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Abstract— The performance of deep learning (DL) algorithms
for radar-based human motion recognition (HMR) is hindered
by the diversity and volume of the available training data. In this
article, to tackle the issue of insufficient training data for HMR,
we propose an instance-based transfer learning (ITL) method
with limited radar micro-Doppler (MD) signatures, alleviating
the burden of collecting and annotating a large number of
radar samples. ITL is a unique algorithm that consists of three
interconnected parts, including DL model pretraining, correlated
source data selection, and adaptive collaborative fine-tuning (FT).
Any of the three components cannot be excluded; otherwise, the
performance of the entire algorithm decreases. The experiments
with a radar data set of six human motions show that ITL
achieves state-of-the-art performance for HMR with limited
training samples, outperforming several existing transfer learning
approaches. Especially, when there are only 100 samples per per-
son per class, ITL yields an F1 score of 96.7%. Last but not least,
ITL is more generalized to human motion differences. Though
adapted to recognize the persons’ motions in a small-scale target
data set, ITL can also classify the persons’ motion data used for
pretraining, achieving up to 11.0% F1 score enhancement over
the conventional FT method.

Index Terms— Deep learning (DL), human motion recognition
(HMR), radar micro-Doppler (MD), transfer learning.

I. INTRODUCTION

HUMAN motion recognition (HMR) has emerged as a

vital step in many applications, such as assisted living

[1], remote health monitoring [2], and human–computer inter-

action [3], among others. Due to the unique characteristic,

e.g., robustness to the environment and the penetrability to

opaque objects, radar has been increasingly applied for HMR
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[4]. The radar spectrogram is the power distribution of target

return over time and frequency and is a typical 2-D repre-

sentation for analyzing radar micro-Doppler (MD) signatures.

These spectrograms are individual-unique and motion-unique

and have been increasingly used for radar-based HMR [5]–[9].

However, since collecting and annotating radar data man-

ually are time-consuming and expensive, most labeled radar

data sets are quite small-scale, and the number of labeled radar

data is limited. In this circumstance, training a classification

model from scratch with such limited training data, especially

deep learning (DL) model, often leads to overfitting. At the

same time, due to the difference in data distribution, directly

using a trained model to classify the limited data is not

effective. As a result, the performance of HMR approaches is

often hindered by limited radar data. How to tackle the issue

of classification with relatively few training data has become

one of the main concerns in the radar community.

Current work that deals with classification tasks with limited

training data can be roughly divided into three categories.

The first category is to build classifiers robust to limited

training data, such as the models in [10]–[12]. The second

category is labeled data augmentation with synthetic data

[13]–[15]. Transfer learning, which can take advantage of

prior knowledge from an existing large-scale data set (source

domain) as a supplement for the tasks on a different but

related small-scale data set (target domain), is the third

category.

Transfer learning can reduce the dependence of models

on a vast amount of labeled data by utilizing this prior

knowledge from another related domain. Several transfer

learning approaches have been presented for radar-based

HMR [16]–[19]. For instance, Park et al. [18] presented

a deep convolutional neural network (CNN) pretrained on

ImageNet and fine-tuned the network with measured radar

MD spectrograms for human aquatic activity classifica-

tion. Seyfioğlu et al. [19] proposed a residual learning model

DivNet trained on the simulated radar MD spectrogram data

set and fine-tuned the model with a measured data set to

classify seven human activities. The fine-tuning (FT) strategy

used in these methods utilizes the target data to fine-tune

the pretrained DL models and transfers the source knowledge

to compensate for the insufficiency of target domain data.

We refer this strategy to the Conventional FT.
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Fig. 1. Pipeline of the proposed I T L for HMR. (a) Pretraining the proposed MNet with the source spectrogram data set. (b) CSDS: the process of constructing
spectrogram descriptors (represented as vectors) and selecting the correlated source instances for every spectrogram in the target domain. (c) ACFT: the
process of adaptively FT the pretrained MNet with target spectrograms and the selected source instances for several epochs. In the pipeline, the MNet is
first pretrained with the source data. At the same time, the CSDS process is performed to select correlated source samples for every target sample. Then, the
ACFT process is performed for FT the pretrained model.

However, the performance of Conventional FT approaches

often degrades when the amount of labeled data drops. Fur-

thermore, the catastrophic forgetting effect [20] (the tendency

of DL models to abruptly forget previously learned tasks

after being trained for a new task) usually occurs in the

Conventional FT. In other words, when the model fine-tuned

on the target data set is applied to classify the persons’ motions

in the source data set, the performance usually decreases. As a

result, the Conventional FT method often lacks generalization

and cannot scale well to the persons in different domains

simultaneously.

In this article, aiming at effectively training an HMR model

with limited training samples and improving the performance

on the target task, we propose a novel instance-based transfer

learning (ITL) approach with radar MD signatures. To recog-

nize the motions in the target data set (target domain) with

limited training data, a larger data set (source domain) whose

data distribution is different but relevant to that of the target

data set is used as supplementary. Furthermore, ITL utilizes

some source instances that are similar to the target data to

jointly fine-tune a DL model to recognize human motions in

the target domain.

The overall flow of the proposed ITL is shown in Fig. 1.

First, we design a deep CNN MNet for radar-based HMR as

the backbone of ITL and pretrain it with all available source

data [see Fig. 1(a)]. At the same time, a correlated source

data selection (CSDS) algorithm is designed to pick up partial

instances from the source domain as supplements for the target

data [see Fig. 1(b)]. Then, an adaptive collaborative fine-tuning

(ACFT) algorithm [see Fig. 1(c)] is presented to fine-tune

the pretrained MNet with the whole target data set and the

selected source data. With ACFT, ITL can perform the target

task while retaining partial source knowledge. This property

allows the fine-tuned MNet to be used for classifying the target

motion data, as well as accurate identification of the motions

in the source data set. In other words, ITL is more general-

ized to cope with the data distribution discrepancy between

the two domains, which is often caused by human motion

differences.

The major contributions of this article can be summarized

as follows.

1) We propose an ITL approach for radar-based HMR with

limited training data, alleviating the need of labeling a

large amount of radar data.

2) ITL is a unique algorithm that consists of three intercon-

nected parts, including DL model pretraining, CSDS, and

ACFT. Any of the three components cannot be excluded;

otherwise, the performance of the entire algorithm for

HMR decreases.

