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Introduction

Today, with the rapid development of computer technology such as Internet of things 

(IoT), wireless communications, edge computing, and data mining [1–18], various 

advanced multimedia technologies emerge one after another. Due to the “immersive” 

realism, Virtual Reality (VR) can bring a new experience to users in a more natural and 

realistic human–computer interaction [19–21]. Many kinds of multimedia applications 

based on VR technology have gradually become the hotspots of future cultural, art and 

entertainment markets, such as virtual shopping community, immersive virtual reality 

games, virtual landscape roaming and virtual art stage performances [22–24]. Among 

them, the multimedia human–computer interaction technology in the art scene needs 

to capture and recognize the human body motion in real time and accurately, in order to 

achieve better interaction effect and artistic sensory experience. In order to enable more 

natural and effective communication between people and computers, the motion rec-

ognition interactive system needs to be able to accurately identify various complex and 

varied human actions. As shown in Fig. 1, in the digital performance, to digitally preview 

the dance, first capture the action of the stage dancers. Then, as shown in Fig.  2, the 

dance behavior after the capture is digitally recognized and presented. Figure 3 shows 

the interaction of the identified actions in the VR scenario.
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In the process of digital performance, body language can often express the true feel-

ings of actors compared with natural language. Therefore, in the virtual environment, 

the accurate recognition of human–computer interaction is especially important. 

At this stage, mainstream human motion recognition methods mainly use machine 

vision technology, involving knowledge of advanced computer disciplines such as 

image processing, pattern recognition, and machine learning. Among them, the 

image processing method based on spatiotemporal features and the machine learning 

method based on representation features have higher robustness, which has become 

the mainstream of current research [25–29]. Although the computational complexity 

is high, the two motion recognition methods can recognize continuous motion and 

interaction. The research direction chosen in this paper is a machine learning based 

Fig. 1 Motion capture of stage dancers

Fig. 2 The dance behavior after the capture is digitally recognized and presented
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approach. For example, using the Kinect sensor, Shi et  al. [27] proposed a human 

motion recognition method based on the skeleton characteristics of key frames. The 

method uses K-means clustering algorithm to extract key frames and two features in 

human motion video sequences and uses SVM classifier to classify action sequences. 

Qin and Li [28] proposed a real-time recognition system for portable human gestures 

based on DSP. It uses a combination of wavelet packet principal component analy-

sis and Linear Discriminant Analysis (LDA). All the above methods achieve a cer-

tain degree of precision and efficiency in human motion recognition. However, the 

human body movements in the VR multimedia art scene are more complicated and 

the changes are more irregular, resulting in the motion data being massive and high-

dimensional (non-linear feature information), so the spatial feature extraction needs 

to reduce the dimension as much as possible. Reflect various types of actions. In addi-

tion, SVM classifier parameter optimization has a space for improvement.

In view of the spatio-temporal continuity of human motion data, two newest CNN 

based approaches [30, 31] are proposed. They used convolutional neural networks 

(CNN) to solve the problem of coherent motion recognition and used convolutional 

neuron spatiotemporal sequences to capture the dependence between input data. How-

ever, the size of the convolution kernel limits the range of dependency captures between 

data samples. Therefore, typical CNN models are not suitable for multiple complex 

motion recognition. Murad and Pyun [32] based on Deep Recurrent Neural Networks 

(DRNN) to propose an algorithm for human motion classification and recognition. 

Although the recognition rate is high, in the training and recognition process many GPU 

parallel operations are mainly used. It will lead the operations have a certain delay and 

real-time performance is affected, especially in large digital performances. Thus, their 

algorithm is not suitable for used in real-time evaluation systems.

In this paper, we proposes a human motion recognition method based on LDA and 

SVM (named LDA-GA-SVM), in order to improve the efficiency and accuracy of human 

motion recognition in VR human–computer interaction applications. This method 

mainly studies from two aspects: (1) Improve the recognition rate of motion features. 

Fig. 3 The identified actions are interactively applied in the VR scene
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(2) Improve the accuracy of motion classification. First, introducing a kernel function 

in LDA for nonlinear projection to map training samples into a high-dimensional sub-

space, and obtaining the best classification feature vector, effectively solving the non-

linear problem and expanding the sample difference, and reducing the dimensionality 

of the vector space operating efficiency. Secondly, the genetic algorithm is used to real-

ize the parameter search optimization of SVM, which makes full use of the advantages 

of genetic algorithm in multi-dimensional space optimization and improves the recog-

nition rate. The experimental results verify the validity and accuracy of the proposed 

method.

