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Abstract

Human motion is the composite consequence of multiple el-

ements, including the action performed and a motion sig-

nature that captures the distinctive pattern of movement of

a particular individual. We develop a new algorithm that

is capable of extracting these motion elements and recom-

bining them in novel ways. The algorithm analyzes mo-

tion data spanning multiple subjects performing different

actions. The analysis yields a generative motion model that

can synthesize new motions in the distinctive styles of these

individuals. Our algorithms can also recognize people and

actions from new motions by comparing motion signatures

and action parameters.

1. Introduction and Background

In analogy with handwritten signatures, do people have

characteristic motion signatures that individualize their

movements? If so, can these signatures be extracted from

example motions? Can extracted signatures be used to rec-

ognize, say, a particular individual’s walk subsequent to ob-

serving examples of other movements produced by this in-

dividual?

The ability to perceive motion signatures seems well-

grounded from an evolutionary perspective, since survival

depends on recognizing the movements of predator or prey,

or of friend or foe. In the 1960s, the psychologist Gun-

nar Johansson performed a series of famous experiments

in which he attached lights to people’s limbs and recorded

videos of them performing different activities, such as walk-

ing, running, and dancing [4]. Observers of these moving

light displays, videos in which only the lights are visible,

were asked to classify the activity performed and to note

certain characteristics of the movements, such as a limp or

an energetic/tired walk. Observers can usually perform this

task with ease and they could sometimes determine gender

and even recognize specific individuals in this way. This

may corroborate the hypothesis that the motion signature is

a perceptible element of human motion.

Our research [11, 12] has three goals. The first is to

model human motions as the composite consequence of

multiple elements—the action performed and a motion sig-

nature. The second is to determine if people have motion

signatures that are invariant of action classes. Therefore,

we extract a motion signature from a subset of actions for

a new individual and synthesize the remainder of the ac-

tions using the extracted motion signature. The synthetic

motions are then validated by classifying against a database

of all the real motions. Once our motion model has been

validated our third goal is to recognize specific individuals

and actions. Our algorithm exploits corpora of motion data

which are now reasonably easy to acquire through a variety

of modern motion capture technologies developed for use

in the entertainment industry [3]. Motion synthesis through

the analysis of motion capture data is currently attracting a

great deal of attention within the computer graphics com-

munity as a means of animating graphical characters. Sev-

eral authors have introduced generative motion models for

this purpose. Recent papers report the use of hidden Markov

models [1]. and neural network learning models [2].

We address the motion analysis/synthesis/recognition

problem using techniques from numerical statistics. The

mathematical basis of our approach is a technique known as

n-mode analysis, which was first proposed by Tucker [10]

and subsequently developed by Kapteyn et al. [7, 8], among

others. This multilinear analysis subsumes as special cases

the simple, linear (1-factor) analysis associated with con-

ventional SVD and principal components analysis (PCA),

as well as the incrementally more general bilinear (2-factor)

analysis that has recently been investigated in the context of

computer vision [9]. Subsuming conventional linear analy-

sis as a special case, multilinear analysis emerges as a uni-

fying mathematical framework suitable for addressing a va-

riety of computer vision problems [14].

Within our framework, corpora of motion capture data

spanning multiple people and actions are best organized as

higher-order arrays or tensors which define multilinear op-

erators over a set of vector spaces. Unlike the matrix case

for which the existence and uniqueness of the singular value

decomposition (SVD) is assured, the situation for higher-

order tensors is not as simple. There are multiple ways to

orthogonally decompose tensors [5]. However, one multi-

linear extension of the matrix SVD to tensors is most nat-

ural. We apply this N -mode SVD to extract human motion

signatures among the other constitutive factors inherent to

human movement.
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Figure 1: Flattening a (3rd-order) tensor. The tensor can be flat-

tened in 3 ways to obtain matrices comprising its mode-1, mode-2,

and mode-3 vectors.

2. Tensors and Decomposition

A tensor is a higher order generalization of a vector (first

order tensor) and a matrix (second order tensor). Ten-

sors are multilinear mappings over a set of vector spaces.