3) The experimental results demonstrate that ITL has good

performance for recognizing human motions with limited

radar data, outperforming several state-of-the-art HMR

methods. When there are only 100 samples per person

per class, an F1 score of 96.7% is yield. Furthermore,

though trained for the classification task in the target data

set, ITL can generalize to human motion differences and

recognize different persons’ motions in both the source

domain and the target domain.

The rest of this article is organized as follows. Section II

presents some related work on ITL. Section III describes

the measured data collection and preprocessing process and

presents some data analysis. Section IV introduces the struc-

ture of ITL. Section V presents the analysis and discussion of

the experimental results. Furthermore, some ablation studies

on ITL are performed in Section VI. Finally, Section VII

concludes this article.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2021 at 15:03:38 UTC from IEEE Xplore.  Restrictions apply. 
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II. RELATED WORK

Transfer learning can improve the performance of predic-

tive models to a new domain (target domain) by utilizing

the knowledge in a preexisting domain (source domain).

In this way, compared with training a DL model from

scratch, transfer learning approaches do not require a large

amount of labeled data, so they can be applied for the

tasks that have only limited data. Among transfer learn-

ing methods, the ITL is a typical approach and has been

employed in many applications [21]–[25]. The instance-based

methods assume that some source data can be reused for

learning in the target domain by reweighting. In general, the

reweighted source data are used in two ways: pretraining a

DL model and FT a pretrained model together with the target

data [26].

For instance, Ngiam et al. [22] proposed an instance-based

approach where the source data are given diverse weights

of importance, and the weighted source data are employed

for pretraining a DL model. Then, the proposed method

is applied to fine-grained image classification tasks. Arnold

and Cohen [23] proposed a cross-language ITL approach

for multilingual deep retrieval. Wang et al. [24] proposed a

Minimax Game-based transfer learning method and utilize the

adversarial scheme to select source data for training the DL

model with the target data. The proposed method is applied

for item recommendation and text retrieval tasks. In addition,

Ge and Yu [21] proposed an ITL approach for natural image

classification tasks. The Kullback–Leibler (KL) divergence is

applied as the similarity metric between the source samples

and the target samples. Partial source data that are highly

similar to the target data are used to fine-tune the pretrained

DL model.

In this article, we innovatively apply ITL to radar-based

HMR and present the ITL method to tackle the issue of insuf-

ficient labeled radar data. Especially, ITL takes the advantage

of partial prior knowledge that is learned from the sufficient

motion data of the existing persons (source) to classify the

motion data of new persons (target). Based on the general

ITL idea, we select a part of the source data, instead of using

merely target data, and adopt the target data and the selected

source data to fine-tune a pretrained DL model.

Unlike the existing ITL approaches, we utilize a different

similarity metric to compare the similarity between the source

data and the target data. With that, a series of source samples

are specially selected for every piece of target data. Further-

more, during the FT process, the selected source samples

are assigned diverse importance by reweighting their training

losses. In this way, the source samples with less domain

discrepancy can contribute more to HMR in the target domain.

Last but not least, we design a deep CNN model especially

for radar-based HMR and use it as the backbone of ITL.

The proposed CNN model has a simple structure and good

performance for classifying radar spectrograms. With these

improvements, the proposed ITL can recognize the human

motions accurately when there is only limited data in the

target domain. Furthermore, ITL is more generalized to the

data distribution discrepancy and can scale well to recognize

different persons’ motions.

TABLE I

BASIC PHYSICAL INFORMATION OF THE SIX SUBJECTS

Fig. 2. Pipeline of radar raw signal preprocessing. (a) MTI is used on the raw
radar signals for background clutter suppression. (b) Processed radar data is
divided into several segments of 1 s with an overlap of 0.36 s between adjacent
segments. (c) STFT is applied to transform the radar signals into 2-D complex
data. (d) 2-D complex data are normalized, and the modules are obtained to
form a spectrogram. (e) After resizing, the preprocessed spectrograms are
obtained and used for further experiments.

III. DATA COLLECTION, PREPROCESSING, AND ANALYSIS

A. Data Collection

We utilize an ultrawideband (UWB) radar PulsON 440 for

the experiments. PulsON 440 is composed of two antennas for

transmitting and receiving C-band radio signals. The waveform

generator generates chirp signals with a bandwidth of 1.8 GHz

and a center frequency of 4.0 GHz. The UWB radar can

distinguish the main scattering points of the human target due

to its high range resolution. By accumulating the echo signals

of multiple strong scattering points, the SNR of the received

signals can be improved. Thereby, the target recognition ability

of the UWB radar is enhanced.

The experiments are conducted in an indoor environment.

The radar is set at the height of 1 m, and six motions

(M1: running forward, M2: running in a circle, M3: jumping

forward, M4: sitting on a chair, M5: walking forward, and M6:

boxing in place) are performed by six persons in the line-of-

sight of the radar with an aspect angle of 0◦. All the subjects

are limited to move within the range from 1.5 to 7.5 m. Each

of the six motions is continuously performed by an individual

for approximately 1.5 min. In each scenario, the process is

repeated one to three times. The basic physical information of

the six subjects is listed in Table I.

B. Data Preprocessing

In this study, we employ MD spectrograms as input to

the network, treating HMR as a spectrogram classification

problem. The radar data preprocessing process is illustrated

in Fig. 2. First, the moving target indicator (MTI) is adopted

on the raw radar echo signals to remove the static background

clutter. Next, the processed radar data are divided into several

segments of 1 s so that there is an approximately complete

cycle of each of the six motions. The overlap between adjacent

segments is 0.36 s.

Based on this, a 1024-point short-time Fourier trans-

form (STFT) is used to process these data segments. Since the

Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2021 at 15:03:38 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Several typical MD spectrograms of human motions. (a) Run forward. (b) Walk forward. (c) Box in place. (d) Run in a circle. (e) Jump forward.
(f) Sitting on the chair.

Fig. 4. Visualization results of the whole spectrogram data set with t-SNE. (a) Distribution of all motion data of the six persons. (b) Distributions of the six
persons’ motion data, separated for each individual.

human bodies are distributed targets, the scattered data from

the bodies are spread over a few range cells. Thus, the STFT

is performed on the radar data that are summed over several

resolution cells. The obtained 2-D radar data after the STFT

is still complex-valued and the modules of the 2-D complex

data are utilized to form the spectrograms.

Then, we normalize all the spectrograms to make the values

in the spectrograms fall into [0, 1]. Data normalization can

prevent the value of a particular dimension from being too

large. In this way, the convergence of DL models can be

facilitated [27]. Finally, the spectrograms are resized into

150 × 150 pixels for further processing. In the radar MD data

set, there are 300 spectrograms per person per motion. Several

typical preprocessed spectrograms are shown in Fig. 3.

