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Abstract. In this paper, we address the problem of recognizing hu-
man motion from videos. Human motion recognition is a challenging
computer vision problem. In the past ten years, a number of successful
approaches based on nonlinear manifold learning have been proposed.
However, little attention has been given to the use of isometric feature
mapping (Isomap) for human motion recognition. Our contribution in
this paper is twofold. First, we demonstrate the applicability of Isomap
for dimensionality reduction in human motion recognition. Secondly, we
show how an adapted dynamic time warping algorithm (DTW) can be
successfully used for matching motion patterns of embedded manifolds.
We compare our method to previous works on human motion recogni-
tion. Evaluation is performed utilizing an established baseline data set
from the web for direct comparison. Finally, our results show that our
Isomap-DTW method performs very well for human motion recognition.

Keywords: human motion recognition, non-linear manifold learning,
dynamic time warping.

1 Introduction

The automatic recognition of human motion from videos is a challenging re-
search problem in computer vision. The interest in obtaining effective solutions
to this problem has increased significantly in the past ten years motivated by
both the rise of security concerns and increased affordability of digital video
hardware. Recent works in the computer vision literature have proposed a num-
ber of successful motion recognition approaches based on nonlinear manifold
learning techniques [17,8,23]. Nonlinear manifold learning techniques aim at ad-
dressing simultaneously the inherent high-dimensionality and non-linearity of
representing human motion patterns. However, within this category of meth-
ods, little attention has been given to the use of isometric feature mapping
(Isomap) [20]. In this paper, we bridge this gap by proposing a new method
for automatic recognition of human motion and actions from single-view videos.
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Our approach uses non-linear manifold learning of human silhouettes in motion.
The approach is similar to the ones proposed by [17,8,23]. However, we cast the
problem of recognizing human motion as the one of matching motion manifolds.
Our matching procedure is based on an adapted multidimensional dynamic time
warping (DTW) matching measurement [22,2].

Our contribution in this paper is twofold. First, we demonstrate the appli-
cability of Isomap for dimensionality reduction in human motion recognition.
Secondly, we show how an adapted dynamic time warping algorithm can be
successfully used for matching motion patterns in the Isomap embedded man-
ifold. To accomplish our goals, we commence by assuming that the observed
human motion patterns can be represented by point-wise trajectories in a lower
dimensional space using isometric non-linear manifold mapping. Our proposed
algorithm starts by learning Isomap representations of known motion patterns
from a set of training images. The learning of the manifold projection mapping
is accomplished by means of an invertible radial basis function (RBF) mapping
as described in [8]. The initial Isomap projection does not encode any temporal
relationship between image frames. Temporal information is introduced into the
learned manifold after the projection to the manifold space. The nonlinear man-
ifold augmented with temporal information will then form the learned motion
pattern to be used for the recognition of novel motion sequences. Finally, recogni-
tion is accomplished by means of a nearest-neighbor classification scheme based
on a dynamic time warping score. Figure 1 illustrates sample output from each
of the three main steps of the method (i.e., Preprocessing, Model Generation,
Recognition). The process in the figure is briefly described as follows. A single
video-frame post preprocessing is provided as an example of the functionality
performed in this step. In the model generation step, the Isomap projection and
the addition of time are shown. Additionally, a comparison of the Isomap pro-
jection (◦) to the inverse RBF learned projection (×) is illustrated. During the
recognition step, the learned projection is used to map the test sequence (•) into
the lower dimensional space. Finally, the DTW moves the projected data (solid
line) to the temporally aligned data (thin dotted line) to perform the match to
the template (thick dashed line).

Our experiments show that the use of Isomap with DTW performs very well
for human motion recognition. We test our method on a set of standard human
motion sequences widely used in the literature. Finally, we provide a comparison
between our approach and recently published methods [4,17,3,23]. Specifically,
we apply our algorithm to the data set created by [3] for direct comparison to
both [3] and [23]. The data set is also similar enough in nature to compare our
results to the approaches presented in [17] and the single-view case in [4]. We
show that our method obtains superior results to [4,17,3], and obtains the same
100% recognition rate as the Hidden Markov Model method proposed by [23].

The remainder of this paper is organized as follows. In Section 2, we com-
mence by providing a brief survey of the related literature on human motion
recognition. Section 3 describes the details of our motion recognition method.
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Fig. 1. Motion manifold creation and recognition using DTW. The purple ◦ with solid
lines denote a projected training sequence. The blue × with dashed lines denote a
learned motion template. The red • with and without solid lines denote a projected
test sequence. The green dotted lines denote DTW aligned test data.