The order of tensor A 2 IRI1�I2�:::�IN is N . An ele-

ment ofA is denoted asAi1:::in:::iN or ai1:::in:::iN or where

1 � in � In.1 In tensor terminology, column vectors are

referred to as mode-1 vectors and row vectors as mode-

2 vectors. The mode-n vectors of an N th order tensor

A 2 IRI1�I2�:::�IN are the In-dimensional vectors ob-

tained from A by varying index in while keeping the other

indices fixed. The mode-n vectors are the column vectors of

matrix A(n) 2 IRIn�(I1I2:::In�1In+1:::IN ) that results from

flattening the tensor A, as shown in Fig. 1.

A generalization of the product of two matrices

is the product of a tensor and a matrix. The mode-

n product of a tensor A 2 IRI1�I2�:::�In�:::�IN

by a matrix M 2 IRJn�In , denoted by A �n M,

is a tensor B 2 IRI1�:::�In�1�Jn�In+1�:::�IN ,

whose entries are Bi1:::in�1jnin+1:::iN =P
in
ai1:::in�1inin+1:::iNmjnin : The mode-n product

can be expressed in terms of flattened matrices as

B(n) =MA(n).
2

1We denote scalars by lower case letters (a; b; : : :), vectors by

bold lower case letters (a;b : : :), matrices by bold upper-case letters

(A;B : : :), and higher-order tensors by calligraphic upper-case letters

(A;B : : :).
2The mode-n product of a tensor and a matrix is a special case of the in-

ner product in multilinear algebra and tensor analysis. Note that for tensors

and matrices of the appropriate sizes,A�mU�nV = A�nV�mU
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Figure 2: An N -mode SVD orthogonalizes the N vector spaces

associated with an order-N tensor (the case N = 3 is illustrated).

A matrix D 2 IRI1�I2 is a two-mode mathematical

object that has two associated vector spaces, a row space

and a column space. SVD orthogonalizes these two spaces

and decomposes the matrix as D = U1�U
T
2 , the prod-

uct of an orthogonal column-space represented by the left

matrix U1 2 IRI1�J1 , a diagonal singular value matrix

� 2 IRJ1�J2 , and an orthogonal row space represented by

the right matrix U2 2 IRI2�J2 . In terms of the mode-n

products defined above, this matrix product can be rewrit-

ten asD = ��1 U1 �2 U2.

By extension, an order N > 2 tensor D is an N -

dimensional matrix comprising N spaces. “N -mode SVD”

is a “generalization” of SVD that orthogonalizes these N

spaces and decomposes the tensor as the mode-n product of

N -orthogonal spaces3

D = Z �1 U1 �2 U2 : : :�n Un : : :�N UN ; (1)

as illustrated in Fig. 2 for the case N = 3. TensorZ , known

as the core tensor, is analogous to the diagonal singular

value matrix in conventional matrix SVD. It is important

to realize, however, that the core tensor does not have a di-

agonal structure; rather, Z is in general a full tensor [5].

The core tensor governs the interaction between the mode

matricesUn, for n = 1; : : : ; N . Mode matrixUn contains

the orthonormal vectors spanning the column space of the

matrix D(n) that results from the mode-n flattening of D,

as was illustrated in Fig. 1.

Our N -mode SVD algorithm for decomposingD is:

1. For n = 1; : : : ; N , compute matrixUn in (1) by com-

puting the SVD of the flattened matrix D(n) and set-

tingUn to be the left matrix of the SVD. 4

and (A �n U)�n V = A�n (VU).
3A matrix representation of the N-mode SVD can be obtained by:

D(n) = UnZ(n)(Un�1
: : :
U1
UN
: : :
Un+2
Un+1)T ;

where 
 is the matrix Kronecker product.
4When D(n) is a non-square matrix, the computation of Un in the

singular value decomposition D(n) = Un�V
T
n can be performed ef-

ficiently, depending on which dimension of D(n) is smaller, by decom-

posing either D(n)D
T

(n)
= Un�

2UTn and then computing VTn =

�
+
U
T
nD(n) or by decomposing DT

(n)
D(n) = Vn�

2
V
T
n and then

computing Un = D(n)Vn�
+.
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2. Solve for the core tensor as follows

Z = D �1 U
T
1 �2 U

T
2 : : :�n U

T
n : : :�N U

T
N : (2)

3. Analysis

Given motion sequences of several people, we define a data

set D which takes the form of a IRN�M�T tensor, whereN

is the number of people, M is the number of action classes,

and T is the number of joint angle time samples. We apply

theN -mode SVD algorithm given at the end of the previous

section to decompose this tensor as follows:

D = Z �1 P�2 A�3 J; (3)

into the product of a core tensor Z , and three orthogo-

nal matrices. The people matrix P = [p1 : : :pn : : :pN ℄T ,

whose person specific row vectors pTn span the space of per-

son parameters, encodes the per-person invariances across

actions. ThusP contains the human motion signatures. The

action matrix A = [a1 : : :am : : :aM ℄T , whose action spe-

cific row vectors aTn span the space of action parameters,

encodes the invariances for each action across different peo-

ple. The joint angle matrix J whose row vectors span the

space of joint angles are the eigenmotions that are normally

computed by PCA.