In addition, during the experiment, in the VR environment, the motion data acquisi-

tion of the virtual character in human–computer interaction is mainly acquired by the 

inertia capture device. The process mainly uses the wearable inertial sensor to capture 

the main bone joint posture data of the human body, and after obtaining the motion 

capture data, the data file can be imported into the skeleton virtual human model to 

drive the virtual human model bone movement.

The rest of this paper is organized as follows. The second session introduces the use 

of the nuclear decision LDA algorithm to extract the effective human motion features; 

the third session introduces the use of genetic optimization SVM algorithm for accurate 

motion classification; the fourth session introduces the experimental analysis in the VR 

environment, for the traditional K-means-SVM algorithm and the LDA-GA-SVM algo-

rithm proposed in this paper are compared and analyzed in terms of accuracy, accuracy, 

specificity and sensitivity, and the advantages of the proposed method are obtained.

Feature extraction based on nuclear decision LDA

Linear discriminant analysis is a linear method commonly used for feature extraction. 

The LDA algorithm is insensitive to changes in illumination and attitude and is therefore 

widely used in image recognition tasks. However, algorithms such as traditional LDA 

[33] are basically linear.

Due to the complexity and diversity of human motion in VR scenes, some impor-

tant high-dimensional nonlinear feature information hidden in motion data cannot 

be extracted. Therefore, this paper introduces a kernel function in the LDA algorithm 

for nonlinear projection to extract expression features. Combined with the genetically 

optimized SVM classifier, the complex action classification and recognition is finally 

realized.

In the human motion data extraction application, let A be the action matrix. In the 

LDA algorithm, A is a full rank matrix with class labels:

Among them, each ai(1 ≤ i ≤ n) is a data point in m-dimensional space. Each block 

matrix Bi ∈ R
m×n(1 ≤ i ≤ k) is a collection of data items in the i-th class. ni is the size 

of class i and the total number of data items in data set A is n . Let Ni denote the column 

index belonging to class i. The global center c of A and the local center ci of each class Ai 

are respectively expressed as follows [34] 

(1)A = [a1 . . . an] = [B1 . . .Bk ] ∈ R
m×n
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Assume

Among them, Sb , Sw and St are called inter-class divergence matrix, intra-class divergence 

matrix and total divergence matrix, respectively.

Then, the standard LDA objective function can look like this:

It can be seen that the LDA algorithm is essentially a linear method, so the effect is not 

very good when dealing with nonlinear problems, and there are singularities. In order to 

efficiently extract the nonlinear characteristics of the data, we use the kernel decision LDA 

to extract features.

The basic idea is to map the original training data samples to the high-dimensional fea-

ture space H by nonlinear transformation, and then perform linear decision analysis in H . 

Suppose the nonlinear mapping φ(X) maps X to the high-dimensional feature space H , 

yielding φ(X) = {φ(x1
1
), . . . ,φ(x

j
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where ui is the average of the ith samples in H , u is the total average, and S
φ
w is the intra-

class scatter matrix. w can be expressed as:

where A = X. Then formula (8) can be expressed as:

Among them, Kt represents the overall scatter matrix of the kernel, and Kb represents 

the scatter matrix between kernel classes, calculated as follows [35]:

where Kw is a kernel class scatter matrix. Let Aopt denote the feature vector of a set of 

optimal solutions that maximize Eq. (13). From Eq. (11) we can get the kernel space pro-

jection matrix:

For any sample point x , its projection in kernel space is given by:

Proposed human motion recognition method

Motion data collection

Different from the image processing method based on spatiotemporal features, the 

machine learning method based on representation features used in this paper requires 

motion data acquisition tools with faster transmission speed and higher precision. 

Therefore, in the multimedia interaction scenario in the virtual reality environment, 

the Microsoft Corporation Kinect sensor used in the market cannot meet the accuracy 

(11)w = φ(X)a
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a
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requirements. Therefore, a motion data acquisition device based on an inertial sensor is 

employed. The specific digital performance process, in the VR interactive environment, 

the wearable hardware devices required for motion acquisition are shown in Fig. 4, and 

the hardware parameters are shown in Table 1.

