones, with a relative infectiousness rb, that is half the infectiousness of symptomatic individuals. All parameter values are reported
in Table 3 of the SI.
doi:10.1371/journal.pone.0016591.g001
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reality only led to an average delay in the arrival of the infection in

other countries (i.e. the first imported case) of less than 3 days (see

Text S1 for more details). We then test whether an additional

decrease in travel flows of magnitudes larger than the observed

40% would have provided an additional benefit in slowing down

the propagation of the H1N1 virus across the world. We consider

drops in the air travel flows connecting Mexico with the rest of the

world starting on April 25 following the international alert,

optimistically assuming a prompt implementation by authorities

with no further delays. We also assume that the reduction is kept

constant across time, differently from the empirically observed

decline that successively decreased to become negligible in about 3

months.

Figure 3 shows changes induced by travel restrictions on the

simulated chronology with respect to the reference case by

tracking the arrival time probability distribution. Results are

reported in panels A, B of Figure 3, where application of the

interventions is shown to reduce the probability values right after

the peak of the distribution, with almost no change in the date of

the peak. If we focus on the first arrival from Mexico, considering

all possible seeding events (i.e. latent, asymptomatic, and

symptomatic), we observe similar reductions in the rate of increase

in the cumulative probability distribution of the seeding event,

pointing to a slower rate of importation (see Figure 3C, D).

However, the resulting change is not able to halt the spread.

By considering the time at which the cumulative probability for

the seeding from Mexico has reached 90%, we can calculate the

delay induced by larger reductions in air travel. Figure 4A shows

the delays obtained for a selection of countries. Even given the

unlikely assumption of a 90% travel reduction, the resulting delay

would be on the order of 2 weeks, confirming results from previous

studies [4,5,8,9]. This time could be used to finalize the response

by the public health infrastructure of unaffected countries

following the international alert, thus gaining time to enhance

surveillance systems and allocate resources. Unfortunately, this

timescale is insufficient to develop and distribute a vaccine.

Figure 2. Importation of cases. A,B, Simulation results of the fraction Q of imported cases in United Kingdom (A) and Germany (B). The quantity
Q is a measure of the relative weight of case importation with respect to local transmission events. The gray shaded areas show the 95% and 50%
reference ranges of the simulation results obtained from 2,000 stochastic realizations. The surveillance data are indicated by red dots. C,D, Time
evolution from April to November 2009 in the United Kingdom (C) and Germany (D) of the probability distribution to observe in any given realization
of the epidemic the ratio Q between imported cases and the total number of cases. The probability distribution is obtained from the simulation of
2,000 stochastic realizations. Large values for the quantity Q are observed with high probability only in the early phase of the respective country’s
epidemic. The observed non-zero probability for a fraction of imported cases equal to zero at the early stage is due to the fact that the epidemic is
imported in some cases by non-detectable individuals, such as latent and asymptomatic infectious individuals.
doi:10.1371/journal.pone.0016591.g002
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Anticipation of travel reductions following local epidemiological

alerts in Mexico or the onset of symptoms from the first case in the

US would lead to similar results (see panel B of Figure 4).

The exponential increase of cases in the outbreak region

explains the negligible impact of travel restrictions over the course

of the pandemic. Given two coupled populations with determin-

istic infection dynamics, the delay DtDt is a logarithmic function of

the applied travel reduction of magnitude a, Dt~{tln 1{að Þ,
where t is the timescale of the epidemic’s exponential growth in

the seed population [34,35]. The exponential increase of cases in

the outbreak region is therefore responsible for the relatively

limited delay induced by strong and lasting travel reductions.

When a~65%, a~80% or a~95% the corresponding delays

become approximately 1, 1.6, and 3 times, respectively, the

timescale t that is typically on the order of a few days. The

logarithmic relation also explains more realistic situations in which

the epidemic origin is characterized by spatial heterogeneity and

intra-region mobility that is not subject to travel restrictions (see

Text S1 for the complete analytic treatment in this case). This is

the case of the H1N1 pandemic, which initially diffused within

Mexico before reaching international hubs and propagating

internationally.

