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 

Abstract—Miniaturized Inertial Measurement Unit (IMU) 

has been widely used in many motion capturing applications. In 

order to overcome stability and noise problems of IMU, a lot of 

efforts have been made to develop appropriate data fusion 

method to obtain reliable orientation estimation from IMU data. 

This article presents a method which models the errors of 

orientation, gyroscope bias and magnetic disturbance, and 

compensate the errors of state variables with complementary 

Kalman filter in a body motion capture system. Experimental 

results have shown that the proposed method significantly 

reduces the accumulative orientation estimation errors. 

I. INTRODUCTION 

Orientation estimation is essential for various kinds of 
applications, such as unmanned micro-aerial vehicles, 
robotics, human motion analysis and mobile devices [1-4]. For 
human motion capture and analysis, inertial sensors have 
incomparable superiority than other sensing technologies. 
However, obtaining orientation by using gyros is only 
accurate for a short time because of its inherent noise and drift 
with time. To reduce the drifts and cumulative errors, many 
laboratories are dedicated in the past few decades. Now, it’s a 
common way to use gyroscope with accelerometer and 
magnetometer [5-6]. 

Many filter models have been proposed to develop the 
most appropriate solution to fuse the data of three sensors. 
Han and Wang proposed a linear system error model based on 
the Euler angles [7]. Sabatelli, et al. presented an extended 
Kalman filter to calculate the attitude angles and the heading 
angles respectively [8]. Shengzhi Zhang, et al. described a 
dual-linear Kalman filter. They defined gravity and 
geomagnetic field as two state vectors and divided them into 
two independent linear filters and updated separately [9]. 
Daniel, et al. used a complementary Kalman filter to 
compensate the magnetic disturbances and estimate single 
sensor module orientation [10]. Xuebing Yuan, et al. adopted a 
quaternion-based unscented Kalman filter (UKF) algorithm to 
obtain the high-accuracy indoor heading estimation [11]. 
However, these systems have some common limitations. 
Firstly, the measurements are chosen based on the 
disturbance of accelerations and magnetic fields, which may 
cause the lost of useful information. Secondly, too many 
trigonometric functions and Taylor expansions increase the 
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computation and slows the rate of iteration. Thirdly, the 
inherent noise and drift are accumulated with time quickly.  

We propose a new orientation estimation method in this 
paper. This method models the errors of orientation, 
gyroscope bias and magnetic disturbance, and compensate the 
errors of state variables with complementary Kalman filter 
(CKF) in the inertial navigation system. Forward kinematics 
are combined to realize the orientation tracking of whole 
body and drive the 3D human model in real time. This 
approach has a remarkable modification as the measurements 
collected by magnetometer and accelerometer are fully used. 
On account of the errors of state variables being updated with 
time, accumulative errors won’t be generated between 
adjacent time, which contributes to long-time movements 
estimation. Besides, state transfer matrix equals zero all the 
time which will reduce the computational complexity.  

The paper is organized as follows: Section 2 describes the 
human model briefly and introduces the complementary 
Kalman filter algorithm. Section 3 gives tests of two different 
movement scenarios, and analyzes the results comparing the 
proposed method and the multiple adaptive fusion. 

II. MODEL ALGORITHM 

A. Human Model 

A 3D human skeleton model is built to obtain accurate 
orientation estimation in real-time, which fits to the human 
body anatomic and biological character. Positions are 
analyzed using forward kinematics [12]. To describe the 
rotation of joints and skeletons in the space, it’s essential to 
define four coordinate systems: Global Coordinate System, 
Body Coordinate System, Sensor Coordinate System and 
Model Coordinate System. To meet the rotation relationship 
between every coordinate system, we filter the appropriate 
means of mathematics. Quaternion can avoid the singularity 
problem in Euler angle, and the complex matrix operations in 
Direction Cosine Matrix [13-14]. Therefore, we choose 
quaternion to express the rotation relationship. 