Motion data classification based on genetic optimization SVM

The SVM [36] parameter optimization search based on Gaussian radial kernel func-

tion is mainly analyzed. Since different penalty factor parameters C and kernel function 

parameters σ are selected, different performance SVMs will be obtained. Therefore, this 

genetic algorithm is used to optimize the above two parameters. Cross-product coding 

in genetic algorithm is based on floating-point coding [37]:

(20)X
t+1

A
= aX

t

A
+ (1 − a)X t

B

Fig. 4 Device for collecting action data in a VR interactive environment. a Motion capture of the human 

body using inertia motion capture. b Human wears inertia motion capture device Noitom. c User wears AR 

glasses, shoots the real environment through a hand-held camera, and transmits the shot image to the AR 

glasses display screen in real time by wire. d See the surrounding environment through the cooperation of 

AR glasses and hand-held camera

Table 1 Sensor parameters

Parameters Value

Number of sensors 10

Maximum angular frequency 1200o/s

Band width 140 Hz

Maximum acceleration 2 g

Tilt accuracy 0.2o

Refresh rate 500 Hz
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where a represents a random number with a range of (0, 1).

Use the uniform mutation operator to perform the mutation operation, and select a 

random value from the specified interval of the relevant gene value to update the origi-

nal gene value for all mutation points:

where r is a random number with a range of (0, 1), Umax is the upper limit of the gene 

position, and Umin is the lower limit of the gene position [27]. The fitness function is:

where E represents the sum of squared errors and b represents a constant.The main idea 

of the improved SVM is to optimize the penalty factor parameter C and the kernel func-

tion parameter σ of the SVM through a genetic algorithm.

Human motion recognition realization

The main steps proposed to realize human motion recognition are shown in Fig. 5. The 

main part of the pre-step process is to search for the optimal parameters required by the 

SVM, mainly using the global search capability of the genetic algorithm, thereby improv-

ing the SVM classification performance. The specific steps are as follows:

Step 1. Collect human motion data.

Step 2. Perform kernel matrix feature extraction based on LDA algorithm.

Step 3. Search for SVM parameters according to the genetic algorithm and deter-

mine whether it is optimal.

(21)X
t+1

B
= aX

t

B
+ (1 − a)X t

A

(22)X
′
= Umin + r(Umax − Umin)

(23)f =
b

1 + E

Fig. 5 Main steps of the proposed motion recognition method
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Step 4. If the parameter is the optimal parameter, the search is completed and 

recorded. If the non-optimal parameters continue to search.

Step 5. Classify based on the optimized SVM classifier and output the classification 

result.

Experimental analysis and comparison in VR environment

Experimental environment

The experimental data is divided into real-time motion acquisition data based on inertial 

sensors, which is 20G in total. The experimental data set contains 10 types of actions, and 

the complexity increases in turn. The system structure of the VR multimedia art scene is 

shown in Fig. 6. The hardware and software parameters of the experimental environment 

are shown in Table 2. The relevant parameters of the test algorithm are: population size is 

50, maximum iteration algebra is 30, crossover probability is 0.8, mutation probability is 

0.007, b = 1000, α = 0.5, r = 0.2.

Evaluation indicators

In order to quantify the performance of the proposed method, the four most commonly 

used evaluation indicators in the action classification field are selected [38–40]: Precision, 

Accuracy, Specificity and Sensitivity, the calculation of the four is as follows:

(24)Precision =
TP

TP + FP

Fig. 6 Virtual reality system structure

Table 2 Software and hardware parameters of the experimental environment

Hardware environment Software environment

AMD FX-8350 CPU Window10 64 bit

8 GB RAM Visual C ++ 6.0

Hard disk 300G DirectX 3D processing software

NVIDIA GeForce GTX1060, 6 GB DRAM
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where TP represents the number of positive samples correctly classified, TN repre-

sents the number of negative samples correctly classified, FP represents the number of 

(25)Accuracy =
TP + TN

TP + TN + FN + FP

(26)Specificity =
TN

FP + TN

(27)Sensitivity =
TP

TP + FN

Table 3 Motion types

Type 1 2 3 4 5

Motion descrip-
tion

Plie Battement Tendu Rond De Jambe A 
Terre

Battement Frappe Battement Fondu

Type 6 7 8 9 10

Motion descrip-
tion

Rond De 
Jambe En 
Lair

Battement Releve 
Lent

Battement Retire Port De Bras Devant

Table 4 Comparison of experimental results of motion recognition (%)