Global invasion threshold
Another important question concerns the degree to which

mobility restrictions are able to achieve containment at the source

of the pandemic, especially in combination with timely mitigation

policies in the country of origin. To this end we consider a simplified

modeling framework based on a metapopulation scheme describing

a network of subpopulations (nodes) coupled with mobility processes

(links, see Figure 5A) whose features reproduce the topological and

mobility properties of real-world transportation systems [36,37]. We

assume: (i) the large-scale heterogeneity found in the airline

transportation network where the number of connections k departing

from each airport (i.e. the degree of the node) follows a power-law

distribution P(k)&k{c; and (ii) that the observed correlations

Figure 3. Effects of restrictions in the air travel to/from Mexico on the probability distributions of the seeding events. Travel
measures imposing a reduction of a~60% and a~90% are compared to the reference scenario where the observed drop in air travel to/from Mexico
is taken into account. A,B, Probability distributions of the arrival time (defined as the date of arrival of the first symptomatic case) in the United
Kingdom (A) and Germany (B) for different values of a. Here we consider the importation from any possible source country, not only Mexico. The
vertical dotted line indicates the observed arrival time in the country, as obtained from official reports, and the vertical solid line indicates the starting
date of the travel restrictions, April 25, 2009, the day after the international alert. The probability distributions are obtained from 2,000 stochastic
realizations and data are binned over 7 days. Even when imposing a~90%, the peak of the probability distribution is not delayed with respect to the
real scenario. C,D, Cumulative probability distributions of the first seeding event from Mexico to the United Kingdom (C) and Germany (D) for
different values of a. Here we consider any source of infection in the seeding event, including symptomatic cases and non-detectable infected cases,
such as latent and asymptomatic, as allowed by the computational approach. The distributions are computed over 2,000 stochastic realizations. The
effect of travel restrictions is very limited in delaying the time at which the cumulative distribution reaches the unit.
doi:10.1371/journal.pone.0016591.g003
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between topology and traffic, relating the number of passengers wij

traveling from airport i to airport j to the degrees ki and kj of the two

subpopulations is expressed by SwijT~w0 kikj

� �1=2
, with w0

representing the mobility scale of the system [38].

Disregarding the high-resolution details of numerical approach-

es, this synthetic metapopulation model can now be analyzed,

defining a new theoretical framework that allows for the study of

epidemic containment. Starting from a single subpopulation

infected at time t~0, it is possible to describe the invasion

dynamics at the subpopulation level in a Levins-type approach by

considering the microscopic dynamics of infection and of

individual travel [37]. The system is characterized by a

subpopulation reproductive number R*. Analogous to the

reproductive number R0 at the individual level, R* indicates a

threshold behavior of the system: if R*.1 the epidemic reaches

global invasion; otherwise, it is contained at its source. It is possible

to derive an expression for the global invasion threshold in a

branching process approximation [39,40]. Under the assumption

that subpopulations having the same number k of connections are

equivalent (i.e. the degree-block approximation, see Text S1), we

define D0
k as the number of diseased subpopulations of degree k at

generation 0 (i.e. at the beginning of the branching process).

During the entire duration of the outbreak experienced by the D0
k

subpopulations, each of them can in principle seed some of the

neighboring subpopulations thus leading to a number D1
k of

diseased subpopulations of degree k at generation 1, for various

values of the degree k. By iterating the seeding events, it is possible

to describe the evolution of the number Dn
k of diseased

subpopulations with degree k at generation n, yielding:

Dn
k~

X
k0

Dn{1
k0 (k0{1)P(kjk0) 1{R

{l
k0k

0

� �
1{

Xn{1

m~0

Dm
k

Vk

 !
ð1Þ

The r.h.s. of Eq. (1) describes the contribution of the

subpopulations of degree k’ at generation n-1 to the infection of

subpopulations with degree k at generation n. Each of the Dn{1
k

has (k’21) possible connections along which the infection can

proceed (21 takes into account the link through which each of

those subpopulations received the infection). In order to infect a

subpopulation of degree k, three conditions need to occur: (i) the

connections departing from nodes with degree k’ point to

subpopulations of degree k, as indicated by the conditional

Figure 4. Delaying effects in the international spread. A, Delay in the case importation from Mexico to a given country compared with the
reference scenario as a function of the travel reduction a. The delay is measured in terms of the date at which the cumulative distribution of the
seeding from Mexico (see Figure 2) reaches 90%. The dotted line shows the logarithmic behavior relating the delay as a function of the imposed
restrictions. The largest delay, gained when imposing a~90%, is less than 20 days for all countries. The model also considers the implementation of
sanitary interventions in Mexico during the early stage that was able to damp the exponential increase of cases in the outbreak zone. Travel
restrictions would therefore lead to a larger impact during this phase due to the mitigating effect on the local epidemic. If a country is seeded during
this phase, the resulting delay induced by the travel restrictions would be larger, thus creating the observed differences in the resulting delays by
country. B, as in A, where earlier dates for the start of the intervention are considered, has a fixed a~90%: April 25, corresponding to the day after
the international alert; April 16, corresponding to the epidemic alert in Mexico; March 28, corresponding to the onset of symptoms of the first case in
the US; and 6 weeks before the international alert. In all these scenarios and for different countries, the delay is always less than 20 days, highlighting
that even the enforcement of strong travel reduction as early as possible would have had little effect.
doi:10.1371/journal.pone.0016591.g004
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probability P(kjk0); (ii) the reached subpopulations are not yet

infected, as indicated by the probability 1{
Pn{1

m~0

Dm
k

Vk

� �
, where

Vk is the total number of subpopulations with degree k; (iii) the

outbreak seeded by lk0k infectious individuals traveling from k’ to k

takes place, and the probability for this event to happen is given by

1{R
{lk0k
0

� �
[41]. The latter term is the one that relates the

microscopic dynamics of the local infection occurring within a

subpopulation to the coarse-grained view that describes the disease

invasion at the metapopulation level. It depends on the details of

the diffusion process of individuals as well as the individual travel

behavior and its interplay with the disease stages. The expression

of lk0k for the compartmental model here considered is derived in

Text S1; by plugging it in to Eq. (1) we can derive the expression

for the global invasion threshold (more details are reported in Text

S1):

R�~g(R0):h e,m,pa,ptð Þ:f w0; P kð Þð Þ; ð2Þ

where g is a function that depends on the reproductive number

only; his a combination of the infection parameters e, m, pa and pt;

f is a function of the mobility scale w0 and of various moments of

the distribution of the number of connections kof each airport. Eq.

(2) shows that R* thus depends on the disease parameters, as well

as the topology and fluxes of individuals’ mobility.

The effect of interventions like travel restrictions, mitigation,

etc., are unfortunately damped by the large topological fluctua-

tions of human mobility patterns. The function f is expressed by

f w0; P kð Þð Þ~w0
Sk2hz2T{Sk2hz1T

SkT
(Text S1), so that the

topological heterogeneities encoded in P(k) lead to very large

values of the ratio Sk2hz2T{Sk2hz1T
� ��

SkT, which suppresses

reduction in the travel flows in w0, leading to values of R* well

above the threshold at 1 as shown by the 3D plot reported in

Figure 5B. Similar conclusions apply for entry screening at

the airports modeled by a reduction in the traveling probability pt,

and the modeling of effective containment policies, reducing R0

and the total number of cases. The large heterogeneity of

human mobility patterns is therefore responsible for why travel

restrictions are largely ineffective for containing an emerging

pandemic.

Our analysis of the 2009 H1N1 pandemic shows that the

observed decline in air travel to/from Mexico was of too small a

magnitude to impact the international spread. Stricter regimes of

travel reduction would have led to delays on the order of two

weeks even in the optimistic case of early intervention. It is unlikely

that given the ever-increasing mobility of people travel restrictions

could be used effectively in a future pandemic event.
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Only in the case of extremely low values of R0 or extremely large values of a is it possible to reduce R* below the threshold.
doi:10.1371/journal.pone.0016591.g005
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38. Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A (2004) The

architecture of complex weighted networks. Proc Natl Acad Sci U S A 101:

3747.

39. Harris TE (1989) The theory of branching processes. Dover Publications.

40. Vazquez A (2006) Polynomial Growth in Branching Processes with Diverging

Reproductive Number. Phys Rev Lett 96: 038702.

41. Murray JD (2005) Mathematical Biology. 3rd edition Berlin: Springer Verlag.

H1N1 Pandemic and Travel Restrictions

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e16591