Then, in Section 4, we show our preliminary results using the proposed method.
Finally, in Section 5, we present our conclusions and directions for future work.

2 Related Literature

The literature on the problem of recognizing human motion from videos se-
quences is extensive [1,11,17,8,23]. In this paper, we focus ourselves on the
methods addressing the specific problem of recognizing human motion from im-
age sequences without the use of markers, tracking devices, or special body
suits. In general, such methods can be broadly classified into multiple-view
and single-view methods. Multiple-view methods address the motion recogni-
tion problem using image sequences obtained from multiple cameras placed at
different spatial locations [4,10,18]. The strength of these methods is their power
to resolve ambiguous human motion patterns that may result from self-occlusion
and viewpoint-driven appearance changes. However, multiple view approaches
usually require the availability of synchronized camera systems and controlled
camera environments. On the other hand, single-view methods rely only on in-
formation provided by a single video camera [3,4,6,8,9,14,15,17,18,23]. Under the
single-view assumption, human motion recognition becomes a significantly more
challenging and ill-posed problem.

In general, single-view motion recognition is performed using three main steps.
The first of these consists of an image processing step in which the image is fil-
tered to reduce the presence of noise (e.g., background, acquisition noise) and
to enhance the presence of useful features (e.g., contours, textures, skeletons).
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The second step aims at representing the motion information obtained from a
sequence of extracted features. The motion information from human activities
is inherently both highly non-linear and high-dimensional. As a result, this step
will usually try to obtain relevant (i.e., discriminative) motion information using
a reduced dimensional space-time representation. The representation can be ac-
complished, for instance, by making use of explicit measurements on the image
to which a pre-determined model is fitted (i.e., skeleton-based methods [18,10],
part-segmentation-based methods [15,6,14,9]).

More recently, research in human motion recognition has shifted toward the
concept of identifying a motion directly from appearance rather than fitting
the visual input to a physical model [4,17,3,23]. Indeed, most of these works
have avoided direct feature extraction techniques as they tend to be sensitive to
variations such as color, texture, and clothing. Instead, recent work has focused
on the use of silhouettes or other high-level abstractions from the raw input data.
In this paper, we propose an approach that falls under this later category. Work
in silhouette-based human motion recognition can be grouped in terms of the
main steps used to approach the problem: image preprocessing, motion pattern
representation, and recognition or matching approach.

We begin by discussing the image preprocessing step. This is usually the
first step of any recent approach to human motion activity identification. Here,
the image foreground (i.e., moving object) is extracted by means of motion
segmentation techniques. Standard techniques include the ones based on Motion-
History Images (MHI) [4,17,3]. Motion history -based representations allow for
simultaneous description of both the dynamics of the motion and the shape of
objects. However, as pointed out by Bobick and Davis [4], MHI-based methods
are not suited for representing the underlying motion when the observed object
returns to similar positions (e.g., cyclic motion patterns). Alternatively, object’s
silhouette information alone can be used as an input for recognition systems.
Wang and Suter [23] used silhouettes as the input to their recognition method.
Elgammal and Lee [8] also used silhouettes without motion history. In this paper,
we use a similar smoothing technique as the one presented in [8]. However, our
distance function representation places a higher weight on the moving object’s
medial-axis. This reduces the influence of variations in silhouette’s contours.

Human motion information is inherently both highly dimensional and com-
plex. Therefore, dimensionality reduction is a standard procedure in the prepro-
cessing of motion data for recognition. Here, the key idea is to find a suitable
reduced representation of the motion while maintaining sufficient discriminat-
ing data for performing the recognition. To accomplish these goals, past works
have used simple data reduction techniques such as principal component anal-
ysis (PCA) [17] and Locality Preserving Projections (LPP) [13,23]. The main
advantage of these linear approaches is their ability to produce a direct map-
ping to the embedding space. Nevertheless, the nature of human motion is highly
non-linear. Indeed, for complex motions of long duration, recent advances in non-
linear dimensionality reduction techniques provide significant improvements of
human motion recognition. Techniques in this group include the Isometric feature
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mapping (Isomap) [20] and the Local Linear Embedding (LLE) [19]. Evidence of
the effectiveness of these non-linear manifold learning methods for human motion
recognition has been widely reported in the computer vision literature [23,3,8].