C. Data Analysis

Due to the human individual motion differences, different

persons’ motion data often have some discrepancy and are

varied in distribution. In this circumstance, when a DL model

that is trained with the motion data of several persons is

directly applied to recognize the motions of new persons, the

performance of the model often decreases.

To show the differences in the distributions of the six

persons’ motion data, we reduce these motion data to a

series of 2-D vectors and visualize the dimensionality-reduced

data with t-distributed stochastic neighbor embedding (t-SNE)

[28]. The visualization results are shown in Fig. 4. It can be

seen that, though related, the distributions of the six persons’

motion data are different, indicating that there are individ-

ual motion differences between these persons. Furthermore,

a quantitative similarity comparison between the six persons’

motion data is also performed. In detail, we assume that the six

persons’ motion data follow independent multivariate Gaussian

Fig. 5. KL divergence KL(p||q) between the motion data of one person to
the others. p and q are the probability distributions of the motion data of any
two of the six people. It can be seen that when the KL divergence between
the two distributions is smaller, the data distributions are more similar.

distributions. Then, the KL divergence from the motion data

distribution of one person to the others can be calculated. The

KL divergence KL(p||q) is shown in Fig. 5, where p and q

are the probability distributions of the motion data of any two

of the six people. It can be seen that when the KL divergence

between the two distributions is small, the similarity between

the data is relatively high.

IV. DESCRIPTION OF ITL

In this section, we introduce the algorithmic components of

our proposed HMR approach, ITL, in detail.

A. Problem Formalization

Mathematically, the problem is described as follows. Let the

source domain training data set Ds = {x
(s)
i , y

(s)
i }

Ns

i=1, where

there are Ns data in the source domain. x (s) ∈ Rm×n denotes

an m × n matrix corresponding to the radar MD signature

Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2021 at 15:03:38 UTC from IEEE Xplore.  Restrictions apply. 



6590 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 8, AUGUST 2021

Fig. 6. Architecture of the proposed backbone (MNet) for HMR. The proposed MNet is composed of six convolutional layers, two dilated convolutional
layers, two channelwise attention layers, and two fully connected layers.

of the human motions in the source domain. y(s) denotes the

corresponding label of Cs categories. A source classification

network fs(·) is trained with Ds from scratch. Let the target

data set Dt = {x
(t)
i , y

(t)
i }

Nt

i=1, where x (t) ∈ Rm×n denotes

an m × n matrix corresponding to the radar MD signature

in the target domain. The data in the target domain belong

to the same Ct categories as those in the source domain.

However, there is a distribution discrepancy between Ds and

Dt , which makes fs(·) not suitable to classify the target data.

Furthermore, there are only a limited number of instances in

Dt , which are insufficient to train a sufficiently generalized

classification model.

Our goal is to train a target classification network ft (·)

to recognize the motions accurately in Dt when there is

limited target training data. To this end, an instance-based deep

transfer learning approach ITL is presented. The proposed ITL

transfers the relevant knowledge from the sufficient motion

data (source domain) as a supplement to classify the motion

data in a new data set (target domain). The details of our

proposed algorithm are summarized in Algorithm 1.

B. Structure of the Pretrained Deep Model

In this article, we design a deep neural network MNet

for radar-based HMR and use it as the backbone of ITL.

In radar spectrograms, each pixel of the spectrogram has

both an intensity and a sample of time and frequency values,

distinguishing it from optical images. Due to the unique

properties of MD signatures, the proposed DL approach is

designed to be more tailored to the radar data. The architecture

of MNet is illustrated in Fig. 6.

As shown in this figure, convolutional layers, together

with max-pooling, are the basic components of the network.

Furthermore, to extract more discriminative features from the

MD signatures, we apply the dilated convolution mechanism

and the channelwise attention mechanism within MNet. Then,

two fully connected layers are connected with the last convolu-

tional layer sequentially. The softmax function is employed at

the end of MNet to predict the labels of the input spectrograms.

1) Channelwise Attention: The channelwise attention mech-

anism enhances the network performance by accounting for

the different importance that each feature channel has in

the classification process. The more useful feature channels

are weighted accordingly to emphasize their contribution and

the other way round for less important feature channels

[29]. By explicitly modeling the channel-interdependencies

and recalibrating the features, the proposed network is more

Fig. 7. Illustration of the channelwise attention mechanism. M1 represents
the input feature maps of L × W from H channels, and so, M2 , M3 , and M4.
Conv represents the convolution with H kernels of L × W.

focused and oriented to pay more attention to the more

informative data.

The process of channelwise attention mechanism is illus-

trated in Fig. 7. First, the feature maps M1 from H channels are

fed into a convolutional layer. In order to obtain the importance

of every channel, the convolutional layer is designed with H

kernels with the size of L × W, which has the same size

as the input feature maps. Hence, the output feature maps

M2 are H real numbers and have a global receptive field.

Next, the 1 × 1 feature maps are excited with an activation

function, and the output values (feature maps M4) are treated

as the weights of importance corresponding to these channels.

Finally, the channel recalibration is completed by multiplying

the weights with the original feature maps M1 channel-by-

channel. In this way, the original M1 is transformed into the

weighted feature maps. The channels with larger weights are

paid more attention.

2) Dilated Convolution: In CNNs, pooling is utilized to

decrease the redundancy of the feature maps and enlarge the

receptive fields. The receptive field is the size of the activation

area on the feature map during a convolution operation.

However, pooling has many drawbacks, such as missing spatial

information and small-object information. For example, when

there are three pooling layers with a kernel of 2 × 2, the

information of the objects smaller than 8 × 8 is lost.

To tackle this problem, dilated convolution [30] is adopted

in this article. Instead of downsampling, dilated convolution is

achieved by zero-padding on the convolution kernels, as shown

in Fig. 8. This mechanism makes the dilated convolution able

to increase the receptive fields without losing the structured

information of data. The size of the receptive field is propor-

tional to a parameter called dilation rate due to the number of

zero-padding increasing as the dilation rate increases. When

the dilation rate is set to 1, dilated convolution is equiva-

lent to the conventional convolution. The dilated convolution

Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2021 at 15:03:38 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 8. Dilated Convolution with different dilation rates. The blue area is
the input feature map, and the yellow area is the convolution kernel. The
pale yellow area is the receptive field. The yellow dots are the pixels that are
convolved with the convolution kernel.

operation is able to retain more useful information of the input

without increasing the parameters of the network and is helpful

to obtain more globally representative information about the

original data.