Motion type number K-means-SVM [27]

Precision Accuracy Specificity Sensitivity

1 95.72 91.16 93.77 96.74

2 94.63 90.23 92.49 96.35

3 93.44 93.79 92.45 95.21

4 92.84 95.83 92.41 93.2

5 92.41 90.76 91.6 92.57

6 92.23 92.08 90.73 91.85

7 90.93 95.65 88.28 81.47

8 90.58 91.39 89.95 83.5

9 90.57 89.1 89.44 85.78

10 87.64 91.51 83.21 85.61

Motion type number LDA-GA-SVM

Precision Accuracy Specificity Sensitivity

1 100.00 100.00 94.9 96.66

2 99.13 99.92 94.85 96.45

3 98.43 98.31 94.63 95.58

4 97.78 98.02 93.14 95.45

5 96.46 97.29 93.07 95.24

6 95.53 96.15 92.59 95.22

7 95.39 95.77 92.23 93.05

8 94.84 95.07 91.08 91.73

9 94.25 95.03 90.78 91.62

10 93.19 94.97 90.53 89.06
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positive samples of the wrong classification, and FN  represents the number of negative 

samples of the incorrect classification (Table 3).

Experimental results

In the experiment, using the recognition test data, 10 dance motion types are 

obtained, as shown in Fig.  3. The recognition performance results of the 10 types 

of dance motion are shown in Table  4. The LDA-GA-SVM algorithm proposed in 

this paper is compared with the K-means-SVM algorithm [27]. It can be seen from 

Table 4 that the proposed algorithm increases the average of the Precision and Accu-

racy indicators by 4.401% and 4.903%, respectively. From the comparison chart of 

Figs. 7 and 8, the LDA-GA-SVM algorithm results. The Precision and Accuracy indi-

cators of each test point are higher than the K-means-SVM algorithm and are rela-

tively smooth and stable. That is to say, the LDA-GA-SVM algorithm proposed in this 

paper shows excellent performance in 10 motion type recognition. This is because the 

adopted genetic algorithm has certain advantages in multi-dimensional space opti-

mization and has a good global search ability. In addition, the proposed algorithm 

achieves a more balanced result on both the specificity and Sensitivity. The specificity 

Fig. 7 Comparison of the precision of the two algorithms

Fig. 8 Comparison of the accuracy of the two algorithms
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and Sensitivity mean values of the two algorithms are 90.833%, 92.128%, 92.78%, and 

94.006%, respectively. From the comparison in Fig. 10, it can be seen that the Sensi-

tivity index curves of the two algorithms are gradually separated over time, and It can 

be seen from Figs. 9 and 10 that the index values of the LDA-GA-SVM algorithm are 

higher than the K-means-SVM algorithm, that is, the sensitivity of the LDA-GA-SVM 

algorithm is higher. This is due to the use of the nuclear decision LDA feature extrac-

tion to solve the nonlinear problem of the traditional LDA and expand the sample 

difference, so that the performance is more stable. Therefore, in summary, from the 

precision, accuracy, specificity and sensitivity, the LDA-GA-SVM algorithm proposed 

in this paper is superior to K-means-SVM algorithm can solve the problem of motion 

recognition in digital performance of VR environment.

Conclusion

In this paper, we combine the kernel decision LDA algorithm with the genetic optimiza-

tion-based SVM algorithm to achieve human motion classification and recognition. In 

order to improve the accuracy of human motion recognition in VR human–computer 

interaction applications. Introducing a kernel function in LDA for nonlinear projec-

tion to map training samples into a high-dimensional subspace, and obtaining the best 

Fig. 9 Comparison of the specificity of the two algorithms

Fig. 10 Comparison of the sensitivity of the two algorithms
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classification feature vector, effectively solving the nonlinear problem and expanding 

the sample difference and reducing the dimensionality of the vector space operating 

efficiency. In addition, the genetic algorithm is used to optimize the parameter search 

of SVM. The experimental results verify the effectiveness and advancement of the pro-

posed method. However, the real-time performance of the algorithm in sample training 

and testing remains to be studied, and the complexity and scalability of the proposed 

algorithm will be further studied.
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Support Vector Machine Algorithm.
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