Finally, the recognition step in most motion recognition methods aim at de-
termining the maximum similarity between an unobserved test sequence and
pre-learned motion models. Some methods use distance measurements such as
the Mahalanobis distance [4] or the Hausdorff distance to establish matches be-
tween the learned templates and test sequences [17,3,23]. Methods using the
Hausdorff distance are sensitive to non-isometrically similar datasets (i.e., the
Hausdorff distance compares each point from one set to every point in the second
set regardless of temporal sequence). In order to address this limitation, Wang
and Suter [23] propose the use of the Hausdorff distance only as a baseline for a
Hidden Markov Model (HMM) matching procedure. Additional important works
using HMM for human motion analysis and recognition include [12,5,24]. HMM
allows for a principled probabilistic modeling of the temporal sequential infor-
mation. An alternative way to approach the matching of data sequences is to
use Dynamic Time Warping (DTW) [22,2]. DTW has been used in the context
of matching data sequences in several applications such as speech recognition,
economics, and bio-informatics. DTW provides an approximate similarity mea-
surement while allowing for matching partially identical sequences.

The method proposed in this paper uses an adapted DTW algorithm to per-
form recognition by matching trajectories on a non-linear manifold space rep-
resentation. Our paper aims at demonstrating the effectiveness of the Isomap-
DTW combination. To the best of our knowledge, this combination has not
yet been explored in the human motion recognition literature. In several cases
Isomap has been dismissed in favor of Local Linear Embedding or other algo-
rithms mostly due to the greater focus on the local relationship perservation. In
other cases Isomap has been dismissed due to the lack of an inverse mapping
which other algorithms readily elucidate. The inverse mapping issue has been
solved by Elgammal and Lee [8]. Additionally, DTW has also been dismissed in
favor of HMM. Our work demonstrates the potential of using Isomap and DTW
for matching motion manifolds to accomplish accurate human motion recogni-
tion. Next, we describe the details of our motion recognition method.

3 Our Method

In this section, we describe the details of the steps of our method.

3.1 Data Preprocessing

The selection of Isomap for our algorithm imposes a restriction on the input
data set. Isomap asymptotically converges for a large class of nonlinear mani-
folds. The convergence is achieved when the input data has a large enough fre-
quency of coverage within the high dimension space. Consequently, Isomap must
be supplied an input data set sufficiently representative to create a meaningful
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embedded manifold space. This is a reasonable restriction for any machine learn-
ing problem and, given a specific domain, the required amount of input needed
for adequate characterization can be obtained via experimentation. Given that
a large enough representative set is required, there are two actions that can be
taken to aid in preconditioning of the data. The first action is to select a more
constrained search space and the second is to generalize the hypothesis sets re-
maining within the reduced search space. These two techniques aid in decreasing
the amount of training data that may be required.

Constraining the Search Space. In many cases the search space can be pre-
conditioned to a much smaller set. One common preconditioning used for images
is the reduction of color representation to gray scale representation. Thoughtful
manipulation of the search space not only aids in reducing the representative
data set needed for learning the manifold space, but can also increase the ro-
bustness of the learned mapping.

In the particular case of human motion several recent works established suc-
cessful results by reducing the space to the silhouette of subjects [3,8]. This
discards much of the data associated with internal clothing details, and removes
all background data from the search space. The end result focuses the observed
dimensionality to strictly the motion performed.

For this particular problem domain, the registration of the silhouettes in the
image frames also limits the size of the search space. This preprocessing discards
the motion caused by translation and further constrains the space to the mo-
tions relative to the internal deformation of the shape. Nevertheless, a simplistic
resizing alteration could change the aspect ratio of the subject, and result in
an undesirable change to the internal deformation. In our implementation, the
registration is performed by isolating the foreground silhouette using a simple
background subtraction operation. A bounding box is then constructed for each
frame that encompasses the foreground pixels. The largest frame size is chosen to
represent the standard frame size for the entire sequence. Finally, all remaining
frames are aligned (center pixel) to the center of the standard selected frame.