C. CSDS

In this section, we propose a novel CSDS algorithm to select

the most appropriate data for the collaborative FT. Instead of

only using the target data to fine-tune the pretrained network,

we make a partial selection of source data with high similarity

to the target data and utilize them to fine-tune MNet, along

with all target data.

1) MD Signature Descriptor: As efficient feature extractors,

deep CNNs can learn the high-level semantic representation of

the input data. The representation can be used to describe input

data. In this article, we utilize AlexNet [32], a typical CNN

for image classification, to further obtain the descriptors of the

input MD signatures. It is noted that instead of AlexNet, many

other CNNs, such as VGG-Net, residual network (ResNet),

and Inception-Net, can also implement this function. We select

AlexNet because it can extract semantic information effec-

tively, and its structure is relatively simple. In detail, we treat

the convolution kernels of the last convolutional layer in

AlexNet as filters {F0, F1, F2, . . . , F255}. All data in Ds and

Dt are input to a pretrained AlexNet. Then, the feature maps

output from the last convolutional layer is represented into

histograms corresponding to the input MD signature. Let

Mi (x, y) denote the output feature map of the ith filter Fi

and hi its histogram, where i = {0, 1, 2, . . . , 255}. In the

beginning, the pixel value range of all histograms is set

from 0 to 255, and the width of every histogram bin is set

to 0.5.

To obtain more discriminative descriptors, we refine the

histograms and avoid a large percentage of pixels falling into

the same bin. Especially, we first obtain the maximum pixel

value pu
max and the minimum pixel value pmin

i of Mi (x, y)

by scanning the whole ith feature maps in the source data

set Ds . Then, the pixel value range of hi is set from pmin
i

to pu
max. Furthermore, we iterate through the original hi ’s of

Ds and Dt and adaptively set the width of the histogram

bins so that there is a roughly equal percentage of pixels in

each bin. The percentage is set to 2% so that there are no

more than 50 bins in every type of histograms {hi }
255
i=0. This

setting makes a compromise between computing complexity

and efficiency of the representation, which allows the further

designed descriptor to have a proper dimension and to be

discriminative at the same time.

Algorithm 1 ITL: An Instance-Based Transfer Learning

Method for HMR With Limited Radar Data
Input:

Motion network MNet, a source data set Ds =

{x
(s)
i , y

(s)
i }

Ns

i=1, a small-scale labeled target data set Dt =

{x
(t)
i , y

(t)
i }

Nt

i=1, and number of epochs It .

Output:

The fine-tuned MNet for classifying unlabeled target data.

1: pretraining MNet with the source data set Ds , with the

parameters initialized by ImageNet [31].

2: Obtaining the histogram descriptor H k for each sample x

in Dt and Ds .

3: For each spectrogram x (t) in Dt and all spectrograms

{x
(s)
i }

Ns

i=1 in Ds , calculating the EMDs between x (t) and

{x
(s)
i }

Ns

i=1 as Eq. 1.

4: i ⇐ 0.

5: For each spectrogram x (t) in Dt , selecting the top 100 cor-

related spectrograms in EMD similarity from Ds .

6: While not converged or i < It do s

7: Fine-tuning the parameters of MNet with the selected

source spectrograms and all spectrograms in Dt .

8: Calculating the loss weights of the selected source

spectrograms.

9: if i ≤ 5 then

10: Calculating the information entropy E for

each spectrogram x (t) with Eq. 5.

11: Increasing the number of the selected source

spectrograms for each x (t) as Eq. 6.

12: Re-weighting the selected source spectrograms.

13: i = i + 1

14: return The fine-tuned parameters w(m), b(m) of MNet

(m = 1, 2, . . . , M and M is the number of layers to be

optimized in MNet).

Fig. 9. Typical spectrogram and its histogram. (a) Radar spectrogram. (b) His-
togram corresponding a specific convolution kernel in the last convolutional
layer of AlexNet.

In this way, the inhomogeneous intervals are acquired,

and the new ith histogram h′
i of a spectrogram is obtained.

Fig. 9 illustrates the refined histograms of a radar spectrogram

corresponding to a filter Fi . Finally, for the spectrogram xk ,

the corresponding histograms {h′
i }

255
i=0 are concatenated to form

an MD signature descriptor, namely, Hk = {h0, h1, . . . , h255}.

2) Similarity Metrics of MD Signatures: The Earth mover’s

distance (EMD) [33] is the minimal cost that must be paid

to transform one distribution into another distribution. It is

Authorized licensed use limited to: TU Delft Library. Downloaded on August 06,2021 at 15:03:38 UTC from IEEE Xplore.  Restrictions apply. 



6592 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 8, AUGUST 2021

proposed based on the solution to a typical transportation

problem but can be used to measure the distance between

two generalized distributions irrespective of the underlying

application. As a similarity metric of two histograms, EMD

is more efficient than other possible histogram matching

techniques due to its feasibility of operating on variable-length

representations of the distributions.

A histogram can be formulated as a set S = {s j =

(w j , m j )}
N
j=1, where the histogram values are denoted as the

weights w j , and the indices of bins are denoted as positions

m j . N denotes the number of bins in the histogram. Given

two histograms P = {(pi , ui )}
m
i=1 and Q = {(qi , vi )}

n
i=1, with

size m, n, respectively, the EMD of P and Q is defined as

the minimum work required to resolve the supply–demand

transports, namely

EMD(P, Q) = min
F={ fi j }

∑

i, j fi j di j
∑

i, j fi j

(1)

with the constrains
∑

j

fi j ≤ pi ,
∑

i

fi j ≤ q j

∑

i, j

fi j = min

⎧

⎨

⎩

∑

i

pi ,
∑

j

q j

⎫

⎬

⎭

, fi j ≥ 0 (2)

where pi represents the histogram values of P and qi repre-

sents the histogram values of Q. ui and vi represent the indices

of bins of P and Q, respectively. Furthermore, F = { fi j }

denotes a flow set. Each flow fi j represents the amount

transported from the ith supply to the jth demand. di j denotes

the distance between the position ui and v j .

In this article, EMD is employed to measure the similarity

of the histogram descriptors H’s corresponding to the MD

signatures in Dt and Ds . Given the histogram descriptors

H’s of a specific target spectrogram x (t) and all source

spectrograms {x
(s)
i }

Ns

i=1, the EMDs {EMDi }
Ns

i=1 of x (t) and

{x
(s)
i }

Ns

i=1 are calculated with H(t) and {H
(s)
i }

Ns

i=1 according

to (1) and (2). A small EMD value between x (t) and x (i)

means that these two spectrograms are highly correlated.