The product Z �3 J transforms the eigenmotions into

a tensorial representation of the variation and co-variation

of modes (people and action classes) and characterizes how

people parameters and action parameters interact with each

other. The tensor

B = Z �2 A�3 J (4)

contains a set of basis matrices for all the motions associ-

ated with particular actions. The tensor

C = Z �1 P�3 J (5)

contains a set of basis matrices for all the motions associ-

ated with particular people.

4. Synthesis

By performing the decomposition (3), our motion synthe-

sis algorithm first analyzes a corpus of motion data D for

a group of subjects to extract Z , A, and J. This analy-

sis defines a generative model that can observe motion data

Dp;a of a new subject performing one of these actions (ac-

tion a) and synthesize the remaining actions, which were

never before seen, for this new individual. The algorithm

solves for the signature p of the new individual in the equa-

tion Dp;a = Ba �1 p
T , where Ba = Z �2 a

T
a �3 J.

Note that Dp;a is a 1 � 1 � T tensor. Flattening this ten-

sor in the people mode yields the matrixDp;a(people), actually

a row vector which we can denote as dTa . Therefore, in

terms of flattened tensors, the above equation can be writ-

ten dTa = pTBa(people) or da = BT
a(people)p. A complete set

of motions for the new individual is synthesized as follows:

Dp = B �1 p
T ; (6)

where B is defined in (4) and the motion signature for the

new individual is given by pT = dTaB
�1
a(people). If several

different actions dak are observed, the motion signature is

computed as follows:

pT =
�
� � � dTak � � �

�
2
664

...

B�1
ak(people)

...

3
775 : (7)

Similarly, if we observe a known person (one who is al-

ready recorded in the motion database) performing a new

type of action dp, we can compute the associated action

parameters aT = dTpC
�1
p(actions) and use them to synthesize

that new action for all the people in the database as follows:

Da = C �2 a
T , where C is given in (5). If several different

people are observed performing the same new action d pk ,

the action parameters are computed as follows:

aT =
�
� � � dTpk � � �

�
2
664

...

C�1
pk(actions)

...

3
775 : (8)

5. Recognition

Multilinear analysis yields basis tensors that map observed

motions either into the space of people parameters or the

space of action parameters, thereby enabling the recognition

of actions or people from motion data.

To recognize the identity of an unknown person from

motion data d of a known action a, we map the motion

into the people signature space, by computing the projection

p = B�T
a(people)d. Our nearest neighbor recognition algorithm

compares this signature against the person-specific signa-

tures pn inP. The best matching signature vector pp—i.e.,

the one that yields the smallest value of jjp � pnjj among

all the people n = 1; : : : ; N—recognizes the motion d as

having been produced by person p.

Similarly, to recognize the action depicted in motion data

d generated by a known person p, we map the motion into

the action parameter space, by computing the projection

a = C�T
p(actions)d. Our nearest neighbor recognition algorithm

compares a against the action parameter vectors am in A.

The best matching action parameter vector aa—i.e., the one

that yields the smallest value of jja�amjj among all the ac-

tionsm = 1; : : : ;M—recognizes the motiond as depicting

action a.
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Figure 3: The motion capture facility

Comparing our multilinear technique to conventional

PCA, the latter would decompose a motion data matrix

whose columns are observed motions di into a reduced-

dimensional basis matrix BPCA made up of the most signif-

icant eigenvectors times a matrix C containing a vector of

coefficients 
i for every observed motion. PCA represents

each person as a set ofM coefficient vectors, one for each

action class. By contrast, our multilinear analysis enables

us to represent each person with a single vector of coeffi-

cients relative to the bases comprising the tensor B defined

in (4).

6. Motion Data Acquisition

Human limb motion was recorded using a VICON system

that employs four video cameras. The cameras detect infra-

red light reflected from 18 markers, 9 placed on each leg

of a human subject. The system computes the 3D posi-

tion of the markers relative to a fixed lab coordinate frame.