Generalize the Hypothesis Sets. After the initial search space reduction,
generalization is performed by converting the silhouette to a gray level gradient
using a distance transform similar to [8]. In our method, we perform the distance
transform so that the highest values are assigned to the silhouette’s most medial
axis points. Once the smoothing is completed, the intensity range in all images
is re-scaled to a predefined maximum value (e.g., 255). The result of this pre-
processing step is illustrated in Figure 2. Gray scale images are used, however,
the color versions illustrate effect on the silhouette’s medial axis. The smoothing
decreases the variance between subtle differences of similar images, such as those
caused by clothing and hair variance. Data sets containing both large volumes
and small volumes with significant amount of discriminative features for recog-
nition in smaller volumes may be sensitive to this preprocessing. For human
motion, this does not seem to be an issue, and we believe this preprocessing
increases the overall robustness of recognition.
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Fig. 2. Sample preprocessed data: Walk (gray scale), Walk, Jack, Jump (color)

3.2 Motion Pattern Learning Using Isomap

In this part of our algorithm, we use the isometric feature mapping or Isomap [20]
to obtain template models of the observed motions. Here, our goal is to build a
model representation of each motion pattern in our training set. These models
will later be used in the matching step to accomplish recognition of unknown
motion patterns. The key idea here is to use Isomap as a means of representing
the actual intrinsic dimensionality of the analyzed data. Elgammal and Lee [8]
used Locally Linear Embedding (LLE) as a manifold learning technique in their
motion recognition work. However, Isomap manifolds have been reported to re-
tain more global relationships than its LLE counterpart [7]. This part of our
method is divided into two main steps. First, an Isomap manifold is created
for each motion available in the training dataset. Secondly, radial basis function
mappings are estimated for mapping the learned Isomap manifold space back to
the template images. These functions admit an inverse map that allows for the
extraction of the manifold embedding for new images. These steps are detailed
as follows.

Isometric mapping of silhouette patterns. In this step, we will use Isomap
to build a manifold representation of our motion sequence. The input data used
by this step is a set of smoothed silhouette images obtained by the preprocessing
step of our method. Let Y = {yi ∈ R

d, i = 1, . . . , N} be the set of preprocessed
image data (i.e., smoothed silhouette images), and X = {xi ∈ R

m, i = 1, . . . , N}
be the corresponding embedding points. The embedded points X are determined
using the following three-step Isomap algorithm: (1) Create a weighted graph G

of points in Y with weights dY (i, j) representing the pairwise distance between
neighbors. In our algorithm, a neighborhood is defined by the k-nearest neigh-
bors; (2) Estimate the pairwise geodesic distances dX (i, j) between all manifold
points by finding the shortest path distances in the graph G. These shortest path
distances are denoted by dG (i, j); (3) Finally, apply classical multidimensional
scaling (MDS) on DG to map the data onto an m-dimensional Euclidean space
X . It is worth pointing out that dX (i, j) and dY (i, j) are Euclidean pairwise
distances within manifold space while dG (i, j) represents the actual geodesic dis-
tances. The coordinate vectors xi in X are chosen by minimizing the following
L2 cost function:
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E =

√

∑

ij

[τ (dG(i, j)) − τ (dX (i, j))]
2

(1)

where τ in an operator that converts distances to inner products as described
in [20]. The use of this operator supports efficiency in the optimization process.

However, the above embedding procedure does not directly allow for the map-
ping of new images onto the same manifold. In order to address this issue, El-
gammal and Lee [8] proposed the use of an approximate invertible mapping from
the embedded space to the image space. This mapping is based on radial ba-
sis functions. For completeness, this mapping is briefly described next. Further
details of this method can be found in [8].

Learning embedded-space-image mappings. The main goal in this step is
to obtain an invertible approximate mapping between the embedded manifold
space and the image space. Let tj ∈ R

m, j = 1, . . . , Nt be a set of Nt cluster
centers in the embedding space obtained by using a K-Means clustering algo-
rithm. In this paper, we choose Nt such that Nt = 3

4N . The radial basis function
interpolants fk : R

m
→ R

d can be found and satisfy the condition yk
i = fk(xi).

Here, k is the kth dimension (pixel) in the image space. More specifically, the
interpolant is given by:

fk (x) = pk (x) +

Nt
∑

i=1

wk
i φ (|x − ti|) (2)

Equation 2 can also be written in matrix form as:

f (x) = B · ψ (x) (3)

where B is a d × (Nt + m + 1) dimensional matrix, and ψ is given by:

ψ =
[

φ (|x − t1|) . . . φ (|x − tNt
|) 1 xT

]T

(4)

Finally, B can be obtained by solving the linear system:

(

A Px

PT

t 0(m+1)×(m+1)

)

BT =

(

Y

0(m+1)×d

)

(5)

where A is N × Nt matrix with Aij = φ (|xi − tj |), i = 1 . . .N , j = 1 . . .Nt, φ is
the thin-plate spline φ (u) = u2 log (u), Px is a N × (m + 1) matrix with ith row
[