Furthermore, the source radar spectrograms with smaller EMD

values are preferred as the correlated instance of x (t). In detail,

the source spectrograms are ranked in ascending order based

on their EMD values. For each target spectrogram, K source

spectrograms (corresponding to the top 2.0% of the whole set

of source spectrograms) are chosen as the most correlated set

at the outset, based on the EMD metric. This ensures that the

initially selected spectrograms are the most similar to the target

spectrogram. Then, these instances are utilized to fine-tune the

pretrained MNet along with all the target data.

D. ACFT

1) Source Instances Reweighting: During FT the pretrained

MNet, there are a series of source spectrograms selected as

the correlated instances by more than one target spectrogram.

Compared with treating them equally, attaching more impor-

tance on the source instances that are selected more than once

can make the FT process more efficient. Thus, the importance

of the selected source instances differs. Especially, we put the

importance to the loss function and reweight the FT loss of

the selected source instances. Suppose that, in an epoch, the

ith source instance x
(s)
i is selected as the correlated instance

by w target spectrograms. Then, we design the loss function

L of FT as follows:

L =
∑

i

Lcls

(

y
(t)
i , ŷ

(t)
i

)

+
∑

j

sin

(

π

2
∗

w j

wmax

)

∗ Lcls

(

y
(s)
j , ŷ

(s)
j

)

(3)

where w j denotes the number of target instances that select

x
(s)
j as its correlated source instance. wmax denotes the max-

imum among w’s corresponding to all the selected source

instances in an epoch. y
(t)
i and ŷ

(t)
i are the true label and

the predicted label of the ith target instance x
(t)
i , respectively.

Similarly, y
(s)
j and ŷ

(s)
j are the true label and the predicted

label of the jth source instance x
(s)
j . The classification loss

Lcls adopts the cross-entropy loss, whose definition is given

as follows:

Lcls = −[p log( p̂) + (1 − p) log(1 − p̂)] (4)

where p and p̂ are the ground-truth one-hot label and the

predicted probability, respectively.

2) Adaptive Source Data Search: Subsequently, we present

the adaptive searching scheme to employ more nearest source

spectrograms in the following FT epochs, which is able to

facilitate the target spectrograms classification. We calculate

the information entropy Em
i to measure the classification

uncertainty of the target training sample x
(t)
i after the mth

epoch

Em
i = −

Ct
∑

c=1

pm
i,c log

(

pm
i,c

)

(5)

where Ct is the number of motion categories in Dt , and pm
i,c

is the probability that x
(t)
i is classified as the cth class by

the softmax layer of MNet in the mth epoch. The larger Em
i ,

the higher the classification uncertainty of x
(t)
i . We set the

threshold θ for the classification uncertainty E . When Em
i is

larger than θ , we increase the number of correlated source

samples for x
(t)
i in the next epoch.

Furthermore, we stop the adaptive searching scheme after

five FT epochs because too many epochs can lead to more

source instances that are not highly correlated with the target

data employed in the FT process. The overall adaptive source

data search is then given as

Nm+1
i =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Nm
i + α, m ≤ 5 and ŷ

(t)
i 	= y

(t)
i

Nm
i + β, m ≤ 5 and ŷ

(t)
i = y

(t)
i

and Em
i ≥ θ

Nm
i , others

(6)

where Nm
i and Nm+1

i are the numbers of the selected nearest

source samples for x
(t)
i in the mth and m + 1th epochs,

respectively. N1
i = K. ŷ

(t)
i and y

(t)
i are the predicted label

and the true label of x
(t)
i , respectively. α and β are set to
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K/2 and K/4. θ is set to 0.25 empirically so that every target

spectrogram tends to be classified into a particular category

with high probability.

V. EXPERIMENTAL IMPLEMENTATION AND RESULTS

A. Evaluation Methodology

In the experiments, a leave-two-individual-out

cross-validation method is adopted to split the data set

into two parts: the source data set and the target data set.

Especially, we randomly select the motion data of (n − 2)

persons as the source data set Ds , where n equals 6 in the

experiments. The data of the other two persons are utilized

as the target data set Dt . Hence, the process is repeated
(

n

2

)

= 15 times to obtain the average performance. Since it

is infeasible to perform thousands of trials to get a statistical

characterization of the experimental results, we assume that

the leave-two-individual-out cross-validation can approximate

the statistical results. Furthermore, with the leave-two-

individual-out cross-validation, the generalization to human

motion differences of ITL can be demonstrated well.

To evaluate the efficiency of ITL with limited training data,

the motion data per person per class in the source domain

are divided for training and validation according to the ratio

of 8:2. The target data set is also divided according to the ratio

of 2:1 in the same way. Furthermore, we randomly select N

instances per person per class from the target training set for

FT and evaluate the classification performance of ITL on the

target validation data set.

B. Implementation Details

We employ Tensorflow [34] that is a widely used DL

framework developed by Google Brain to train our model.

The proposed MNet is pretrained from scratch with Ds .

The batch size is set to 32, and the learning rate λ1 is set

to 10−3. The model is pretrained for 400 epochs, and L2

normalization is employed during the training process. For

each human individual, 70% of the motion spectrograms in Dt

are selected for FT and the others for validation. During FT,

the basic learning rate λ2 is set to 10−5, and an exponentially

learning rate decay γ is set to 0.9. The model is fine-tuned

for 50 epochs. The batch size is also set to 32. All experiments

are performed on a CPU and Ti 1080 GPUs with CUDA for

acceleration.

C. Comparison Methods

To further investigate the performance of ITL, we compare

the model with several state-of-the-art transfer learning meth-

ods, including two radar-based transfer learning approaches

and three typical instance-based approaches designed for opti-

cal image classification. These comparison approaches are also

implemented with the data set that is described in Section III.

DivNet [19] is specially designed for radar-based HMR

with radar MD spectrograms. The network is pretrained with

diverse Kinect-based simulated motion data and fine-tuned

with a limited number of measured radar data.

DuNet [17] is presented for radar-based HMR. The ResNet

is adopted as the backbone of the method. The prior knowledge

Fig. 10. F1 score performance of ITL, the Conventional FT, and the Target
Model for classifying the target validation data when diverse amounts of target
samples are used for training.

from simulated MOCAP radar data is transferred by FT the

pretrained backbone with the limited target samples.