B. Complementary Kalman Filter Model 

Complementary Kalman filter is used in the inertial 
navigation system. It bases on a model of errors and adopts a 
feedback mechanism to compensate the errors of state 
variables. For every segment in a systemic frame, the error 
state vector can be defined as xt= [įșt, įbt, įdt]

T
, which 

represents the orientation error, the gyroscope offset and the 
error in magnetic disturbance. Every error state variable has 
three elements, which constitutes a nine-dimensional vector. 
The flow chart in Fig. 1 describes the fusion of the three 
sensors in the error model for combined inertial and magnetic 
orientation sensing. 
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Figure1. The CKF flow chart for orientation estimation 

The error state dynamic presentation are as follows: 
 

tttt wxAx 1  
(1)  

The measurement equation describes the relation between 
the state vector xt and the measured variable zt by Ht : 

 
tttt nxHz 
 

(2) 

wt and nt are two random variables which represent the system 
and the measurement noise respectively, which are assumed 
mutually independent with normal distribution and white 
power spectrum. Qwt and Qnt represent their covariance 
matrices respectively. 

Note that the state variables at current time are only 

affected by the system noise. Therefore, the A matrix is a zero 

matrix. It’s also consistent with CKF significance, which 

reduces the computational complexity in system iteration. 

After updating the error states via CKF, the orientation 

estimation is compensated in order to rectify the prediction at 

t time before. We can also describe it in quaternion form [1]: 
 




 ttt qqq 
 

 (3) 

After providing the error state information, the error of the 
orientation will be set to zero. As the gyroscope offset and the 
error in the magnetic disturbance follow the first order 
Markov process, they will be updated over time. 

We define   as the prior state estimation for xt in the case 

of knowing the state vectors before time t, and  as the 
posterior state estimation after updating based on the 

measurement zt at time t. is updated according to:  
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In the recursive formula of Kalman filtering, Kt is the 
Kalman gain matrix which minimizes the posteriori estimated 
error covariance matrix: 
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(5) 

Pt is updated according to the Ricatti equation: 

 
wt

T

tttt QAPAP  


111         (6) 

State matrix Ht and measurement noise nt can be obtained by 
considering the effect of the gyroscope offset, orientation 
error, and magnetic disturbance. The inclination is defined as 

the estimation value on the vertical direction and the magnetic 
vector is defined on the horizontal direction. As each 
orientation is decomposed into horizontal and vertical 
vectors, these three state variables are updated when 
inclination and magnetic vector are treated as two inputs for 
complementary Kalman filter.  

C. Error Propagation 

In this paper, we employ inclination estimates from 
gyroscope and accelerometer. The measurement difference 
vector on the z-axis of the global coordinate system is formed 
by the difference between the gyroscope and accelerometer 
inclination estimates. Two relevant factors causing an 
inclination error are orientation error and gyroscope offset 
error. The inclination difference can be expressed as: 
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 and  are the inclination based on the gyroscope signal 
and the accelerometer signal in the sensor coordinate frame, 
respectively. 

The gravity vector affects the inclination estimate from 
the accelerometer. Therefore, we abstract it from 
accelerometer measurement  by subtracting the predicted 
acceleration  and normalize it to obtain the estimation of 
the inclination: 
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For the inclination estimate from the gyroscope, the 
orientation is found as the strapdown integration can be 

approximated with [15], where T is the sample time and  
is the angular velocity estimates: 
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(9)

 The global magnetic vector is estimated by comparing the 
difference between the magnetic field vector estimation from 
gyroscope and magnetometer. It implies the high accuracy 
measured by sensors when the difference is small. The 
magnetic field vector difference can be expressed as: 
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 and  are the estimates of the magnetic field vector 
based on gyroscope signal and magnetometer signal in the 
sensor coordinate frame respectively. 

The estimate of  is the measured magnetic vector   

subtracted by the estimated magnetic disturbance vector : 
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The magnetic vector based on gyroscope is described 
similarly as (9): 
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Now, the measurement equation is expressed as: 
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Matrix Ht and the noise nt can be determined as: 
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The error covariance matrix of the system noise term can be 
obtained with a premise that the matrix A equals the zero 
matrix and by taking the variances of the error propagations: 
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The measurement noise covariance was found by taking the 
covariance of (15): 
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where Qa, Qb, Qș and Qd are the error covariance matrices of 
acceleration, offset, orientation and magnetic disturbance. QvA, 
QvG and QvM are the covariances of the measurement noise 
term of accelerometer, gyroscope and magnetic disturbance. 
wat, wbt and wdt are the offset noise, the driving Gaussian noise 
of magnetic disturbance, and Qwa, Qwb and Qwd are the 
covariance matrix of them. 

III. EXPERIMENTAL RESULT 

A.  Experimental Setting 

The objective of the experiment is to compare CKF with 
UKF with optical motion capture Vicon as reference. 