1 xT

i

]

, and Pt is a Nt × (m + 1) matrix with ith row
[

1 tTi
]

.
The mapping in Equation 5 can be inverted by calculating the Moore-Penrose

pseudo-inverse of the matrix B:

ψ (x) = (BTB)−1BTy (6)

This function can be used to map each training image-frame to the embedded
template space. The final motion model manifold is then created by reintroducing
the time dimension into the manifold representation. This is accomplished by
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assigning each frame its corresponding time from the original sequence. The
motion manifold construction is now complete, and test frames can be efficiently
converted to each of the template manifold spaces before entering the recognition
phase. The recognition step is described as follows.

3.3 Recognition

We perform recognition by means of a matching function based on dynamic
time warping [22,2]. We adapted the original DTW framework to allow for
the matching of motion patterns in manifold space. The key modifications in
the DTW algorithm are the following. First, we interpolate both the model
template and test manifolds to have the same number of points. Secondly, we
use a multi-dimensional version of the DTW with an adapted scoring system
using the basic Sakoe-Chiba band constraint. These few modifications permit the
DTW algorithm to adjust to nonlinear variations in the input motion patterns.
Our main modifications to the DTW algorithm are described as follows.

Interpolation of Inputs. This is a preprocessing step used to improve the
quality of the input data before proceeding with the actual DTW alignment.
There are several sources of spatial and temporal variations that need to be con-
sidered. First, temporal synchronization of video frames cannot be guaranteed
(e.g., cameras of various frame rates). A second source of noise is related to the
spatial and temporal variations that occur whenever humans perform the same
motion repeatedly. The original DTW algorithms does not require same size se-
quences. Also, uniformity in the sampling rate of the manifolds’ time-series is
not required. However, results tend to improve when sequences are of similar
sampling rates. This interpolation step allows the time aligning properties of
DTW to more accurately compensate for the nonlinear variants by matching to
anticipated intermediary missing frames.

Adapted Distance Measure. The standard DTW distance measurement is
obtained by integrating the values along a path of a distance matrix relating the
final manifold points to the initial manifold points. This path search is performed
in a dynamic programming manner. In the standard DTW algorithm, all visited
nodes contribute to the final distance reported. However, our distance measure
only aggregates distances associated with transitions to the next state of the
template into the final distance measure. We have modified this distance function
slightly to remove additions which simply indicate the time warping is keeping
the test manifold in the same state for a longer duration to remain synchronous
with the template.

4 Experimental Results

In this section, we evaluate the effectiveness of our motion recognition method.
Our main goal here is to show that our method is able to recognize a number of
motion patterns acquired by a single camera. To accomplish this goal we provide
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a comparison between our method and two recently published motion recogni-
tion methods [3,23]. For this comparative study, we use the same dataset used
by the methods in [3,23]. The data set contains a collection of nine individuals
performing ten distinct actions. The actions and the corresponding labels used
in our experiments are the following: bending over (Bend), jumping jack (Jack),
hopping across the screen (Jump), jumping up and down in place (Pjump),
running (Run), stepping sideways to one direction (Side), hopping on one foot
across the screen (Skip), walking (Walk), waving one arm (Wave1), and waving
both arms (Wave2). We divided the data set into training subset and testing
subset. These two subsets cover all individuals performing all actions. However,
in the case of the Bend action, the data set did not contain enough frames to
allow for the creation of two distinct action subsets. We addressed this prob-
lem by sampling every other frame in the Bend sequence to create the training
and testing subsets. Additionally, in some cases, the starting point of the mo-
tion was significantly different (e.g., half-cycle sequence). This was addressed by
manually stitching the two halves of incomplete motions into a single test mo-
tion. The resulting datasets were then used in the experiments described in this
section.