NgiamNet [22] is an ITL approach. In this method, the

source data are first reweighted based on their similarity to

the target data. A DL backbone is first pretrained with the

reweighted source data.

GeNet [21] is an ITL approach. The source data are

reweighted based on a similarity metric between the source

data and the target data. Then, a pretrained backbone model

is fine-tuned with the reweighted source data and all target

data.

AsgarianNet [35] is another ITL approach that reweights the

source data and uses them for FT. Distinctively, this approach

proposes the hybrid weight for source data, which measures

the similarity of a source sample to the target domain and the

importance of the sample in the target task.

D. Experimental Results

1) Performance With Limited Numbers of Target Samples:

To evaluate the performance of the proposed ITL for HMR

with limited training data, different amounts of target samples

per class per person are provided for training ITL. The exper-

imental results are shown in Fig. 10. Furthermore, to demon-

strate the efficiency of ITL, we select two baseline methods

for comparison. In detail, we train the proposed backbone

model MNet from scratch with the limited target samples,

and the test F1 scores are shown with gray marks in Fig. 10.

Then, a Conventional FT method that utilizes target samples

to fine-tune a pretrained model is adopted for comparison.

Especially, the MNet is pretrained on the source training data

set and fine-tuned with the available target samples. The results

are shown with orange marks in Fig. 10.

From Fig. 10, we can see that the proposed ITL yields

the best performance among the three methods. Especially,
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Fig. 11. Results of the leave two-individual-out cross-validation when there
are 100 samples per class per person.

when there are 100 target samples per class available, ITL

outperforms the Conventional FT by the largest margin of

4.4% F1 score. In detail, since there are insufficient samples

for training MNet from scratch, the Target Model is susceptible

to overfitting, and the performance is the worst. Furthermore,

the performance of the Conventional FT and ITL improves as

the number of the target samples increases. ITL outperforms

the Conventional FT all the time, demonstrating its better per-

formance for the classification task with limited training data.

Since ITL has an obvious advantage over the Conventional FT

in the F1 score when there are 100 target samples per person

per class, we select 100 target training samples as the typical

setting in the following experiments.

2) Cross-Validation Performance With 100 Target Samples

per Person per Class: The results of the leave-two-individual-

out cross-validation when there are 100 target samples per

class per person are further shown in Fig. 11.

It can be seen that the performance of ITL during the

two-individual-out cross-validation is steady. Regardless of

the difference between the source domain data and the target

domain data, the method can achieve an F1 score of about

96.7%. The standard deviation of the 15 folds in the F1 score

is merely 4.88e-3. In detail, the average F1 scores of 96.7%,

92.3%, and 75.6% are achieved by ITL, the Conventional FT,

and the Target Model, respectively.

Besides, to demonstrate the infeasibility of directly using the

pretrained MNet to classify the target samples, we introduce

another baseline model Source Model. The Source Model is

obtained by training the backbone MNet with the whole source

data set, and no FT is involved. It can be found that Source

Model achieves an average F1 score of merely 82.5% for

classifying the target samples, indicating that there are some

differences between the source data and the target data.

Furthermore, we select fourfolds (Fold 2, Fold 5, Fold 6,

and Fold 10) from the 15-fold two-individual-out validation

experiments without any adjective, and their convergence

properties are shown in Fig. 12 in detail. From the loss curves

and the F1 score curves, we can see that ITL often begins

to converge after 10 epochs and yields a stable performance

after 30 epochs.

E. Analysis on Generalization of ITL

Generally speaking, the Conventional FT method often for-

gets how to perform the source task as training the new target

Fig. 12. Loss curves and F1 Score curves of Fold 2, Fold 5, Fold 6, and
Fold 10.

task progresses. As a result, the DL model fine-tuned with new

persons’ motion data often cannot achieve good performance

to recognize the persons’ motions in the previous (source)

domain. In contrast, the proposed ITL is more generalized to

the human motion differences, and the fine-tuned model can

also scale well to the persons’ motions in the source domain.

1) Generalization of ITL With Diverse Numbers of Target

Samples: First, as shown in the leave two-individual-out

cross-validation results of Fig. 11, ITL has good performance

to recognize the persons’ motions in the target domain.

Especially, ITL is first pretrained with the source data and

fine-tuned with varying numbers of target samples for the task

on the target domain. Then, the source validation samples are

employed for classification to test the generalization ability

of ITL. The experimental results are shown in Fig. 13. For

comparison, the Conventional FT model that is fine-tuned with

different amounts of target data is also employed to classify the

source samples. The Source Model is trained with the source

training samples, and no FT is involved.

As shown in Fig. 13, since the Source Model is trained

with the source data, the performance of classifying the source

validation samples is the best. In contrast, the performance of

the Conventional FT is poor. In addition, the performance of

the Conventional FT decreases with the increase in the number

of target samples. It is because with the amount of the target

samples increasing, the distribution of the available target

samples tends to be closer and closer to the real distribution

of the target domain data, which is different from that of the

source data. In this circumstance, when the fine-tuned model

performs well on the target domain, its performance for the

source domain usually drops.

In contrast, no matter how many target samples are available

for FT, the performance of ITL is better than that of the Con-

ventional FT. Especially, when there are more than 100 sam-

ples per person per class, the performance of classifying the

source samples is about 90.0% F1 score, exceeding that of the

Conventional FT by over 11.0%. Furthermore, when there are

more than 160 target samples per class for FT, the F1 score of

ITL is only about 7.0% lower than that of the Source Model.

Good performance is achieved because, in ITL, some source

samples that are highly correlated with the target samples are

selected for collaborative FT. As a result, ITL can be adapted

to the new target task while retaining partial source knowledge.

This property makes ITL generalized to the motion differences

between different domains and scales well to the persons’

motions in both the source and target domains.
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Fig. 13. Performance of Source Model, Conventional FT, and the proposed
ITL for classifying the validation source samples. Among the three methods,
the Source Model is trained with the source data set. The Conventional FT and
ITL are pretrained with the source data and fine-tuned with different numbers
of target samples. It can be seen that, though worse than the performance
of Source Model, the performance of ITL trained with varying numbers of
target samples is better than that of Conventional FT. It is demonstrated that
compared with Conventional FT, the proposed ITL is more generalized to the
human motion differences between the source domain and the target domain.

Fig. 14. Performance variation of ITL to diverse values of K when there
are 100 target samples available for FT. The blue marks represent the results
of using ITL to classify the target data. Orange marks: results of using ITL
to classify the source data.