Micro-sensor motion capture system˄ MMocap  ˅is designed 

and developed by our laboratory, which  consists of 16 IMUs 
and uses unscented Kalman filter(UKF) for orientation 
estimation [16]. Vicon uses 11 high speed cameras to track 65 
marks on body. During the experiments, performer wears both 
16 IMUs and 65 markers on his body, as shown in Fig. 2(a). 
Both of the sampling frequency are 100Hz. Raw sensor data 
are processed by both UKF and CKF to produce orientation 
estimation results. To assess the accuracy and stability of CKF 
and UKF, Root Mean Squares (RMS) is calculated between 
the filter estimation and the reference over samples.  

B. Experimental Results 

In the first experiment, performer squats and rises twice, 
as shown in Fig. 2(b). Fig. 3(a) shows raw measurements of 
this movement. Fig. 3(b-d) illustrate the results comparing the 
proposed algorithm and UKF with the reference orientation 
provided by optical system. Table Ϩ gives the comparison on 
RMSE of two fusion methods. As the motion is focused on 

lower body, we take right upper thigh as an example to 
analyze. 

 

 

Figure3. The result of first experiment: (a) Raw data; (b)Yaw angle;                                   

(c)Roll angle; (d) Pitch angle 

As illustrated in Fig. (3) and Table Ϩ, the sensor module is 
rotated along the z-axis during the squatting and rising, which 
causes a significant angular variation in yaw. The RMSE in 
yaw by CKF is 1.2609° (peak error 4.0537°), while 4.5839° 
(peak error 9.7860°) by UKF. In addition, upper thigh extends 
in space when performer squats, changing the angle in Roll 
and Pitch slightly. It can be seen that the RMSE in pitch and 
roll by CKF is 1.4824° (peak error 1.6648°) and 2.6716° 
(peak error 5.5647°), showing that a more reasonably 
accurate result than by UKF. As we can see from Fig. (3), the 
margin fluctuation of position estimated by UKF is much 
bigger than CKF, owing to choosing appropriate model for 
data fusion in real-time. The result shows that CKF curve is 
smoother than UKF and matches the reference value better. 

 
Figure2. (a) Performer puts on the suit with sensors and attaches 65 

markers; (b) Squatting and rising experiment; (c) Walking motion 

experiment 



  

After the rotation, the estimation in yaw angle is much closer 
to zero by CKF, which is about 0.4°, and the error by UKF is 
up to 8.9°. 

TABLE I.  COMPARISON ON RMS ERRORS OF SIMPLE MOTION 

Filter 
Squatting and Rising Experiment 

RMSE in Pitch RMSE in Roll RMSE in Yaw 

CKF 1.4824° 2.6716° 1.2609° 

UKF 2.0614° 2.8128° 4.5839° 

In the second experiment, performer walks with a rotation 
of 90° to the right three times along the route lining out in 
yellow, as shown in Fig. 2(c). We repeat this experiment six 
times. Each time the performance lasts 35s. Fig. 4(a) shows 
the accelerations, angular rates and magnetic field strengths 
calculated by one single sensor. Fig. 4(b-d) illustrates the 
comparison of Euler angle resulted in different methods after 
processing the original data with the reference orientation 
provided by optical system. Table ϩ gives the comparison on 
RMSE of two fusion methods. Also, we take left upper thigh 
as an example to analyze. 

 

Figure4. The result of walking and rotating experiment: (a) Raw data; 
(b)Yaw angle; (c)Roll angle; (d) Pitch angle 

During the rotation, the sensor module is rotated along the 
x-axis, which causes a significant angular variation in Roll. 
After three times rotation, the angle is approximately reached 
270°. According to Table ϩ, a significant angle offset shows 
by UKF algorithm with time. The RMSE in yaw and pitch are 
6.8862° and 7.3137° respectively. To the contrary, it shows 
smaller errors in CKF, namely 1.6392° and 1.9784°. It 
indicates that, with the increasing duration of movement, the 
accumulative errors affect the UKF estimation result. As a 
consequence, CKF has a better stability than UKF and reduces 
the accumulative error significantly. 

TABLE II.  COMPARISON ON RMS ERRORS OF WALKING MOTION 

Filter 
Walking and Rotating Experiment 

RMSE in Pitch RMSE in Roll RMSE in Yaw 

CKF 1.9784° 3.8443° 1.6392° 

UKF 7.3137° 4.8661° 6.8862° 
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