The video cameras are positioned on one side of a 12 meter

long walkway such that each marker can be observed by at

least two cameras during motion. To extract the three angles

spanned by a human joint, we must define a plane for each

limb whose motion can be measured relative to the sagittal,

frontal and transverse planes through the body.

A corpus of motion data was collected from 6 sub-

jects. Three motions were collected for each person: walk,

ascend-stairs, descend stairs. Each motion was repeated 10

times. A motion cycle was segmented from each motion se-

quence. To suppress noise, the collected motion data were

low-pass filtered by a fourth-order Butterworth filter at a

cut off frequency of 6 Hz and missing data were interpo-

lated with a cubic spline. To compute the joint angles, we

first calculate the frame coordinate transformation for each

limb with respect to the lab, next we calculate the relative

orientation of each limb in the kinematic chain, and finally

we solve for inverse kinematic equations.

7. Results

First we model human motions as the composite conse-

quence of the action performed and a motion signature, ac-

cording to (3). Given a sufficient quantity of motion data,

Figure 5: A synthesized stair-ascending motion.

our human motion signature extraction algorithm can con-

sistently produce walks and stair ascend/descend motions in

the styles of individuals.

Next, we determine if people have motion signatures that

are invariant of action classes. Therefore, we extract a mo-

tion signature from a subset of actions for a new individual

(7) and synthesize the remainder of the actions using the

extracted motion signature (6). The synthetic motions are

then validated by classifying them against a database of all

the real motions.

In a “leave-one-out” validation study, we verified that

our algorithm was able to compute motion signatures suf-

ficiently well to synthesize all three types of motions in

the distinctive style of each individual compared against

ground-truth motion capture data of that individual. If

the motion signature pnew captures the distinctive pattern of

movement, the synthesized walk would best match the ac-

tual walk of the new person. Using a nearest neighbor clas-

sifier, the synthesized walk was indeed recognized against a

complete database that includes the actual walk data for the

new person.

Fig. 4(a) shows, in frontal view, the synthesis of three

different styles of walking motion given only examples of

descending stairs in those corresponding styles. Note that

the walking styles differ subtly: The woman on the left

walks in a pigeon-toed style, the clown struts, and the skele-

ton on the right walks with knocked knees. Fig. 4(b) shows

a side view of the motions; the figures animated using syn-

thesized motions are in the foreground. Fig. 5 shows a stair

ascending motion synthesized for one of the individuals.

Our algorithm extracted the motion signature from a sample

walk from this individual. We then used the extracted mo-

tion signature to synthesize the stair-ascending motion for

this individual. The motion signature was combined with

general stair ascending parameters which were extracted a

priori from our database.

In [11] we presented an animation short that was cre-

ated using motion data synthesized by our algorithm. The
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(a) (b)

Figure 4: Synthesizing 3 styles of walking motions from example motions of ascending stairs in those corresponding styles.

(a) Comparing synthesized walking motion data against ground truth (the synthesized data is depicted by the characters

without hair), our method captures stylistic differences in motion such as pigeon-toed walking, knocked-knees or strutting.

(a) The synthesized motions are depicted by the characters in the foreground and, for comparison, the captured walking

motions are depicted by the characters in the background.

graphical characters shown are modeled and rendered by

the MetaCreations Poser system.

8. Conclusion

We have introduced the notion of decomposing motion data

into primitives such as action parameters, and most impor-

tantly a motion signature. To achieve such a decomposition,

we have proposed an algorithm which is based on a numer-

ical statistical analysis technique called n-mode analysis.

It takes advantage of multilinear algebra in which motion

data ensembles are represented as higher-dimensional ten-

sors and an “N -mode SVD” algorithm is applied to decom-

pose the tensor.

Our tensor decomposition approach shows promise as

a unifying mathematical framework for a variety of com-

puter vision problems [13]. Our completely general mul-

tilinear approach accommodates any number of factors by

taking advantage of the mathematical machinery of tensors.

Our algorithm robustly extracts signature parameters from a

corpus of motion data spanning multiple subjects perform-

ing different types of motions. We have shown that the ex-

tracted signatures are useful for the synthesis of novel mo-

tions for animating articulated characters for motion recog-

nition.

In future work, will explore the simultaneous recognition

of actions and people. We also plan to apply our approach

to video input of human movement.
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