2) Impact of the Value of K on the Performance of ITL:

According to (6), a certain amount of source samples is

selected for every target training sample to perform the collab-

orative FT. Based on this setting, we change the number of the

selected source data by adjusting the value of hyperparameter

K and explore the impact of K on the generalization ability

of ITL. The experimental results are shown in Fig. 14.

From this figure, we can find that, with the value of K

increasing, the performance of ITL for classifying the source

validation samples improves. It is because with more source

training samples that are similar to the target data are selected

and involved in the FT process, ITL can preserve more

knowledge of the source domain while performing well on

the target domain. At the same time, the performance for

classifying the target samples improves with K increasing

when K is less than 2.0%. However, when K is more than

2.0%, a decreasing trend is shown. It is because with the

value of K increasing, more source samples that are not highly

correlated are selected, which is of little help to the task of

the target domain.

Furthermore, when K is between 2.0% and 2.5%, the F1

score of ITL for classifying the target data is over 94.0%,

and the performance of classifying the source samples is over

90.0%. Thus, we can conclude that, when K is set between

2.0% and 2.5%, ITL is generalized to the differences of the

Fig. 15. Comparison in terms of computational time and F1 score for different
methods. In detail, (a) depicts the training time and the F1 scores of the six
approaches and (b) depicts the testing time per sample and the F1 scores of
the six approaches.

source and the target domains and can scale well to recognize

the motions of diverse persons. In further experiments, we set

K to 2.0%.

F. Comparison With the State of the Art

To verify the efficacy of ITL, we compare it with sev-

eral state-of-the-art transfer learning approaches. Especially,

we vary the number of the target training samples and perform

the leave-two-individual cross-validation on these methods.

Then, the average F1 scores are obtained for comparison. The

results are depicted in Table II.

Comparison in F1 Score: From Table II, we can find that

our proposed ITL obtains the best performance when there

are more than 20 target samples per class for FT, indicating

the feasibility of ITL for radar-based HMR with limited data.

Though the performance of ITL is not the best when there

are 20 target samples, the F1 score of ITL is merely 0.4%

lower than that of GeNet, which yields the best performance.

Comparison in the Number of Parameters: The number of

parameters in these DL models is listed in the last column of

Table II, reflecting the spatial complexity of these methods.

It can be seen that GeNet has the most parameters due to the

complicated backbone. As for our method, with the effective

but relatively simple structure of MNet, there are only 22.88M

parameters in ITL.

Comparison in Training/Testing Time: Fig. 15 illustrates

the training time and the testing time of the six methods

when there are 100 target training samples per person per

class. In detail, in Fig. 15(a), the model training time and

the F1 scores of the six approaches are shown. It can be seen

that the training time of DuNet and DivNet is much shorter

than the other methods. The reason is mainly due to that the

two methods only use only the target samples to fine-tune

their backbone models. As a result, the similarity between

the source domain and the target domain is not required to be

calculated. In this way, their training time is greatly shortened.

As for the other four instance-based methods, NgiamNet,

AsgarianNet, GeNet, and our approach, the training time

includes two parts: the time of calculating the similarity of

the source data and the target data and the time of FT the

DL backbone model. Due to the operation of the similarity

calculation, the training time of the four methods is much

longer than that of DuNet and DivNet. Among the four

methods, the training time of ITL is the longest since this

method requires to select the correlated source samples for
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TABLE II

COMPARISON WITH THE STATE-OF-THE-ART METHODS IN F1 SCORE

every target sample. However, though it takes more training

time, ITL has gained a performance boost and yields the

highest F1 score.

Furthermore, Fig. 15(b) shows the comparison results in

terms of testing time per sample and the F1 score for the

six methods. In general, the training process of a model is

often performed offline. Compared with the training time, the

testing time per sample has a greater impact on whether the

model can be applied in practice. During testing, the similarity

calculation operation is not required, and the running time

is greatly shortened. As shown in this subfigure, though the

training time is long, the proposed ITL takes a short time to

classify a sample.

VI. ABLATION STUDY ON ITL

To better prove the effectiveness of ITL for the HMR

task with limited training data, some ablation studies on ITL

are performed. During the ablation study, we performed the

experiments under the typical setting where there are 100 tar-

get samples per person per class available. The 15-fold

cross-validation is employed to obtain the average F1 score.

A. Ablation Study on MNet

To demonstrate the good performance of MNet for recogniz-

ing human motions with radar MD spectrograms, we change

the structure of MNet slightly. Three variants of MNet are

designed, which are referred to as MNet-v1 and MNet-v2,

respectively. Especially, to obtain MNet-v1, the two channel-

wise attention modules in MNet are removed. In MNet-v2, the

dilation rate in the two dilated convolutional layers is set to 1,

and the dilated convolution operations are converted into the

general convolutions.

Then, we compare the performance of the two transfer

learning methods (the Conventional FT and ITL) when using

MNet, MNet-v1, and MNet-v2 as the backbone, respectively.

The comparison results in the F1 score are listed in Table III.

As shown in this table, when the channelwise attention mod-

ules are removed, the performance of both the Conventional

FT and ITL decreases, indicating that the two channelwise

attention modules are vital to the performance of MNet. At the

same time, the performance of MNet-v2 is not as good as that

of MNet regardless of whether the source data are fine-tuned

TABLE III

PERFORMANCE COMPARISON WITH OTHER DEEP MODELS AS BACKBONE

or not, demonstrating the efficiency of dilated convolution

operations.

Furthermore, to demonstrate the superiority of MNet for

radar-based HMR, we replace MNet with several typical

CNN models, including VGG16, ResNet10, and Inception-v3.

We select these three DL models among the existing state-

of-the-art models for comparison because they have a similar

number of convolution layers to MNet. Then, their perfor-

mance as the backbone of Conventional FT method and ITL

is compared. The comparison results are listed in Table III.

We can see that regardless of whether the source data are

used for FT or not, our model achieves the best results and is

more suitable for the HMR tasks with radar MD spectrograms

than the other DL models. Furthermore, when using VGG16

as the backbone, ITL outperforms the Conventional FT the

most, with a difference of 0.44% F1 score. In addition,

VGG16 yields similar performance to MNet when used as the

backbone of ITL, with an F1 score of 96.2%. It is indicated

that compared with ResNet10 and Inception-v3, VGG16 is

more suitable to transfer the motion characteristic in radar

spectrograms.