We began by preprocessing each sequence to extract the foreground motion
information. For simplicity, we used a background subtraction method to facili-
tate the extraction of the moving foreground silhouette. For cases where a clean
background is not available, a more robust foreground segmentation method can
be used [21]. The resulting silhouette images were both normalized and registered
as described in Section 3.1. In our experiments, we evaluated the performance
of the proposed method for images of varying sizes. The sizes used were 16× 16,
24 × 24, and 32 × 32 pixels. Once the processed sequences were at hand, we
compared our Isomap-based method against both the LLE and the LPP dimen-
sionality reduction techniques. For all methods, the local manifold similarity was
based on the K-nearest neighbors. Here, the K neighborhood was chosen as sug-
gested in [23]. Accordingly, we used values of K ranging from 5 to 15 to ensure at
least an overlap ranging from 10 to 15, respectively. Each motion manifold space
created by these embeddings contained two dimensions and were generated from
the images without taking any temporal information into consideration. Tempo-
ral information was subsequently reintroduced creating manifolds such as those
illustrated in Figure 3. The manifolds in Figure 3 also illustrate the use of linear
extrapolation between subsequent data points to define the motion manifold.
A sampling of 64 evenly-spaced data points were taken from both the learned
motion manifold and the test motion manifold for input to the DTW algorithm.
A standard sequence size of 64 was chosen to represent approximately twice the
size of the largest number of frames for any of the motions in the experiment’s
dataset. This sampling rate allows the DTW algorithm to perform alignment to
interpolated frames that are missing in the learned models due to temporal mis-
alignment in the frame sequence. The algorithm’s power to extract meaningful
intermediate frames is illustrated in Figure 4. With the exception of a few de-
graded cases each motion sequence is recognizable despite only the first and last
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Fig. 3. Motion manifolds for Daria. Top row: Bend, Jack, Jump, Pjump, Run. Bottom
row: Side, Skip, Walk, Wave1, Wave2.

silhouettes of each sequence falling exactly on a projected data point. Temporal
misalignment and missing frames are common issues in many of the analyzed
videos. The DTW was constrained using a Sakoe-Chiba band of 25%. Figure 5
illustrates that our proposed method using Isomap-DTW achieved almost exact
recognition rates for the tested activities.

Fig. 4. Silhouette contour of the projection from manifold space to image space
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Fig. 5. Isomap(◦), LLE(•) and LPP(box) Overall Activity Recognition with a Sakoe-
Chiba’s band of 25%. The image size is the width and height of the images after
preprocessing which is also equivalent to

√
d.

The recognition scores in Figure 5 represent the percentage of motions cor-
rectly identified. The size of the images, the k-neighborhood sizes and the di-
mensionality reduction techniques used were varied for comparison. The results
in Figure 5 provide evidence to support our claim that the global perservation
of the Isomap data reduction technique can elucidate more meaningful mani-
folds for recognition via DTW. The recognition results shown in Figure 5 using
Isomap with DTW are superior to those reported in [4,3]. Moreover, our results
were equivalent to the ones obtained using supervised LPP-Hausdorrf-distance,
unsupervised-LPP-HMM, and supervised-LPP-HMM [23]. However, our algo-
rithm achieves this same high recognition rate with smaller image size, smaller
neighborhood size, and no supervision. It is worth pointing out that, although
Masoud et al. [17] utilized a different action database, the motions performed
were comparable to the ones used in our experiments. Additionally, the best
results reported in [17] were only in the lower 90% range, while our algorithm
achieved 100% at several occasions. Also, although our experiments utilized pe-
riodic sequences, our method does not require motion periodicity. The specific
dataset was used for comparison purposes only.

The subjects used for training are identical to the subjects used for testing.
As a result, we are currently unable to infer the generalization capabilities of
the proposed method with respect to recognizing unseen subjects. While we are
not covering this specific issue in this paper, it is expected that models for one
individual may be able to elucidate matches to similar motions performed by
other individuals not captured for a particular model.

Finally, our results for all other tested Isomap configurations consistently
achieved activity recognition rates above 95%. This demonstrates that, without
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any experimental tuning, our technique performs very well in comparison to
other established human motion recognition methods.

5 Conclusions and Future Work

In this paper, we presented a method for recognizing human action and mo-
tion patterns. Our method works by matching motion projections in Isomap
non-linear manifold space using dynamic time warping (DTW). Dynamic time
warping has been used in the past in many sequence alignment applications.
However, the application of DTW to matching human motion manifolds has
been somewhat unexplored. Moreover, we showed that Isomap manifold learn-
ing combined with DTW can be an effective way to both represent and match
human motion patterns.

Our algorithm achieved accurate activity recognition results using an adapted
implementation of DTW with a basic Sakoe-Chiba band optimization. Our ex-
periments established the potential of the method for human motion recognition.

Future work includes the improvement of the computational efficiency of our
recognition method by introducing indexing mechanisms such as the one sug-
gested in [16]. Additionally, we plan to investigate the use of statistical neighbor-
hood approach in our adapted DTW to help improve the classification results
for both LLE and LPP.
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