B. Ablation Study on CSDS

1) Analysis on the MD Signature Descriptor: First,

we replace AlexNet with three typical CNNs VGG16,

ResNet18, and Inception-v3 as the feature extractor and utilize

the last convolutional layers of these models as filters to obtain

the MD signature descriptors. Furthermore, the optical image

data set ImageNet, instead of a radar image data set, is utilized

to train the feature extractor. Though radar spectrograms

have different characteristics from optical images, several
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Fig. 16. Performance of ITL in average F1 score when using different
deep models that are pretrained on ImageNet and a simulated radar data set,
respectively.

radar-based HMR literature demonstrated the feasibility of

extracting features from radar spectrograms with a model that

is trained on a large-scale optical image data set [17], [18],

[36], [37]. Furthermore, to make our work more complete and

comprehensive, we utilize a simulated MOCAP radar data set

[38] instead of ImageNet to train the feature extractor. The

results are illustrated in Fig. 16.

As we can see in Fig. 16, the performance of using the

four deep models to obtain the MD signature descriptors is

similar, demonstrating the feasibility of applying these typical

deep models as the feature extractor of ITL. However, despite

the good performance, the complexity of these models is to

obtain MD signature descriptors due to different numbers of

kernels in the last convolutional layers. In this circumstance,

by balancing complexity and F1 score, we can conclude that

AlexNet is a better choice. In addition, the performance of

using simulated radar spectrograms and ImageNet is broadly

similar. Though the simulated radar data are more similar

to our measured data, there is no noticeable performance

advantage. However, as the error lines in the figure show, the

maximum F1 score when using simulated data to train the

feature extractor is often more significant than the maximum

F1 score when using ImageNet. Furthermore, the performance

of ResNet18 that is trained with simulated radar data is the

best, with an average F1 score of 97.1%. Based on these

results, we have reasons to believe that using simulated radar

data to train the feature extractor has more potential to achieve

good performance for HMR [19], [39].

2) Analysis on Source Instance Selection: To demonstrate

the efficiency of the EMD-based source instance selection

algorithm, we compare this solution with the other three source

instance selection solutions.

S1: FT the pretrained MNet with only target data set Dt

(Conventional FT).

S2: FT the pretrained MNet with the whole source data set

Ds and the target data set Dt .

S3: FT the pretrained MNet with randomly selected source

data and the whole Dt .

The comparison results are listed in Table IV. As shown in

the table, the proposed EMD-based source instance selection

algorithm yields the best performance. Especially, the F1 score

of the Conventional FT (S1) is 92.3%. The F1 score of FT with

both Ds and Dt (S2) is 91.8%. The F1 score of FT with the

randomly selected source data and Dt (S3) is 91.5%. It can be

TABLE IV

CLASSIFICATION RESULTS ON THE TARGET VALIDATION DATA

SET WITH DIFFERENT FT ALGORITHMS

TABLE V

COMPARISON STUDY FOR THE PROPOSED ACFT ALGORITHM

seen that the performance of S2 and S3 is not improved and

even worse than S1. It is because using the whole source data

set or using randomly selected source data for FT can bring

some negative knowledge transfer to the network. In contrast,

the EMD-based source instance selection algorithm achieves

the best performance, outperforming the solution S1 by 4.4%

F1 score.

C. Ablation Study on ACFT

1) Analysis on the Comparison Experiments: To investigate

the effect of the two elements (adaptive source data search and

source instance reweighting) in ACFT on the performance of

ITL, we perform the three following comparison experiments.

C1: Assigning equal importance to the selected source

instances, and setting the same loss weight to all of the

instances in (3).

C2: In each of the first five epochs, if ŷ
(t)
i = y

(t)
i , β correlated

source instances are selected for each target instance,

without the limitation of information entropy E.

C3: Replace the loss weights sin((π/2)∗(wi/wmax)) of source

samples in (3) with (π/2) ∗ (wi/wmax).

Table V shows the comparison results. It can be seen that

our method yields the best performance. When assigning equal

importance on the selected source instances (C1), an F1 score

of 93.8% is yielded, which is 2.9% lower than that of using the

proposed ACFT algorithm. When selecting the same number β

of correlated source instances for each target instance if ŷ
(t)
i =

y
(t)
i (C2), the performance drops to 95.7%. Furthermore, when

replacing sin((π/2) ∗ (wi/wmax)) with (π/2) ∗ (wi/wmax) in

the loss function L (C3), the performance of ITL decreases to

96.0%. Though using sine function is the result of heuristic

attempts, the comparison results demonstrate the efficiency of

using sine instead of linear loss weights.

2) Visualization of Diverse Importance of the Source Sam-

ples: To reveal the diverse importance of the selected source
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Fig. 17. Visualization of the loss weights w assigned to the source instances.
A larger loss weight represents that the corresponding source sample is
attached with more importance, which means that it is more important to
the motion recognition task in the target domain.

instances, we visualize the loss weights assigned to the source

data with t-SNE. In particular, the loss weights of the selected

source samples in the fifth FT epoch are recorded when

there are 100 target samples per person per class available

for training. For those source training samples that are not

used for FT, the loss weights are 0. Then, all of the source

training samples are input to the Source Model, and the feature

vectors output by the last convolutional layer is visualized with

t-SNE. The visualization results are shown in Fig. 17. A larger

loss weight means that the source instance is attached more

importance for the HMR task, while a smaller weight means

that the instance is less correlated with the target data and is

less important to the collaborative FT process. From Fig. 17,

we can see that in ITL, only partial source domain data are

helpful for the classification task of the target domain, and

selected for the ACFT process.

VII. CONCLUSION

To address the performance limitation of the DL algorithms

caused by insufficient training data, this article proposed

an ITL approach for radar-based HMR. The approach is

composed of three interconnected and necessary parts (MNet

pretraining, CSDS, and ACFT) rather than a collection of

three distinct pieces. Measured human motion data were

collected using a pulsed UWB radar. Six human subjects, each

performing six motions, were involved in this study.

Experimental results showed that the proposed ITL was able

to accurately recognize human motions with limited radar data,

with an F1 score of 96.7% when there are only 100 samples

per person per class. Moreover, though ITL is adopted to

the recognition task in the target domain, it is generalized to

human motion differences and can scale well to recognize the

persons’ motions in the source domain simultaneously. Fur-

thermore, this proposed approach outperformed several state-

of-the-art transfer learning methods when there is a limited

number of training data. In addition, some ablation studies

were conducted to demonstrate the uniqueness of the compo-

nents in ITL. Any exclusion of these components resulted in

performance degradation. Finally, despite the effectiveness of

ITL, how to reduce the computational cost of the model needs

to be further researched.
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